qqqqq

Learn C Programming for the Arduino

NET QT (VT = s WD EXTRAS ONLINE

http://www.it-ebooks.info/

Beginning C for Arduino,
Second Edition

Jack Purdum, Ph.D.

Apress®

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning C for Arduino, Second Edition: Learn C Programming for the Arduino

Jack Purdum
Ecosoft, Inc.
Cincinnati, Ohio, USA

ISBN-13 (pbk): 978-1-4842-0941-7 ISBN-13 (electronic): 978-1-4842-0940-0
DOI10.1007/978-1-4842-0940-0

Library of Congress Control Number: 2015944814
Copyright © 2015 by Jack Purdum, Ph.D.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for
use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Michelle Lowman

Technical Reviewer: Terry King

Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Michelle Lowman,
James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Kevin Walter

Copy Editor: Kimberly Burton-Weisman

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,

6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www. springeronline. com. Apress Media, LLC is a California LLC and the sole member (owner) is

Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at waw. apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available

to readers at www. apress.com. For additional information about how to locate and download your book’s
source code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

Printed on acid-free paper

www.it-ebooks.info

http://www.it-ebooks.info/

To my children: Katie and John

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the AUthOr ... ———————— Xix
About the Technical REVIEWETcuuussesssssnsssssnsssssnsssssnsssssnsssssnnssssnsssssnnssssnsssssnnssssas Xxi
Acknowledgments.......ccccceriissssmmmnmnmmmsmssssssssssnnsssssssssssssssnnsnsssssssssssnnnnnsnsssssssnsnnnnns XXiii
INtroduction........ccovemnmmimmms e —————_—=——— XXV
Chapter 1: Introductioncccccciieemminisesmmmnnssssmmmssssnsss s 1
Chapter 2: Arduino Cccccoiiineemmmmmmmmmmsssssssssssse s ssssssssssssessssssssssssssssessssnns 23
Chapter 3: Arduino C Data TYPeScccvussseenssssssnnnsssssssnnsssssssnssssssssnssssssssnnssssssnnnnss 45
Chapter 4: Decision MakKing in ©ccoccccmmmnsemmmmnsssssnnmmssssssmssssssssssssssssssssssssns 69
Chapter 5: Program Loops in C......ccccvussmmnmmssssssnmmssssssnssssssssssssssssssnsssssssnnsssssnnnnss 97
Chapter 6: FUNCtions in Gcccuvemmmmmmsssnmmmmssssmmmsssssessssssssssssssssssssssssssssssnnnnes 119
Chapter 7: Storage Classes and SCOPE......cccuseerrrssssnssssssssnssssssssnssssssssnsnsssssnnnnss 143
Chapter 8: Introduction to Pointerscccuneemmmmmmmmmnnnnssssssmmmenssssss .. 165
Chapter 9: Using Pointers Effectivelyccccuunemmmmnssmmnmnssssnnnnnssssssnssssssssnssssssnnns 197
Chapter 10: Structures, Unions, and Data Storage...........cccinssseemnmnsssnnnnnssssnnnnns 219
Chapter 11: The C Preprocessor and Bitwise Operations.........cccoosveeemnnnnrcnsssnns 253
Chapter 12: Arduino LiDrariesccccusseesmmmssssssmsssnnnss 277
Chapter 13: Interfacing to the Outside World...........ccccsiemmminssenmnnnnsssnnnnnsssnnnn 299
Chapter 14: A Gentle Introduction to Object-Oriented
Programming and C4+ ...cuiceemmminsesmmmmssssmmmmssssssmmsssssnmmsssssssnesssssssssssssnnnssssssnnnnss 321
v

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS AT A GLANCE

Appendix A: Suppliers and SOUICEeS.....uuussmmmsmmrrmssmssnnnnns

Appendix B: Electronic Components for EXperimentscccuccemmnmmsenmmmssssssnmssssnns

vi

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the AUtNOFKcccceriiissmsnmmsssssnmmsssssnes s as s sann s s s s ssnnnnesssnnnnnnsssnnns Xix
About the Technical REVIEWETcucussseesmmsssssnnsmsssssnsssssssssssssssssssssssssssssssssssnnsssssnnns XXi
Acknowledgments.......ccccceriissssmmmnmnmmmsmssssssssssnnsssssssssssssssnnsnsssssssssssnnnnnsnsssssssnsnnnnns XXiii
INtroduCtionccceuiinissnnnnmssssnnnnmssssnnnnssssnnnnnssssnnnnnsssnnnnnnssssnnnnnssssnnnnnsssnnnnnnsssnnnnnnnsnn XXV
Chapter 1: Introductioncccccciieemminisesmmmnnssssmmmssssnsss s 1
Why Ch00SE ThiS BOOK?cccerierrerieriersersessessessessesssssssssssssssssessssssssssssssssssssssssssssssssssssssns 1
ASSUMPLIONS ADOUL YOUcveeeeeeeeeceeese e e sae s s e ssesnesnesresnesnesnesse s e s e snssnssnssnesnnsnnnnes 2
WRHAt YOU NEEA ...ttt n e s 3
An Atmel-Based MiCroCONtrolIEr Cardcccerrreienererrnssesessnsesesesessssesessssssssesssssssssssssssssssssssssssssssssnns 3
TYPES OF MEIMOTY ...ttt e e e r e e s s e b s ne e s s e e s s e e e nnrnns 3
Making the ChOICE.........ccvcerierrererrirer e a s sn e sn e sn e n e 4
210 10 T 5
INPUL/OUPUL (I/0) PINS ...eeeeeceererererereserse e seesesaeses e sassesaesessesessesassessssessssessssassessssesassessssssssssssensssessensnnes 6
Breadboard..........ccociincrrr e p s 6
MiSCEIIANBOUS PAITScccocviriiiiiiiiiic s 8
Installing and Verifying the SOftWarecccvceeiinesiicnnncsessess s 8
Verifying the HardWare.............oorvencice st ss e s sne e sne e snens 11
ALtaching the USB CabIE.........cccviererrererrereererseserseresesssessssessssesssssssessssessssessesssssssssssssssssssessssesssnssssssaes 1
Selecting Your pc Board in the Integrated Development Environment............coooveeennnennnnnenenennns 12

0T T T (o] 12

vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Loading and Running Your First Program..........cccccucrennnennnmnesnsesessssessssesesessesssssnsens 16
Writing YOUP FirSt PrOgram..........cccocouiicicnisscscsirse s ses s se s ssssssssssssssssssssnsnns 16
Compiling and Uploading @ Program ... ssssssssssens 19

31141 P2 22

Chapter 2: Arduing Cccccimminsemmmmmmsssmmmmssssnmmmsssssmmsssssmmsssssnsssss s 23

The Building Blocks of All Programming LangUAges........cccveerrerrerrersessersessessessessessensenas 23
EXPIESSIONSveueeeeeruererserererssessesersessssesassessesessesssssssssessssessssessessssesssessesessesessssssessssesassensesessssssssnanaens 24
STALBMENTS ... ——————————— 25
STALEMENT BIOCKScocvviiiirsriissss s 26
0T 0T 02)€ 27

The Five Program STEpScccicrcinisssirses s sn s e e e s snssns s snssnsnnnns 28
I AT EE L2 LTI (] oSSR 28
P2 4] 0110 T o L 29
3. PrOCESS STBP...ceiueeicriesi sttt s a e e e A e R e R e e Re e Re R e R e e Re e nnn 29
4. QUEPUL STEP ... s p e e e e AR R E e e e R e Re e nnn 29
LI LT LT E (0] (RS (=T o 30
The Purpose of the Five Program StEPSccveinnicnnscnerne e sss e ssssenes 30

A Revisit 10 Your First Program............cccovcereninennnmnesssesessse s ssssssnsssssens 30
The SETUP() FUNCTION ...t 31
THE 100P() FUNCHON ..ottt 32
Arduino Program REQUIrEMENTScccecrerrrereririreseses e e se s sssessssssssessssssssssssssssssssssns 34

The BIiNK Program.........cccucvirireniensensensessessessessessessessessssssssessssssssssssssssssssssssssssssssssnsnns 34
Program COMMENTS.........cocvcererererererereressessesessesesaesessesassessssessssessessssessssessesesssssssssssesassessesessesssassanaens 35
The setup() FUNCEION iN BIINK........covoereerererererererereresseressessesessesessesessessssessssessssessssessessssessssessssesasnssaes 37
THE 100P() FUNCHIONcveceeeececeererererereeesee e saeseraesesseses e sas e sassessesesassassesassessssesassesassssasassesassessssesssnsnaes 40
delay(): GOOd NEWS, BAU NBWScccecerrererererererersesersesessesessesssessesessessssessssessssessssssssssssssassesssnesssnssaes 4

R 1111 42

viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 3: Arduino C Data TYPEesScceerrrrrmmmmmsssmsssssmmssssssssssssssssssssssssssnnsssssssssssssns 45
G (0T (0 E 3T X O T PRSP 46
Variable NameS i C.......ooeoeierececece e sse s s snesassnssrssnssnesnesne s s snennnnns 47
The boolean Data TYPEcccvcerirrerir e s n e e 47
Walking Through the Function Call to ReadSwitchState ()ccocveerrrerrrererrerre e 48
BiNAry NUMDEIS..... oot rere s sae s e e rae e saesas e sae e ssesesaesasaesa s e sae e sas e saesasaesansesssesasnenasnanaens 48
The char Data Type and Character Setsccccvernirnrniennsnse e 49
Generating a Table of ASCIl CharacClerscoveieeniennicsescsesesse s sse s e ssssessssesssssssssssnens 50
The byte Data TYPEcccevcercerierirer sttt sr e sn s sn e n e sn e nnnnn 51
The int DAt TYPE....ccecerererer sttt n e e a e sn e sn e nn e nn 52
The Word Data TYPE.......cccvcvrrrerirse s sn s sn e r s sn e sn e nn e nnnnn 52
The 10Ng DAta TYPEcecerererererir st n e e s sn s n e sn e sn e sn e nnennenn 52
The float and double Data TYPESccecerrrrerrerrerrerrr s sn e nns 53
FIoating POINt PrECISIONcoveceeeeererere sttt s s ses e sae e se e s e e saesas e saesesae e sassassesassesaesesassesassanaens 53
The string Data TYPe.......ccvcvcrcrrrrrser s sn e sn e nn e nnnnn 53
SriNG DATA TYPE .ottt r e n e e n e n e n e nn s 55
Which Is Better: String or strings Built from char Arrays?..........ccocoveeeenrnsencnnnsssesesse s 56
The void Data TYPEceverereriererr sttt sa e sn s sn e sn e n e nn 57
The array Data TYPE.......cccvvrrersersersississes s s sn s nn s sr e sn e sn s sn e sn e nnennnnn 58
Array GENEralizationsccceveeniesnese s s se e e p e Rennnas 58
Defining vs. Declaring Variables..........c.ccocvvrvrvrsnsncscr s 59
(IR T T U o TN = 0] OO RPR 59
SYMDBOI TADIBS......ceceeeee e 59
IVAIUES AN FVAIUES......c.eeeeecirieecr e st e s g s e e e nannn s 60
Understanding an Assignment Statement ... 61
THE BUCKET ANAIOGYc.covrueerererreesesesssesesesssse e s e se s e e s s ses s s s sesssssssssssssesssesssssssssssssnssssssans 62
Using the cast OPerator.........ococevererc s sa e 64
THE CASE RUIE......c. e e ne s 65
SUMMEAIY ...t e e s r e s e e s R e a e e Re e et eae e e e e e e nne e nnnns 66
ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 4: Decision Making in ©ccccccmmmmnsemmmmmsssssnnmmsssssssssssssssssssssssssssssssssnes 69

Relational OPerators..........coccievrierenniesr e 69
The if StAteMENt ... ————————— 70
What if EXPression IS LOGIC TIUB?Ycoceureeercrerirescses e e sssessssssssessssssssssssssssssssnsns 4l
What if EXpression IS LOGIC FaISE?ccoveeceerirercrirnesescresssse s ssssns 4l
Braces OF NO BraCeS? ..o 72
A Modified BIiNK Program...........ccccecvierenenenesesesesessessessesssssssssssssssssssssssssssssssssssssanes 72
THE CIFCUIT c.vevticsrst s bbb 73
Circuit ReSISTOr VAIUES ..o 74
The Modified BIINK PrOGIramccccerereriresererereressesesseseesessesessesessessssessesessssesssssssessssessssessesesssssaes 75
Software Modifications to the Alternate Blink Programccccvveeniennnnsennscnesnnens 78
The if-else Statement BIOCK..........cccceriernnmniernsmnesnsssss s s sss e ssssssssssssssnes 79
Cascading if StateMENtS........cccceevererere e n s 80
The Increment and Decrement OPeratorscccevveerrriennss s 82
Two Types of INCrement OPErators (+4) ..oovccueeerrererreresresssesresesessse e ssssessesessssessesessessssessssessesessssssnes 82
The switch Statement...........ccoceicicnn - 84
A switch Variation, the EllipsiS OPerator (...)..ueerrereseresesesesessssesesss e sesesssssssssssnns 87
Which to Use: Cascading if-€ISe OF SWItCh?ccccerreiencrnsiesesrsee e sesnns 88
The goto STAtemMENt ... se e nns 88
Getting Rid of Magic NUMDEIS ... 88
THE G PrePrOCESSOLeeererereressessessessessessesses e s e s e s ses s s sssse s s s s s sssssssnssessnsssssssnssnssnsnns 88
Heads or TallS ... —————— 91
LT CE= 122 04 TR (- o 91
] 0) (T o 91
o (00T E T (=T o R 91
0 10T) 1o 91
LT LT L0 (1) o 92
SUMMEAIY ...t e e s r e s e e s R e a e e Re e et eae e e e e e e nne e nnnns 94

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 5: Program Loops in C.......ccccusseemmmnssssssnmssssssssmsssssssssssssssssssssssssssssssssnnnss 97

The Characteristics of Well-Behaved LOOPSccccoverrrerernicsesensess s sesessssesnes 97
Condition 1: Initialization of Loop Control Variableccccverevennnnnnnnnis s e e sesssnsenns 97
Condition 2: LOOP CONTIOI TESTcccieiiiirereriese s s s sae st saesa s sae e e e saesaesa s e s snesaenns 98
Condition 3: Changing the Loop Control Variable’s State............cccerverninnsnesnennesssese e sessesennens 98

(UL T (0] g 0o P 98

Program to Show Expression Evaluation............cccevvvrversersensessensesses s ses e e sesenns 100
WhHen t0 USE @ FOrLOOPc.cuvviirniimsiissisniissssisssssss s s sssssssns 103

The WHIlE LOOPevererersersessessesses s ses s s e s e s e s e s e s e s e s s s s s s sssssnssnssnssnsssssnssnsnsssnnnnnnns 103
When 10 USE @ WHIlE LOOP ...ccceverieirerirrir st ses et e e sas e sas e sa e sassassas s st e sasssssasssssassassassasssnnnns 104
The SiZE0T() OPEIALOLcceeereeererre e e r e r e s sr e e e s p e nenrnnas 105

The do-WHIle LOOP......cccvcerererirer st sn s s sn e e 106
Why a do-while is Different from @ While LOOPcccovveierererenescninnescsir e sesesens 107

The break and continue KEYWOIdS........c.ccecvververreriensensensenses s sss e sss e s sassassesses 107
The break Statement ... ————————— 108
The continue StateMENt ... ————————— 109

A Complete Code EXAMPIEccoeeriererrcrncre e ss s sns e snes 109
Step 1. INIHAlIZATION ..o —————————— 110
SEEP 2. INPUL ... e e e e e e e e e e e e e e nen 110
T 0 TR o (0T S 110
R T 011 | SRS 110
G ORI LT 111 T o] S 110
LiStING 5-5 1S SDC......cceiectrerircrieerre e sn s s a s sr e s e p e b et n e e ne e ne e s nenn s e p e ns 112
Getting Rid of @ MagiC NUMDEKcceoeeicerccr e r s 113

Loops and Coding STYIE.........cccvverierririeerierreerer e s e s sse e e s sa e s sne s s sne s e snessnssneens 114

Portability and EXtensibilitycccvvvvrvrirrrrrrrr e 115

SUMMEAIY ...ttt s e s ae s b s s R bR e e s e n e e ae e s e nennaens 116

xi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 6: Functions in Cccuneeemmmmnnmmmmmmmssssssssnsssssssssssssssssssssssssssssssssssssssnss 119

The Anatomy of @ FUNCLION..........ccocvcicrcrr st 120
FUNCHION TYPE SPECITIEN ...c.vreeeeecerecrccece e n s r e 120
FUNCHON NAME ... s 120
FUNCHON AFQUMENLTS ...ttt e e e e n e s 121
Function Signatures and Function Prototypes...........cceerrrinnnnsscnnessssssessesse s sssesseenns 123

FUNCHION BOGY.....c.cciirererire st sn s sn s sn e nn s nn e nn s nnnnn 124
0verloaded FUNCLIONS ... 125

What Makes @ “Good” FUNCLION ..o 126
Good Functions Use Task-0riented NameS..........cocounmmnsssssssssssssssssssssssens 126
GoOd FUNCLIONS Are CONBSIVEcvviieirisriisssnisissss s 126
Good FUNCtions AVOId COUPIINGceveereererererereerereesereesersesesessssessesessesessessssessssessssesssssssssassesassesssnenes 126

Writing Your OWN FUNCLIONSc.cccoeiicrrcccsircre e sn s sne e 127
Function Design ConSiderations...........ccoveerieriscrsnnessessess s ses e ssssessssens 127
FUNCHON NAME ... s 128
ArgUMENE LIST ...ttt a s e e s p e a e e s e s e e p e penrnnas 129
FUNCHION BOOY ...t n s s s s p e e e e e p s 129

LOGICAl OPEIALOrSccueeeeceeeereerrec e e s s sae s r e s aesn e aesr e sn s snesnssn e snesnennennennnnens 129
LogiCal AND OPEIatOr (&&).....ccrerseererrrreerererssseessssssssesesssssssesssssssessens 130
00T V0 L 131
LOGICAI NOT (1) cuueerreueereresseesesssseesesssssssesessssssesesss s e e sssss s e ssssesssesssssssssssssnsssssssssssssssssssssnssssssnsasnnns 131

Writing Your OWNn FUNGLIONccccerveiirrerer ettt sn s sn s 132
The IsLeapYear() Function and Coding STYIEcceevererererrererrere e rere e res e ree e rae e saesesesaesessenenaes 133
Why Use a Specific FUNCLION SLYIE?ccoeeeeerererere ettt rerse e sae e sae e s e sae e s e saesesaenenans 134

Leap Year Calculation Programcccceeenvennninesnsese s ssssessssessessssesssssssens 134

Passing Data into and Back from @ FUNCLioncccecvvrcrcrsercs s 137
PaSS-DY-VAIUE.......oce et ae e ae e s ne g s e e e e 137

E3 1111 1P 7S 140

xii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 7: Storage Classes and SCOPe.......ccusemrrnsssanmnmnsssssnssssssssnsssssssssssssssnnnns 143

Hiding Your Program Datacccceernennensesssnsessessessesses s e sesssssesssssessnssssssssssssssssnnnns 143
The Three SCOPE LEVEIScccvcerceririrsir sttt sn s sn s e 143
Statement BIOCK SCOPEccceeererirecrerireesisise et nn s 144
Why Use Statement BIOCK SCOPE?.......cccoruiierirrnererirsesesessss s sesssss s sssssssssssssnns 146
FUNCTION BIOCK SCOPE......ccereereereererreererssesessse e sssesessassssssaessesaessessessesassnssssssnsesaes 146
Name ColliSioNS aN0 SCOPEcoecereererererererrereereree st ree s rseres e rassessesessesesaesessesassesaesesassesassassesansessnsenes 147
GIODAI SCOPE ...t a e e e n e e s n e s 150
Tra0dE-0ffS ... ————————————————————————————— 151
Global Scope and Name CONfliCTS........ccoevirerinirene e n s 151
Scope and St0rage ClaSSES........ccuurrrrrerrerserssssssses e sss s ssssessssssssessessesssssnsssssssssssssssnsens 152
The AUL0 STOrage ClaSS.......ccerurecrererreerereseesisessse s se s se s se s e se s ne s s s s e nsans 152
The register ST0rage Classcccvvrerererireenireseesese s s nsans 152
The Static ST0rage Class........cooueeceerereenerreesirere s 153
The Effect of the static STOrage Classcccccrrriererrnnescssse s sesessns 153
The eXtern STOrage ClaSS........cuouecrererererereseesesesseesesesse s e s sesssss e e s s s s sssssssessssssssssssssssasssssans 154
Adding a Second Source Code File t0 @ Project.........ccovveerrnescnrneerc s 154
U410 (04 I o 0] (0] 4] LSS 158
#include Preprocessor DIrECLIVEcccceeeeerereererse e ssesse e e sss e snssnessssnssnssnssnesnnnes 158
A common #HNCIUAE 1HIOM ... —————————— 159
Where Are the Header Files Stored?...........ccovvnnnnnnsssssssssssssssssssssees 160
The volatile KBYWOIdccocvverieriersirirsir s e 160
E3 1111 P2 7SS 160
Chapter 8: Introduction to Pointersccccusemmmmnnsemnmnnsssnnmmsssmmmssssnmsannms 165
Defining @ POINTEN.........cccvvriiriersir st sn e sa e sn e sn e 165
POINTEr NAME......cicriticsssi s s 166
ASTEIISK (¥) 1veeruerererserersessrserersersssersesersssessessssessssessesssssssessssersssessesssssssssssssessssessssssssssssessssersensssensenes 166
Pointer Type Specifiers and Pointer SCAlars.........c..cocvveereererrererrerenererereresseressessesessesessesessesessesssees 166
Why All Arduino Pointers Use Two Bytes for ST0rage..........cecverrerrerererenseressereesersesesesessessssessssenaes 168
Pointer INHAlization..............cvvi i ———— 169
xiii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Using the Address-0f OPEIator..........cccervererrererere s res e sse e s e sas e saesesaesesassessesassesassenes 170
The INAIreCtion OPEIALOr (¥) ...ecveerereererererererersssersesersessssesessersssessesesssssssessssessssesssssssessssesssserssessesnses 171
Why Are Pointers USEfUl? ...ttt 175
Modified BIiNK Program..........c.ccoueeeenerennsesesssessssessessssessssssssssssessssssssssssssssssssssssssnnes 179
POINTErs and AITAYSccoceiieriirer s s e e n e s 180
The IMPOrtance 0f SCAIArS.........ccccvererererererrerr e e s e e s e sae e sae e aesesaesaesesae e saeenaes 183
Pass-hy-Value vs. Pass-by-ReferencCe.........cccouvviveneninnnnnn s see s 185
D (01T T 188
LTI Y00 (0 (v RSO S 189
ONE SOIULION ... 189
Debug Statements Using the Serial ODJECL...........c.oeeeeereieeeee s 192
SUMMEAIY ...ttt r s eae s a s sre e s e re e s e nae e s ae e n e nnnnnnnns 193
Chapter 9: Using Pointers Effectivelycuunueemmmmmmmmmmmssssssssssmsmmsssssssssssssssssessssnns 197
Relational Operations and Test for Equality Using Pointers...........cccocvveenierenensernnnennes 197
Pointer Comparisons Must Be Between Pointers to the Same Datacccceeevnenenennesesenesssenennns 198
Pointer ArithmetiC........ccoevrir s ——————— 198
CONSEANT IVAIUES ...t 203
TWO-DIimeNSIONAl AITAYS......ccceeerrerrerrirsirses s s s s s sn e sn s snssnssnssnssn s srssrssnesnenne s 203
A SMall IMPrOVEMENTeeoeiececcre e s s a s s e s se s e e e e n e nnas 206
HOW Many DIMENSIONS?coouiierireireeeressse e sesssee s e e s s se s sse s e s sss s e ssssssnssnens 206
Two-Dimensional Arrays and POINTEIS..........ccoveerenmiernsessenssesesss e ssesessesessesssnensens 207
Treating the Two-Dimensional Array of chars AS @ StHiNg.........cccevrererrnesesnse s 209
Pointers to FUNCHIONS ... 209
Arrays of PoINters t0 FUNCLIONSccociviininnn st sn s sn s sn s sa s sa e s 211
Lo a1 J 07 U B] oL SRS 212
The Right-Left RUIEcoceecerrerr sttt 216
SUMMEAIY ...ttt a s e sae s s s saenn e er e e s e an e s aennn e nnnnnnnnns 217

xiv

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 10: Structures, Unions, and Data Storagecc.cccmmnsssennnsnssssnnsnssssnnns 219

SHUCIUIES......ccre e ———————————— 219
Declaring @ STTUCTUIE..........cccee e s n s r e 220
DefiNing @ SITUCLUIE ... e s r s 221
Accessing Structure MEMDEIS ... r e e e 222
ESCAPE SEOUBNCESeoveeereerierierieriesae s sae e saesaessesaesaesasssesaesaesaesaesassaesaesaesaesaesassaesaesasssssssssssnsssnsnnsnnes 224
Memory Requirements for @ StrUCIUIE ... e 225
Returning a Structure from a Function Call.............ccornncnnrr e 226
USiNgG STrUCLUrE POINTES......covccceecccectre e n s e 228
INItAIZING @ STTUCTUIE ... e 231
Arrays Of SHUCTUIES.......cceieeecc e e r e e e e s s p e nennnas 231

L30T 232

EEPROM MEMOIYooviviucciinere s ss s s s e s 233
USING EEPROIM.........coeueeeeceessenseseesessessessessesssssssessessessessssssssssessessessssssssssessessessesssssssessessessensensssssenas 234

Other Storage ARREINALIVESccceeerrerriere e 242
SRIIOSeeeeeereeseeeereusese et ses st s s s s ne s 242

EYPEAET ... ————————————————— 247

E3 1111 P2 7SS 248

Chapter 11: The C Preprocessor and Bitwise Operations.........ccouunssemmmnnnnnsssssnns 253

PreproCeSSOr DIFECHIVEScvvueverieereree s ree s s s e s s s s s n e s snenais 253
FUNAET v —————————————— 255
FHlIN@ e ——————————————————————— 256
#if, CONAItIONAI DIFECHIVES ..vuveiriieeieiierierier s ses s s s sa s sa e e s s sn e s s a e a e nn e n e sn e nnenenennn 257
FHNCIUAR ...ttt ————————— 258

Parameterized MACK0Sccoucvrinenns i 259

Decimal to Binary CONVEIENccocvcvieriersirir s sn s e snssnssnesns e 261
BitWiSE OPEIALOFScccevrveeecrererreesesesse et e s e e e e s s s e e s sae e e s ne e e e nsnnnnnanes 263
Bitwise Shift OPEIators........ccoeuieicririreecrirr s 267

XV

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

0NE MOre EXAMPIE ...t ss s s e sn e assr e sn s sn e sn s sn e sa e sa s sn e nn e e nnns 268
Using Different Bases for Integer CONStants...........cccovveeeecrernnencsnnessse e sesseens 269
Parameterized Macros ... CONHINUEMcocoveerererenenenereeeee e 269

E3 1111 P2 7SS 270

Chapter 12: Arduino LiDrariesccccouurmmsssssssssssmmmsssns 277

L LLC 2 11 T 277

[0 T 3 278
L LT (Ol] gL 278
The Arduing COre LIDIAriescoceeeureerererceiressee e 280
L0100 LT g I 0T Ty TS 285

Writing YOUr OWN LIDFarY......ccooceveieniscrenesesesse s e e sssssssesssssssssssssssssssnens 287
The Library HEAUEr Filcccouiueeeerireererirecirese e sssss s sss s sessns 288
The Library Code File (DAteS.CPP).....eueerererrerererersmseseresssssessssssssssessssssssessssssssssssssssssssssessssssssssssssssans 289

Setting the Arduino IDE to Use Your Librarycccvvrvrvrvnnnsensessesses s sessenens 292

A Sample Program Using the Dates Libraryccccoeeeeececccesc s 292
Adding the Easter Program As Part of the Library ... 294
The KeYWOIdS.IXE FlEcccoueeereirere ettt r e e s r e s p e s 295
Keyword Coloring (theme.tXt) ... 295

SUMMEAY ...t a s ae e s r e s a e e s ae e s nnennnnns 297

Chapter 13: Interfacing to the OQutside World...........cccormmmmmmrrnnnnnnsssssssnnnneensnne, 299

The Serial Peripheral Interface (SPI)c.ccoeeicereniicerncsesseses e 300

LA I o B o (T T S 300

Interrupts and Interrupt Service Routines (ISR).........ccceeeeererenesess s senens 305
1Y Gy 101 D] b] SRS 307
An External Interrupt Program...........cocceinnicnescne e ses s ssssessssessesssssssssessssesssssnes 308

An Alternative Interrupt Program.........c..ccoceenierennnessnsssesssesesssse s sessesessesnes 310

xvi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

UItrasonic SENSOr PrOgramccccoveeenneresssssssssssessssesssssssesssssssssssssssssssssssssssssssssens 311
A Programming ProBIBMcoevirerercre s sas e sse s s e s sas s sassassas e sne s 314
Y0 11 1] 314
010 T (1 0 o 318
Chapter 14: A Gentle Introduction to Object-Oriented
Programming and C++cccciiiisssessmmmmmmmmsssssssssssnsmmsssssssssssssssssessssssssssssnnsnsssssssnns 321
THE OOP THIOQY +.eeeveuerrerererseessesessessessssesessessesessessssssssssssessssssssssssssssssssssssnssssssssssssssasens 321
ENCAPSUIALION ...ttt ae s s e pn e 321
INNEITANCE.c.ceereecct e b et seae e s s ae e e e s ae e e e nsnnnannnes 322
POIYMOIPRISIMN..... ottt b st e s s ae e s s ae e e s s ne e e e nnnnnnnanes 323
LI LC2 00 o 0T 323
INSIAE AN OOP ClASS.....cereeeeeeereeeeseesesesesese e e sese e e e e e s e s s s s s s ss s sesessssss s s ssssssssssssssssnsssanas 324
OOP and Class ODJECEScereurerreieesess s 325
PUDIIC VS, PrIVALE iN @ ClASS.....cerererrerereerererersersesersssessesessessssessssessesessesesssssssessssessesessssssssssssessssesseneres 325
The EEPROM.CPP Fil@ceerereeerer sttt sn s 327
Add julian() t0 DALESccceerrerrrrrrerrrere e 329
Adding a private Class MEMDETccoceverererererrree s ses s sss e sesssssassasses 330
Constructors and DeStrUCTOrS ..o s 332
00] T (1 [0 o TS 336
Appendix A: Suppliers and SOUFCEeS.....ccouuussmsmrrssssnsnssssssnsnssssssnsnssssssnnsssssssnnnssssnnns 339
R3] 2L (-] g (] PSSR 339
Shields, Boards, SENSOIS.......cucviiieiiiiiiissressssisssssssessssssssssssessssssssssssessssssssssssesssssssssns 342
SPECIfiC PArtS SOUICEScccceeeeeceeceecrecie st r s sn s sr e sn e sn s nn e 347
BEZEIS ...t E AR e AR e R R e n e e 347
JUMIPEE WIFES...c.veteeccirceiee ettt s b et e e b s s b et R e e R e b s Re e e Re e e et eRe e ene e nnenenanns 348
o (0] T LT TS 348
DOMEStIC PartS SUPPIIETScvvueeeerecrctrer et e e e n s p s 348
xvii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Appendix B: Electronic Components for Experimentsccccunmmsmmssnnnnnsssmmsssnnnn 349
Microcontroller BOArd............cccvverrerienninnen e se s se e ssse s s sae s ssne s 349
Solderless Breadboard............coceeeevverrerserenseeserssesessssssesssessessssssesssssessssssssssssssssseens 349
Electronic COMPONENTSccceverieererieererssesesssesesssesesssessssaessessessessesssesasssesassssesaes 349
Online Component PUICRASESccverriererncrs s se e sss s e s 350
EXPEIMENT! ... nenn 351

1T L 353

xviii

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Jack Purdum is a retired professor from Purdue University’s College of
Technology. Dr. Purdum has authored 18 programming and computer-
related textbooks. He has been involved in university teaching for more
than 25 years. He continues to contribute to magazines and journals, and
he has been a frequent speaker at various professional conferences. He
was the founder and CEO at EcoSoft, Inc., a company that specialized in
programming tools for the PC. He continues to be actively engaged in
onsite training and instruction in object-oriented programming analysis
and design. Dr. Purdum has developed numerous programming and
teaching methodologies, including the Right-Left Rule, The Bucket
Analogy, The Five Programming Steps, Sideways Refinement, and code
benchmarks (Dhampstone); he has been recognized for his teaching
endeavors. He received his BA from Muskingum University, and his MA
and PhD degrees from The Ohio State University.

Xix

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical Reviewer

Terry King has designed broadcast stations, recording studios, broadcast equipment, intelligent machines,
and special computer languages for IBM. He has worked as a broadcast journalist covering elections, fires,
riots, and Woodstock.

He has taught electronics at SUNY and IBM, and “Bits&Bytes” at many high schools.

Terry received an Outstanding Technical Achievement award from IBM for the software architecture of
IBM Chip Test systems.

He is now “retired” and writing about Arduino/embedded systems (http://ArduinoInfo.info) and
running YourDuino.com with his friend from China, Jun Peng, and his library designer wife, Mary Alice
Osborne. Since “retirement,” Terry has lived and taught in Africa, China, the Middle East, and Italy.

Now he is “home again” in rural Vermont and working 40+ hours a week on ArduinolInfo.info, firewood
cutting, woodworking, and electronics.

xXi

www.it-ebooks.info

http://arduinoinfo.info/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

No one writes a book in isolation. Perhaps without even knowing it, many people present me with ideas

for teaching examples, better ways to get a point across to my students, and provide feedback on what
works and what doesn’t. It’s not uncommon for nonprogramming friends to listen to me explain something
and ask questions that ultimately points me to the heart of a lucid explanation. I must thank some of these
people: Jane Holcer, Katie Mohr, John Purdum, Joe and Bev Kack, John Strack, Mike Edwards, and

Dennis Kidder. I would also like to thank Terry King, the technical editor of this book, for his suggestions
and keen eye in reviewing this manuscript. I also want to thank all of the vendors in Appendix A, whose
contributions made it possible to test the programs that appear in this book. Also, many thanks to Kevin Walter,
Michelle Lowman, and a host of other people at Apress who worked to make this a better book.

xxiii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Shortly after Gutenberg’s big breakthrough, I was teaching a graduate-level statistics course and had to have
a calculator with a square-root function. At the time, the least expensive I could find, even with an educator’s
discount, cost $150. Now I look down on my desk and see an Arduino Nano that’s about the size of my
thumb, costs under $5, and has more computing power than some early computers. I can’t imagine where
things will be 50 years from now.

The path I took to this moment in time is different than many of you reading this text. My primary area
of expertise has been software engineering. However, I have always loved electronics and have dabbled in
it since I first got my amateur radio license over 60 years ago. Yet, with all of the technological advances that
are embodied in that thumb-sized board that sits in front of me, it’s little more than a lump of silicon unless
someone tells it what to do. Programming gives life to lumps of silicon, and I find that power pretty heady
stuff.

The primary goal of this textbook is to teach you the C programming language as it exists in the
Arduino integrated development environment (IDE). I just Googled “Arduino C programming books” and
got 1.1 million hits! Some people are probably rolling their eyes, thinking: “Just what we need ... another C
programming book.” I hope to convince you over the ensuing pages that this book is different.

First, many C programming texts designed for the Arduino environment relegate programming to the
back seat, concentrating instead on the electronics. Indeed, some give you the feeling that programming is
a necessary evil you must work through to get to the good stuff. Not this text. The truth remains that so-so
software is doomed to produce so-so results with the hardware. Crafting good software can be every bit as
rewarding as a well-engineered piece of hardware.

A second factor that makes this book different is my teaching experience. I had a programmer work
for me who was perhaps the most gifted programmer I know. One summer I assigned an intern to him and,
within a week, she quit in tears, saying he was impossible to work with—let alone learn something from
him. Just because you are a brilliant programmer doesn’t mean you can impart that knowledge to others. It’s
not until you have 150 sets of eyes staring at you like a deer in the headlights that can you appreciate what
you thought was a great way to explain something obviously isn’t. This trial-and-error process of teaching
for more than 25 years has helped me develop techniques that lift students over the most likely stumbling
blocks.

Finally, teaching programming does not have to be a dry or boring process. I have tried to make this
text read as though you and I are talking face-to-face about programming. Although you are the final judge, I
hope you come away with the enjoyment and appreciation for programming that I have. The power to make
a piece of hardware dance beautifully to your commands is most addicting.

Assumptions About You

First, I am going to assume that you do not have to master C by next week. A major reason students who
try to learn on their own fail is because they don’t invest the time it takes to truly absorb the material being
presented. You must take the time to type in the sample programs and run them yourself. This also means
really working through the exercises at the end of the chapters. There are little programming nuggets to be
learned from those exercises, and you owe it to yourself to ferret out those nuggets.

XXV

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

Second, maximize your learning experience means you must invest in the hardware necessary to test
your code. I have tried to minimize the hardware necessary to write the programs in this book. Other than
for the projects in Chapter 13, an Arduino board, a breadboard, a couple of LEDs, a few resistors, and some
wire is all you need.

Third, I realize that many of you have some project in mind and that’s the primary reason you are
reading this book. You'll have a temptation to skip ahead to try and find out why your project isn’t working.
Don’t. The sequencing of chapters and their content is such that each chapter builds on those that precede
it. You need a strong foundation to build a solid understanding, and that means reading all of the chapters in
the sequence in which they are presented.

Finally, take the time to enjoy the journey. If I say, “Think about it,” I mean for you to really stop and
think about what you just read. If you just finished reading some topic, perhaps how to write a for loop,
stop and take the time to write a simple program of your own design to use a for loop. While you may think
this will slow you down, it will actually speed up the learning process. Mentally telling yourself “I got that!”
and actually writing your own program to implement the concept are two entirely different animals. As
mentioned earlier, make sure you do the exercises at the end of the chapters. I didn’t take the time to write
those just to kill off a few extra trees. Try to answer them without looking at my solution. One of the neat
things about programming is that there is more than one correct answer.

Resources

There are many places where you can go for additional help if you feel you need it. If you have a particular
area of interest or question, your first stop should be a Google search. In most cases, just prefixing a
Google search on the area of interest with the word “Arduino” (e.g., Arduino for loops) will produce many
supplemental resources for you to investigate. Apress also has a number of electronics books that can be
used to supplement this book.

Appendix A has a number of suggestions as to where to purchase various hardware components. In this
edition, I have listed a number of Arduino “starter kits” that contain everything you need to test every project
in this book.

The Arduino web site has numerous forums that can provide answers to many of the questions you
might have. You can find the major topic areas at http://forum.arduino.cc/index.php.

I find that students find the “Programming Questions” forum especially useful. Because the Arduino
IDE is an open source platform (i.e., people sharing ideas and resources), there are always people reading
the forums who are willing to help. Just make sure you read any posting guidelines that appear at the top of
the forum before posting your question. In the spirit of open source software and hardware, if you find some
unique way of solving a problem, make a post of your own to a forum and give back to the community.

Finally, full-color images for all figures included in the print edition can be found in this book’s source
code bundle, which is available through www.apress.com. You can visit www.apress.com/source-code for
more information on how to locate the source code.

Okay ... enough of this. Let’s start our journey to learn C....

XXVi

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_13
http://forum.arduino.cc/index.php
http://www.apress.com/
http://www.apress.com/source-code
http://www.it-ebooks.info/

CHAPTER 1

Introduction

There is one primary goal for this book: to teach you how to use the C programming language. The
environment for reaching that goal is the Atmel family of microcontrollers. While C can be used to program
other microcontrollers, our emphasis is on the Atmel controllers. Given that there are probably a bazillion C
programming books available to you, why should you choose this one? Good question, and there’s no single
answer. However, I can give you some facts that might help with making your decision.

First, this book is specifically written for the Arduino family of microcontroller boards using the
Atmel family of microcontroller chips. As such, the book is couched within the framework of an integrated
development environment (IDE) that is available as a free Internet download. An IDE is a single program
that combines all of the functions required to progress from the C language source code you are writing to
an executable program. In essence, an IDE is a text editor, compiler, assembler, and linker all rolled into
one program. Having the free Arduino IDE means you will not have to buy additional programming tools
tolearn C.

Second, the implementation of C provided with the IDE is not quite a full American National Standards
Institute (ANSI) implementation of the C programming language. This implementation of the C language,
which I will henceforth call Arduino C, is a robust, and virtually complete, subset of ANSI C. (The most
obvious missing feature is the double data type, although float is supported.) In fact, the underling compiler
you will be using throughout this book is the open source C++ compiler (GCC), which is full-featured. You
will learn more about the language features available to you as we proceed through the book.

Why Choose This Book?

Even in light of the considerations mentioned, there are still probably dozens of books that cover Arduino C.
So, why choose this book over the dozens that remain available to you?

First, this is a programming book and that is where the emphasis is. True, there are some small
hardware projects to exercise your code, but the real purpose of the projects is to test your understanding
of the C programming language—not the hardware. Once you have mastered C, Apress has a family
of books that are centered on the Arduino microcontroller that you may use to extend your hardware
expertise.

Second, I will take you “under the hood” of the C language, so you gain a much deeper understanding
of what the code is doing and how it is done. This knowledge is especially useful in a programming
environment where you have only a few pico-acres of memory available to you. There are those who say you
really don’t have to understand a language with any real detail to use it. To reinforce their argument, I have
often heard the comment: “You don’t have to know how to build a car to drive one.” True, but if your car

Electronic supplementary material The online version of this chapter (doi:10.1007/978-1-4842-0940-0_1)
contains supplementary material, which is available to authorized users.

© Jack Purdum 2015 1
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_1

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_1
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

breaks down 200 miles north of Yellowknife, NWT, I'll bet you'd wish you had a better understanding of the
details that make a car tick. The same is true for programming. The better you understanding what is going
on with the language, the quicker you will be able to detect, isolate, and fix program bugs. (A program bug
is an error in the program that prevents it from performing its designed task correctly.) Also, there are often
multiple solutions possible for any given programming problem. A little depth of understanding frequently
yields a more efficient and unbreakable, yet elegant, solution.

Third, since I first began using C in 1977, I have gained a lot of commercial programming experience
with C that just might come in handy. My software company produced C compilers and other development
tools for the early PCs back in the 1980s. Also, I wrote my first C programming book more than 30 years
ago. Still, the biggest advantage that has some worth to you is my teaching experience. Honestly, there are
likely thousands of programmers who can code circles around me. Indeed, one of my employees was such
a person. However, to be a good author, it matters little how good you are as a programmer or an engineer if
you cannot convey that experience to others.

I have more than 30 years of university-level teaching experience, and I know where you are most likely
to stumble in our upcoming journey. The bad news is that you will stumble along the way. The good news
is that there have been thousands before you who have stumbled on exactly the same concepts, and I have
managed to develop effective teaching methods to overcome most (all?) of them. I also think you will find
the book’s style both engaging and informative.

Finally, I genuinely enjoy programming with the C language. Of all the different languages I have
used since I first began programming in the late 1960s, C remains my favorite. It is a concise, yet powerful,
language well suited for microcontroller work. I think you're going to like it, too.

This chapter details what you need to use this book effectively, including some comments about the
expectations I have about you. You will learn about some of the features that different Arduino-compatible
boards have, their approximate cost, and where they can be purchased. Also, there are many Arduino
Starter Kits available now and they are a wonderful way to get started because they usually contain the
Arduino board plus numerous electronic components with which you can experiment. (Details about some
suppliers can be found in Appendix A.) Suggestions are also made about some additional hardware items
you may wish to purchase. The chapter then tells you where and how to download and install the IDE for
the Arduino IDE. The chapter closes out with a short C program to verify that the IDE installation went as
expected. When you finish reading this chapter, you will have a good understanding of what you need to
use this book effectively.

Assumptions About You

Clearly, I'm targeting this book for a specific reader. In so doing, I have made certain assumptions about
that reader: I assume the reader knows absolutely nothing about C or programming in general. In fact, 1

hope you don’t know anything. That way, you can start with a clean slate. Often, someone who knows some
programming aspects brings along a lot of bad habits or ill-conceived practices that need to be “unlearned.”
Starting off with no programming experience is, in this case, a very good thing.

I assume you know nothing about electronics. Indeed, this book is not meant to be an electronics book.
However, there are a few hardware concepts used throughout the book, but you will be taught what you need
to know to make things function properly. If you want to gain a deeper understanding of the electronics, I'd
suggest finishing this text and then buying one of the other Apress books that targets your specific hardware
area of interest.

Iassume you will do the programming exercises found at the end of each chapter. Most of the exercises
are software-based, meaning they require little or no additional electronic components to complete
the exercise. Clearly, some hardware is needed to test even a purely software exercise: you must have a
microcontroller board to type in and run the software in the exercise. This means you need to invest in a
microcontroller board and some additional components. I've made every attempt to keep these component
costs as low as possible while still demonstrating the point at hand.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

Appendix A presents a list of vendors from whom you can buy various components at reasonable cost.
Failing that, almost all of the components can be bought from a local Radio Shack outlet. (Alas, Radio Shack
just filed for bankruptcy.) Appendix B presents a list of the miscellaneous hardware components you will
need to complete all of the projects in this book. Obviously, some of these components can be ignored if
certain projects are not attempted. As mentioned earlier, there are some great Arduino experimenter kits
that not only include an Arduino-compatible board, but also dozens of components and other devices that
can be used to make some really interesting projects. I especially like the MAKER Version Electronic Brick
Starter Set from yourduino.com and the Ultimate Kit from oddWires.com. Both kits contain components to
do all of the exercises in this book, plus many, many more (see Appendix A).

Finally, I assume you don’t have to know C by this weekend. That is, I assume you will do the exercises
and take the time to study and understand the code in the examples before moving on to the next chapter.
Learning C is a building process whereby the concepts learned in the current chapter become a foundation
for subsequent chapters. A crumbly understanding of the concepts of one chapter will likely cause a collapse
of that understanding in later chapters. Take your time, pause and think about what you're reading, and do
the exercises. It's easy to read something and say “I understand that” It’s quite another to start with a blank
page and write a program that uses what you've read. Simply stated: Do the exercises. If you try to take
shortcuts and bypass the exercises, then your depth of knowledge will be less than it would be otherwise.
Take your time and enjoy the ride.

What You Need

In addition to this book, there are several things you will need, plus some things you should have but could
live without. Consider the components and factors discussed in the following sections.

An Atmel-Based Microcontroller Card

You will need to have access to an Atmel microcontroller board. (Let’s use “pc” for “microcontroller” from
now on.) Atmel produces a wide variety of pics and there are literally dozens of clone boards available. You
should consider purchasing an Arduino board based on one of those listed in Table 1-1. So, how do you
decide which one to purchase? It really depends on what you want to do with the pc. If all you want to do

is blink an LED or control a toaster, then one of the least expensive boards listed in the table probably will

do just fine. If you are setting up some kind of experiment that must sample several dozen sensors every
second, then you will probably want to use a pc that has a lot of digital and/or analog I/O pins. If your
application is going to have a lot of program code associated with it, then obviously you should pick one with
more memory. (Note that 2K to 8K of flash memory is eaten up by the bootloader. A bootloader is a small
program that allows your pc to communicate with the outside world, so plan accordingly.)

The Arduino IDE is run on your PC, so most of the actual program development takes place on your PC.
When you think the program code is in a state that can be tested, you compile and “upload” your code to the
pc via a USB cable connected between your PC to the pic.

Most pic boards are shipped with the required USB (A to B) cable. If your board did not include one, often
you can steal your printer cable and use it until you can find a replacement. Also note that some boards do not
have a USB connector on the board. While these boards are less expensive, they require an external programming
interface, which is less convenient. For the time being, only consider a board that has a USB connector on it.
Again, look online for the USB cables and you should be able to buy one for less than a few dollars.

Types of Memory

With regard to memory, you will want to consider what’s outlined in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

Flash Memory

The programs you develop using this book are written on your PC. When you have the program code to a
point where you think it is ready to test, you upload that program code from your PC to the pc board via the
USB connection. The program code is stored in the Arduino’s flash memory. Flash memory is nonvolatile,
which means that, even if you disconnect the board from its power source, the contents of the flash memory
remain intact. It is probably obvious that your program must fit within the limits imposed by the amount of
flash memory on your Arduino board.

As mentioned, 2K to 8K of flash memory is used for the software (i.e., the bootloader) that allows your
program to communicate with the outside world, including your PC. Therefore, if your Arduino has 32K
of flash memory, your program code actually must be less than 24K to 30K in size, depending on the size
of your bootloader code. Also, flash memory has a finite life in terms of the number of times that you can
rewrite it reliably before it gets a little flaky. Most set the safe write cycle at 100,000 writes. So, according to
the documentation, if you save the program 10 times a day, you only have 27 years of reliability available
to you.

SRAM

Simply stated, the static random-access memory (SRAM) is where your program variables (data) get stored
during program execution. You should assume that the data stored in SRAM is lost when power is removed
from the controller board.

Because SRAM is used to pass data back and forth between functions, creating temporary variables as
the program executes, SRAM plays an important limiting factor in the amount of data your programs can
use. [will have more to say about this in later chapters, but for now, the more SRAM, the better.

EEPROM

Electrically Erasable Programmable Read-Only Memory (EEPROM) is an area of nonvolatile memory where
one often stores data that needs to be retrievable each time the program is run. Like flash memory, data
values stored in EEPROM survive power removal.

However, EEPROM has two drawbacks when compared to flash memory: it is a little slower to
access than flash memory, and like flash memory, it too has about 100,000 read/write cycles before it
becomes unreliable. Because of these factors, EEPROM memory is often used to store configuration
or other types of information that are needed when the system powers up, but are not often changed.
For example, you might have some sensors that need to have certain values sent to them before they can be
used, or other devices that need to be initialized with specific data. EEPROM would be a likely candidate
for storing such configuration data. Again, I will have more to say about this type of memory later
in the book.

Making the Choice

So, should it be the amount of memory, I/O pin count, processor speed, or something else that dictates
your pc choice? Again, it depends on what you hope to do with the pc, but for most readers, the amount of
flash and SRAM memory will likely be the most important limitations. But even those two parameters have
trade-offs.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

For example, you might want to have a program that generates a sine wave for a function generator.
Because pics are not that fast, you decide not to calculate the sine values on the fly, but rather to store
pre-calculated sine wave values in a table stored in memory. When you look at the program, you see that
the program code is pretty small but the amount of memory to store the sine table is large. Therefore,
the limiting factor in your design is the amount of SRAM needed to hold the table, not the flash memory
for the program instructions. (You might also store the table in EEPROM memory.) If you don’t have a
specific program task in mind, buy a board that has the most flash and SRAM memory your pocketbook
allows.

Table 1-1 shows some of the compatible boards that you may want to consider for use with this book.

Table 1-1. Atmel Microcontrollers Commonly Used in Arduino Boards

Flash memory SRAM EEPROM Clock Digital Analog

Microcontroller (bytes) (bytes) (bytes) speed 1/0 pins input pins Voltage
Arduino Uno 32K 2K 1K 16Mhz 14 6 5V
Arduino Nano 32K 2K 1K 16Mhz 14 8 5V
Digispark Pro 16K 2K 1K 16Mhz 14 10 5V
RoboRED 32K 2K 1K 16Mhz 14 6 50r3.3V
ATmegal280 128K 8K 4K 16Mhz 54 16 5V
ATmega2560 256K 8K 4K 16Mhz 54 16 5V
Arduino Leonardo 32K 2.5K 1K 16Mhz 20 12 5V
Arduino Due 512K 96K - 84Mhz 54 12/2! 3.3V
ChipKIT Max32? 512K 128K - 80Mhz 83 16 3.3

1. The Due has two analog input pins.
2. This is not an Atmel chip, but produced by Diligent and can be programmed using C and an IDE that looks
virtually identical to the Arduino IDE. It is based on the PIC32 (32-bit) microcontroller.

Board Size

The physical size of the pc card may also be important to you, depending on your planned application. As you
might expect, larger available memory and more I/0 pins dictate a larger footprint for the card. Figure 1-1
shows several popular pc boards. To get some perspective, the center board is a little smaller than the size of
a deck of cards. The Digispark board (bottom right in Figure 1-1) is about the size of a postage stamp. You can
also “roll your own” board using an 8-pin ATTiny85 chip (8K flash, 512 bytes SRAM and EEPROM) creating a
really small board size.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

Figure 1-1. Sizes of two different Arduino boards, one based on the Atmega1280 (left) and one based on the
Atmega328 (right) relative to a standard playing card.

Input/Output (I/0) Pins

As you might expect, a pc with more memory and I/0 pins cost a little more. For example, some ATmega328-
based boards can be purchased for under $5 and those based on the ATmega2560 for under $15. The Due
(pronounced “do-eh”) costs around $25, whereas the Leonardo is about $10. (Table 1-1 is only a partial
feature list. Consult the spec sheets for those boards you are considering.) Appendix A presents a list of
suppliers that you may wish to consider. Note that there are numerous clones available for each member

of the Arduino family. (For a good discussion of clones, compatibles, derivatives, and counterfeit boards,

see http://arduino-info.wikispaces.com/Arduino-YourDuino.) As a general rule, buy the “biggest” you
can comfortably afford that is consistent with the project(s) you have in mind. Hardware projects are often
subject to “feature creep,” where more and more functionality is requested as the project goes forward.
“Buying bigger than you need” is often a good idea if you can afford it.

Breadhoard

A breadboard is used to prototype electronic projects. By using jumper wires that plug into the holes on the
breadboard, it is easier to create and modify an electronic circuit. The hardware elements found in this text
are not a central feature. Indeed, I have tried to limit the hardware requirements as much as possible. Still, a

www.it-ebooks.info

http://arduino-info.wikispaces.com/Arduino-YourDuino
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

breadboard is a useful addition to your tool chest and you should consider investing in one. Figure 1-2 shows
a typical breadboard. I like this type of breadboard because it has two sets of power feeds and four banks of
tie points. (The one shown has 2,800 tie points—the little “holes” where you can insert wires, components,
ICs, and so forth. This is about twice the size you will likely need, but it’s what I had on hand.) You also

need some jumper wires to connect the tie points. I purchased the breadboard shown in the figure with 150
jumper wires for less than $20. There are smaller, less expensive breadboards available.

If your breadboard doesn’t come with jumper wires, then make sure you purchase some—you’ll need
them! Note that jumper wires are sold as male-to-male, male-to-female, and female-to-female and with
different lengths. As to the type to get, I would get a mixture of all three types, although you will likely use the
male-to-male most often. I would lean toward the longer lengths (e.g., 10”). I prefer the Dupont-style jumper
wires, as they tend to be a little more durable.

Figure 1-2. A typical breadboard

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

Miscellaneous Parts

Every attempt has been made to minimize the number of electronic parts you need to complete an exercise.
In many cases, we reuse components between exercises. Appendix B presents a list of the parts that you
need to complete all the exercises found in this book. With some judicious shopping on eBay, you can
probably buy all of the components for less than $15 (excluding the breadboard and pc boards). While you
are at it, you might look for some “rubber feet” that can be stuck to the bottom of your board. That way, if you
slide the board across a table, it won't scratch it. I won’t even mention what can happen if you slide a naked
board across a table that has a paperclip on it.

I've already stated that several experimenter kits are available. If you buy one of these kits, you will have
all of the components necessary to do any of the projects listed in this text. Some even come with a carrying
case that keeps the components organized. I've only recently started using starter kits, and I find them to be
very useful and convenient. This is especially true if you're just getting started with pcs.

Although you could read this book without buying anything else, not having minimal components and
a compatible Arduino-based board would seriously dilute the learning experience. You really should have
the electronic components available to you. You might also find out if your community has a local amateur
radio (i.e., ham radio) club. Club members are always willing to offer advice about where you can find
various electronic components at reasonable cost. Your local community college or university is another
possible source of information, as might be the local teacher of the high school physics class. Indeed, when I
taught at Butler University, the Physics department opened its lab on Saturday mornings to people who had
an interest in learning electronics. To his credit, Dr. Marshal Dixon was the instructor who ran the program
free of charge. Perhaps your community has a similar program. It doesn’t hurt to check. Also, there are very
active MakerSpaces in many communities that often have faires with Arduino/Electronics sections. With a
little effort and a few dollars, you should be able to buy what you need.

Installing and Verifying the Software

A pc without software is about as useful as a bicycle without peddles. Like any other computer, a pc needs
program instructions for it to do something useful. Arduino has provided all the software tools within their
(free) IDE that you need to write program code. The remainder of this section discusses downloading,
installing, and testing the software you need.

Start your Internet browser and go to http://arduino.cc/en/Main/Software. There you will find the
Arduino software download choices for Windows, Mac OS X, and Linux. Click the link that applies to your
development environment. Because I use the Windows operating system for program development, the
file that was downloaded was named arduino-1.5.8-windows.zip. The latest Arduino IDE available at the
time this is being written is Release 1.5.8 Beta. (Just before we went to press, Release 1.6.0 was announced.
It’s too late to change all the narrative and retest, but the latest release should work just fine.) You are
asked to select the directory where you wish to extract the files. I named my directory Arduinol.5.8 and
placed it off the root of the C drive (e.g., C:\Arduino1.5.8.) Regardless of the exact number of the release,
you should see something similar to that shown in Figure 1-3 when you start extracting the files from the
download.

www.it-ebooks.info

http://arduino.cc/en/Main/Software
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

Copying 8,747 items from arduino-1.5.8-windows.zip to Downloads
1% complete "

(%) More details

Figure 1-3. Extracting the Arduino programming tools

Inside the Arduino directory you just created, double-click the arduino.exe file. In a few moments, you
may see a splash screen similar to that shown in Figure 1-4.

ARDUINO

AN OPEN PROJECT WRITTEN, DEBUGGED AND SUPPORTED
BY MASSIMO BANZI, DAVID CUARTIELLES, TOM IGOE,
GIANLUCA MARTINO AND DAVID MELLIS

BASED ON PROCESSING BY CASEY REAS AND BEN FRY

Figure 1-4. Arduino IDE splash screen

In a few more seconds, you should see the Arduino IDE. It should look similar to that shown in Figure 1-5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

o ske : ' 2S

File Edit Sketch Tools Help

sketch_nov03a

|'.-'-;-1-'_1 setup () {
// put your setup code here, to run once:

1
41}
5

void loop() {
'/ put your main code here, to run repeatedly:

Arduino Uno on COMEG

Figure 1-5. The Arduino integrated development environment

If you see the IDE as seen in Figure 1-5, you can be fairly certain that the software download and
installation was performed successfully. Note that the IDE automatically provides two “empty” functions,
setup() and loop(). Because all Arduino programs require these two functions, the IDE automatically
provides empty shells for them. You fill in these shells as needed to get your program to do your bidding.

Note The Diligent chipMAX family is not part of the Atmel family of ucs. The compiled program code is
different from that for the Arduino boards. The chipMAX IDE, however, looks and feels almost identical to the
Arduino IDE. You should be able to compile and upload the programs presented in this book using the chipMAX
family of boards. You can download the chipMAX IDE at http://chipkit.net/started/. You might consider
the chipMAX because it has a little more horsepower than most Arduinos.

10

www.it-ebooks.info

http://chipkit.net/started/
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

Now that you have the software installed, we can check to see whether your controller board is
functioning properly.

Verifying the Hardware

Now that you have the Arduino IDE software installed, let’s connect your computer to the pc board, load a
small program, and verify that all components are working together. First, you need to connect the USB cable
to your pc board and then plug the other end of the USB cable into your computer.

Attaching the USB Cable

Figure 1-6 shows the pc board with the USB cable connected to it. Most companies give you the A-B type
USB cable when you buy the pc board. As you no doubt have figured out, the unattached end of the USB
cable should be plugged into a USB port connector on your computer.

The minute you connect the USB cable to your powered-up computer, power is applied to the pc board
and an LED will light on the pc board. Obviously, the USB connection is supplying the voltage necessary
to drive the pc board. The USB 2.0 specs suggest that the cable must supply between 4.4 and 5.25 volts at a
maximum current of 500mA. This is not a lot of power. However, most jic boards also provide a small power
jack (the black barrel-like “thingy” located on the lower left corner of the board in Figure 1-6) where a “wall
wart” with greater power can be plugged into the power jack to drive the system. Wall warts supplying 9V
at 1A are a common choice. None of our projects require more current than can be provided by the USB
connection. (If you are using a USB hub, then make sure the hub provides 500mA to each port.)

ey
N 20000000SsEsse

» i
-_. RObORED ST
? YourDuino.com

L N

Figure 1-6. The yc board with USB cable attached

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

Selecting Your pc Board in the Integrated Development Environment

The Arduino IDE supports a variety of different pic boards. Therefore, you must tell the IDE which board you
will be using for writing your program code. Figure 1-7 shows the menu sequence (Tools » Board) that you
use to select your pc board. In this example, I have selected the Arduino Uno menu choice.

File Edit Sketch |Tools _Help

Auto Format Ctrl+T
Archive Sketch
Fix Encoding & Reload

L] mold zetuy Serial Monitor Ctrl+Shift+ M

2 / put i

sketch_nov034

~

Board) Arduino AVR Boards

Port ' Arduine Yin

.;E’-_Arduino Uno

Arduino Duemilanove or Diecimila

o Wt
—

vold loop

) Programmer
// put 3§

Burn Bootloader
Arduino Nano

Arduino Mega or Mega 2560
Arduino Mega ADK

Arduino Leonardo

Arduino Micro

Arduino Esplora

Arduino Mini

Arduino Ethernet

Arduino Fio

Arduino BT

LilyPad Arduino USB

Figure 1-7. Selecting your pc board

You should select the menu choice that matches the pic board you are using. If you change pic boards
at some future date, then simply come back to this menu and select the board to which you are changing.
Also, depending upon what other devices you have connected to your PC, you may have to reselect the
COM port, too.

Port Selection

The IDE does a pretty good job of automatically figuring out which USB port you have selected to power and
communicate with the pc board. To determine which port is being used, simply use the Tools » Port menu
sequence, as shown in Figure 1-8. For my particular setup, COM port 6 is being used to communicate with
the pc board.

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

File Edit Sketch Tools Help
' B Auto Format
Archive Sketch
sketch_nov033 Fix Encoding & Reload

VOLA SeLME Serial Monitor Ctrl+ Shift+M
{/ put i

Board :
Port 1[v]| comé (arduino Uno)

Programmer

Burn Bootloader

Arduino Uno on COMEG

Figure 1-8. Port selection

If you are having difficulty determining which port should be used, then you can use the Windows
Control Panel to examine which ports are assigned to what. For example, using Windows 8, the first step
is to select the Device Manager option from the Start Panel list. Then select the Ports option, as shown in
Figure 1-9. You should see the Arduino Uno (or the board you selected) listed. If you do not see the device
listed, you can install the device driver yourself.

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

File Action View Help
e @ E Hml & B %S

4 = econjack
> & Audio inputs and outputs
$ Batteries
1% Computer
¢ Disk drives
& Display adapters
> ety DVD/CD-ROM drives
> U5 Human Interface Devices
b Cg IDE ATA/ATAPI controllers
b %54 Imaging devices
= Keyboards
8 Mice and other pointing devices
K Monitors
&¥ Network adapters
K Portable Devices
Y Ports (COM & LPT)
"7 Arduino Uno (COMS)|
d= Print queues
b Processors
b Sensors
Il Software devices
% Sound, video and game controllers
& Storage controllers
1M System devices
> @ Universal Serial Bus controllers

Figure 1-9. Selecting the Device Manager from the control panel

To install the Arduino device driver, run the Windows File Explorer. You can find this by right-clicking
the lower-left corner of the display and selecting File Explorer. Once you have the File Explorer running, do
the following:

1. Move to the directory where you installed the Arduino IDE. For me, it was
C:\Arduino1.5.8. Looking in that path, I find the information shown in Figure 1-10.

14

www.it-ebooks.info

http://www.it-ebooks.info/

Name

drivers
. examples
. hardware
, java
. lib
. libraries
. reference
tools
@arduino‘exe
@ arduino_debug.exe
%) cyggee_s-1.dll
%) cygiconv-2.dlI
%, cygwinl.dil
%] cygz.dil
%, libusb0.dll
gfwisions.txt

Date modified

10/17/2014 12:56 ...

CHAPTER 1

Type Size

File folder

Date created: 10/17/2014 12:56 AM
Size: 5.11 MB
Folders: FTDI USB Drivers

Files: arduino.cat, arduino.inf, dpinst-amd6d.exe, ...

older
older

older

TOTTY

FiETolder
File folder
File folder
File folder

Application

Application extens...

Application extens...

Application extens... 3,041 KB
Application extens... 73 KB
Application extens... 43 KB
TXT File 55KB

Figure 1-10. Selecting the drivers folder in the Arduino directory

2. Click the drivers folder and double-click the file named dpinst-amd64.exe.
(If you have an older computer, you may have to use the file named dpinst-x86.
exe.) From there, just answer the questions as they appear (they're pretty
obvious), and the new drivers are installed. When the program finishes, you
should see a COM port allocated to the Arduino, similar to that shown in
Figure 1-9.

INTRODUCTION

If you change port devices at some point in the future, it is possible that you will need to reselect the
port using the menu sequence Tools » Port. If the port check box that is shown is not checked, make sure
you check it before proceeding. Once the port is selected, the IDE knows which port to use to send any data
to the PC via the USB cable.

Now that you are reasonably certain that the software and hardware seem to be connected and working
properly, let’s load a small program into the IDE and see whether we can run it.

www.it-ebooks.info

15

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

Loading and Running Your First Program

The Arduino IDE has gone through numerous revisions over the years. The current version is the first to
carry the “Arduino 1” moniker, suggesting that the IDE software is now considered stable. Earlier versions of
the IDE generated a default secondary file name (file extension) of “pde,” which reflected that the source files
(also called “sketches”) were written under the Processing Development Environment (pde). With the latest
release, the default secondary file name has been changed to “ino.” The change was made so there wouldn’t
be conflicts with the source files that were created with earlier versions of the IDE. (Thus far, I have not found
out why “ino” was selected. So, I'm just going to assume that it is because it squares with the last three letters
in Arduino.) The latest version of the IDE can read the earlier “pde” files but resaves them as “ino” files by
default.

Writing Your First Program

Rather than use one of the example programs that is distributed with the Arduino IDE, let’s actually write
a short program of our own. Go to the directory where you installed the Arduino IDE and double-click the
file named arduino.exe. (You may want to make a shortcut for the EXE and place it on your toolbar.) In a
moment, you should see the IDE, as shown in Figure 1-5.
Our goal at this point is to write a short program and test whether everything is working properly.
As such, Iwon't spend too much time explaining why we are doing things; that will come later. You should
simply follow the instructions for now and feel safe that you will learn what you are doing in later chapters.
Now add the following two lines to the setup() function shown in Figure 1-5:

Serial.begin(115200);
Serial.println("This is my first Arduino program!");

Your IDE should now look similar to Figure 1-11.

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

(o 0) - - X

File Edit Sketch Tools Help

sketch_nov03a §

void setup() {
// put your setup code here, to run once:
Serial.begin(115200);
Serial.println("This is my first Arduino program!'!");

}

void loop() {

// put your main code here, to run repeatedly:

Arduino Uno on COMEG

Figure 1-11. The IDE after adding the two new source code lines

What the Program Does

So, what should happen when we compile, upload, and then run our program? First, notice that we added
our two lines after the two lines:

void setup() {
// put your setup code here, to run once:

17

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

Without going into detail, setup() is a C programming language function that must be present in every
program you write. The opening brace ({) at the end of the first line marks the starting point of the code that
will define what the setup() function does. If you look immediately after the two lines we added in Figure 1-11,
you will see a closing brace (}). Everything between the opening and closing braces is called the function body
for setup(). In other words, the braces mark the start and the end of the program statements that tell us what
the function is expected to do.

So, what does our program do? The first line creates a Serial object and sets the communication rate
(i.e., the baud rate) to 115200 bits/second. (Note that many of the sample programs shipped with the IDE
use the slower 9600 baud rate. You need to adjust the Serial monitor accordingly, as shown in Figure 1-14.

I tell you how to change the baud rate shortly.) The second line says that we want to “print” a message

to the Serial object that says: “This is my first Arduino program!” Because there are no more source code
statements in our program, that’s all this program does. The program simply displays the message on the
Serial object.

Serial object?

The Arduino IDE in conjunction with the bootloader includes the ability to communicate between your
PC and the pc board via the USB cable. To make that communication possible, the IDE has a predefined
program object called a Serial object. You initialize the Serial object by calling a method, or function, named
begin(), which is buried within the Serial object. (In C, we use the term function as a programming unit. In
object-oriented programming (OOP) languages, like C++, functions are called methods. The difference from
a practical point of view is mostly semantic.) The begin() method is responsible for initializing the Serial
object (e.g., setting the baud rate, parity bits, etc.) so it can communicate with your PC via the USB cable.
Once begin() finishes its tasks, other methods buried within the Serial object can be used to communicate
with other devices, like your PC.

One of the other methods available within the Serial object is called print(), which our program uses
to send the message to your PC for display. In our simple program, we use the print() method to display our
message on the Serial device associated with the Serial object.

Serial device? What Serial device?

Figure 1-12 shows you how to activate the Arduino Serial device. The IDE menu sequence Tools >
Serial Monitor (or the keystrokes Ctrl+Shift+M, or click the “magnifying glass” in the upper-right corner of
the IDE) activates the Serial device. Once you have compiled and uploaded the code to the Arduino board,
your message is displayed on the Serial device. If you are running Windows, the Serial device is little more
than a pop-up window where the message is displayed (see Figure 1-14).

Note that you cannot activate the Serial monitor until after the program has been compiled and
uploaded to the pc board. If you try to activate the Serial monitor before those tasks finish, the request is
simply ignored.

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

File Edit Sketch Tools|Help

Auto Format

Archive Sketch

sketch_nov033 Fix Encoding & Reload

void setW gerial Monitor Ctrl+Shift+M
f/ put ¥ !
Serial.l Board »

Serial. togram'') ;
} 1 Port » (09)

Programmer
void loop

// put § Burn Bootloader

Arduino Uno on COMEG

Figure 1-12. Activating the Serial monitor

Compiling and Uploading a Program

Once you have typed the new source code lines, you are ready to compile the program. The process of
compiling a program refers to the process where a piece of software embedded within the IDE (i.e., the
compiler) takes the C program statements you wrote and converts them into machine code instructions
that the central processing unit (CPU) of your selected Arduino board understands. These machine code
instructions are ultimately binary data (i.e., 1s and 0s) that cause the CPU to execute the code you wrote.

19

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

If there are no program errors detected by the compiler, you can send the compiled code from your PC
to the Arduino board, where that code is executed. Figure 1-13 shows you the basic parts of the IDE to write,
compile, and upload your program.

o ske : ' 2S

File Edit Sketch Tools Help

101
sketfh_nov03a

|'.-' id setup() {
// put your setup code here, to run once:

Compile and Upload

Compile

void loop() {
// put your main code here, to run repeatedly:

Source Code Window

Arduino Uno on COMEG

Figure 1-13. Compile, Compile and Upload buttons and source code window

If you just want to see if your program code contains any compiler errors, you could just click the Verify
button, which is the circular button with the check mark on it near the top of the IDE. Clicking the verify
button causes the compiler to check your program source code for errors and, finding none, it generates the
executable code associated with your program. It does not, however, automatically upload that executable
code to the Arduino board.

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

Assuming there are no program errors detected by the compiler, you can click the Upload button
(i.e., the one with the arrow on it, just to the right of the Compile button). Clicking the Upload button causes
the source code to be compiled and that code to be transferred from your PC into the flash memory on the
Arduino board. Once the transfer is completed, the program code is immediately executed. In our case, this
means the message is displayed on the Serial monitor, as shown in Figure 1-14.

This is my first Arduino program!

v

[v] Autoscroll Nolineending | 115200 baud v

Arduino Uno on COMEG

Figure 1-14. Program output displayed on Serial monitor

Note the message at the bottom of the IDE. The IDE refers to your program as a sketch. The message
tells you that your program used 1,932 bytes of flash memory out of 32,256 maximum memory bytes. It
also tells you that 216 bytes of SRAM memory is used to actually process the variables used in the program,
leaving 1832 bytes of SRAM unused. (Table 1-1 told you there was 2K of SRAM available on an Arduino
Uno board.)

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION

Another thing to notice is that, in the window for the Serial monitor, the monitor’s baud rate is set to
115200 to match the baud rate in the Serial.begin(115200) program statement. If the two baud rates don’t
match, the output will be something looking like Mandarin, or you may not see any output at all. You can
change the Serial monitor’s baud rate by clicking the down-arrow at the end of the baud rate box. I'll explain
the other aspects of the Serial monitor in later chapters.

Summary

In this chapter you learned about the Arduino development environment and some of the board choices you
can use that support the Atmel chip family. Some of the hardware details about the boards were discussed

to help you decide which board to use while you learn about programming the board using Arduino C.

You then downloaded the Arduino development environment and installed the IDE. As a check on the IDE
installation, you wrote a simple program and compiled and uploaded it to the board, and ran the program to
verify that everything was installed correctly. You are now ready to start learning Arduino C.

22

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Arduino C

The C programming language began its march to become formally defined by the American National
Standard Institute (ANSI) with the formation of the X3J11 committee in 1983. The committee’s work was
completed and the standard passed in 1989. Ever since then, the language is often referred to an “ANSI C” The
standard is also recognized by the International Organization for Standardization (ISO), so sometimes you'll
hear it referred to as “ISO C”. For all practical purposes, ANSI C and ISO C are the same. In a world that is
overly hung up on political correctness, you will also hear both versions called “standard C” There have been
several additional “upgrades” to the language (e.g., 1999 and 2011), but we will simply refer to it as standard C.

The C you are about to learn is not standard C. Instead, you will be learning an almost complete subset
of standard C. The flavor of C used by the Arduino IDE is missing several elements of standard C (e.g., the
double data type), but the absence of those features is not a crippling blow by any means. You will soon
discover that the subset version of standard C, which we will call Arduino C, is more than able to perform
just about any task you can throw at it. The missing features can usually be worked around, albeit sometimes
in a less elegant manner.

Another difference between Arduino C and standard C is that the underlying compiler for Arduino C
is actually the Open Source C++ compiler. As such, you will discover that most of the libraries used with the
Arduino IDE are written using C++. This means that, even though you are writing your programs in Arduino
C, much of the glue holding things together “under the hood” is written in C++. Indeed, you are free to mix C
with C++ in the Arduino IDE. Still, we concentrate on Arduino C in this book, even though we have added a
chapter near the end of the book to give you a light introduction to C++. So, from this point forward, when I
write about the C language, I am actually referring to C as it is implemented in the Arduino IDE.

So, with that caveat in mind, let’s start learning Arduino C.

The Building Blocks of All Programming Languages

All programming languages, from Ada to ZPL, are built from four basic elements:
e Expressions
e Statements
e Statement blocks
¢ Function blocks

The last element, function blocks, may be called different names in different languages, such as
methods in C++, C#, and Java, procedures in Pascal, subroutines in Basic or Fortran, or perhaps some more
exotic name in lesser-known languages. Regardless of their name, function blocks tend to be blocks of code
designed to address some narrowly defined task. Programs are little more than arrangements of these
elements in a way that solves a problem.

© Jack Purdum 2015 23
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ARDUINO C

Expressions

An expression is created by combining operands and operators. Simply stated, an operand is typically a
piece of data that is acted upon by an operator. An operator is often a mathematical or logical action that is
performed on one or more operands. For example,

a+b
m - 3000
g<d

are examples of expressions. In the first example, the operands a and b are added (the + operator) together
in a math expression. In the second example, the numeric constant 3000 (an operand) is subtracted (the -
operator) from the operand named m. In the last example, operand g is compared to operand d to see if g is
less than (the < operator) d. In this last example, a relational operator (i.e., the “less than” operator, or “<”)
is used instead of a math operator. In all three examples, the two operands are used in conjunction with a
single operator to form an expression.

The first example is an addition expression, the second is a subtraction expression, whereas the last
example is a relational expression. In each of these expressions, there are two operands and one operator.
That’s why you often hear such expressions referred to as binary expressions. Binary expressions are
expressions that use a binary operator. Binary operators (e.g., +, -, and <) always use two operands. Another
important thing to keep in mind is that any expression ultimately resolves to a value. There are unary
operators that have only one operand and ternary operators that require three operands. However, the binary
operators are the most common in C.

Expressions can be combined. For example, suppose A = 1, B =2, and C = 3. You can write a complex
expression as:

A+B+C
Because all expressions resolve to a value, you can resolve the first subexpression, A + B, to:
1+2+C

Because the first subexpression is now pure numbers, you can resolve the first subexpression to the
value 3. You can then resolve the complex expression to:

3+C

Note what happened here. You took a complex expression with two operators and three operands
and resolved one of the subexpressions (i.e., A + B) to 3. However, in the process, you reduced the complex
expression to a single (binary) expression, 3 + C. Now you can resolve the remaining expression to

3+C
3+3
6

and the complex expression with two subexpressions is now resolved to a single value, 6. Often you will hear
the process of simplifying a complex expression called factoring an expression or resolving an expression.
What about the relational expression g < d? Suppose g =5 and d = 4, then:

g<d
5<4
false

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ARDUINO C

The expression resolves to “false” because 5 is greater than 4, not less than 4.

You might be thinking: “Wait a second! You just said that all expressions resolve to a value. ‘False’ isn’t
avalue, it’s a word” True, but in programming languages, logic frue and logic false expressions do resolve
to a value. In most languages, logic frue resolves to a non-zero value (e.g., -1 or 1) and logic false is zero.
Relational expressions are designed to resolve to a logic true or false state, so they ultimately do resolve to a
value that can be used in a program.

Statements

A statement is a complete C instruction for the computer. All C statements end with a semicolon ().
The following are examples of C statements:

= 50;
=b + c;
=d/ 2;

In the first example, the equal sign (=) is called the assignment operator and is used to “assign” the value
on the right side of the equal sign to the operand on the left side of the assignment operator. Therefore, the
value 50 is assigned to variable i. Note how this first statement example is nothing more than an expression
using the assignment operator with a semicolon at the end of the line. The operands are 50 and variable i.

So, what is a variable? Simply stated, a variable is nothing more than a location in memory that’s been
assigned a name. You will read much more about variables in Chapter 3.

In the second statement, you have a complex expression with a semicolon at the end. In this example,
the value to assign into variable a is not yet known, so you must resolve the expression b + ¢ first to get a
value. If b = 4 and ¢ = 5, then we can resolve the complex expression to:

b+c
4 +5
9

Vv
"

The last expression assigns the value 9 into variable a. By adding a semicolon at the end of the line, the
expression becomes a statement that causes variable a to change its value to 9. Remember in Chapter 1 I
told you the C compiler is responsible for changing the English-like syntax of C into the 1s and 0s that the pc
understands? Well, it is the semicolon that makes the C compiler finish whatever task the statement wants to
be done. If you have a complex statement like

X=a+b-c+g+h+k;
then the compiler must resolve all of the intermediate expressions (i.e., @ + b, ¢ + g h + k) before it can

determine what new value to assign into x. It is the semicolon at the end of the statement that tells the
compiler it has all the intermediate expressions it needs to resolve the statement.

Note The first kind of programming mistake you will likely make is forgetting to place a semicolon at the
end of a statement. Because the semicolon is a statement terminator, each program statement must end with a
semicolon. Without the semicolon, the compiler would not know when it has all of the information necessary to
process the statement.

25

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_3
http://dx.doi.org/10.1007/978-1-4842-0940-0_1
http://www.it-ebooks.info/

CHAPTER 2 © ARDUINO C

Operator Precedence

Suppose you have the following statement comprised of several expressions:
j=5+k*2;
where k = 3 and the asterisk (*) is the multiplication operator. Now ask yourself: Does j equal 16 (i.e.,

16 =8*2) or does it equal 11 (i.e., 11 = 5 + 6)? The statement appears ambiguous because we aren’t sure
about the order in which the complex expression is resolved. Which of the following is it?

j=5+k*2; j=5+k*2;
j=5+3%2; j=5+3%2;
j=8%2 j=5+6;

j = 16; j = 115

Clearly, the results differ because of the order in which we resolve the complex expression. C resolves
such ambiguities by assigning each operator a precedence level. Operator precedence refers to the order in
which complex expressions are resolved. A partial C precedence table can be seen in Table 2-1.

Table 2-1. Operator Precedence

Precedence level Operator
1 * (multiplication), /, %
2 +, -

In Table 2-1, you can see that multiplication, division, and modulo expressions are resolved before
addition and subtraction expressions. Therefore, in the preceding expressions, the correct answer for jis 11
because the multiplication expression is resolved before the addition expression. If there is a tie between
math operator precedence levels, they are resolved by solving the subexpressions in a left-to-right manner.
Resolving subexpressions in this manner means that the math operators are left associative. The term left
associative means that operator precedence ties are factored by processing the subexpressions in a left-
to-right order. Because there are more operators than are presented in Table 2-1, I will be expanding the
precedence table as you learn more about C.

Statement Blocks

A statement block consists of one or more statements grouped together so they are viewed by the compiler
as though they are a single statement. For example, suppose you are an apartment manager and, if there is 4
or more inches of snow on the ground, you need to shovel the sidewalk. Assuming the >= operator is read as
“greater than or equal to,” you might write this expression as:

if (snow >= 4) {
// Next 3 statements form a statement block body
PutOnSnowRemovalClothes();

GetSnowShovel();
ShovelSidewalk();
} else {
GoBackToBed();
}
26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ARDUINO C

Statement blocks start with an opening brace character ({) and end with a closing brace character (}).
All statements between the opening and closing braces form the statement block body. In our example, it
appears that when 4 or more inches of snow exist, we will put on our coat, grab a snow shovel, and shovel
the sidewalks. If there is less than 4 inches of snow, a different statement block is executed (i.e., we go back
to bed). You can place any type of valid C statements you wish within the statement block. You will see lots
of examples of this in later chapters. For now, just think of a statement block as being defined by the opening
and closing braces.

Function Blocks

A function block is a block of code that is designed to accomplish a single task. Although you may not be
aware of it, you actually used a function block in the previous section. That is, PutOnSnowRemovalStuff() is a
function that is designed to have you put on your coat. The actual code might look like this:

void PutOnSnowRemovalStuff(void) {

if (NotDressed) {
PutOnClothes();
PutOnShoes();

}

GoToCloset();

PutOnBoots();

PutOnCoat();

PutOnGloves();

PutOnHat();

In this example, the function block also starts with an opening brace ({) and ends with a closing brace
(}). However, well-designed function blocks are usually written to create “black boxes” in which the details
of how we are doing something are buried in the function. For example, you might be thinking of writing the
code to control a robot that requires sensors to detect whatever lies ahead. You might write a TurnRight()
function that turns your robot 90 degrees to the right. This probably involves turning one of the wheels,
perhaps applying a greater number of digital pulses to a stepper motor to cause the front two wheels to turn
to the right. However, perhaps at a later time you decide to change your robot from four wheels to three
wheels. Now you don’t need to turn two wheels; only one needs to turn. By hiding the details of what has to
be done to turn your robot to the right in the TurnRight() black box, you only need to change the program
code in that one function block, rather than in a whole bunch of places where a right turn might be needed.
By writing a TurnRight() function, you can avoid duplicating all of the statements that are in the TurnRight()
function each time a right turn is called for in the program.

Another example might help. Suppose you are writing an application that inputs a phone number
from a keypad. Your application requires home, cell, and work phone numbers. To make sure a valid phone
number was entered, you need to check that it fits the 1-123-456-7890 format. Now you could duplicate
the format checking program code three times in the program, or you could write a CheckPhoneFormat()
function and simply “call” it three times. (For now, you can think of the term “call” as meaning to execute the
body of code associated with the function. I have more to say about this in “The Backpack Analogy” sidebar
later in this chapter.) Let’s see ... write, test, and debug the code three times, or write a function and test and
debug it once. Kinda seems like a no-brainer to me. Also, using functions means that you will be using less
memory resources by not duplicating the code.

If you think of a computer program as a sequence of smaller tasks, function blocks are used to delimit
the code for each of those smaller tasks. As you will soon find out, the Arduino programming environment
has hundreds, if not thousands, of pre-written function blocks that you can use in your own programs. This
means you don’t have to reinvent the wheel each time a common programming task steps in front of you.

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ARDUINO C

You just grab one of the existing function blocks from the library of pre-written function blocks and stick it
into your program. Life is good ... and often easier because you can stand on the shoulders of programmers
who have previously contributed to a C programming library that you can use!

Every program you can think of is built from the four basic parts discussed in this section. Indeed, the
rest of this book is nothing more than showing you how to use these simple parts in an effective way to solve
a particular programming problem.

Ah, but therein lies the problem. There are an infinite number of ways to combine these elements into
a computer program, and some will work and others won't. In fact, even if you get your program to work,
it doesn’t mean there’s not a different (better?) way to accomplish the same task. For instance, suppose
you want to sort a group of numbers into a list, going from the smallest to the largest number in the group.
There are dozens of ways to sort a list of numbers into ascending order, each with its own advantages and
disadvantages. In fact, you'll find that your range of programming choices increases as you learn more
about programming in general. Even something as simple as scanning a sequence of text looking for a
particular pattern can be done many different ways (e.g., Brute Force vs. Boyer-Moore algorithms). The more
programming knowledge and experience you gain, the more you’ll be able to craft an elegant solution to a
given programming problem. After all, if the only tool you have is a hammer, it shouldn'’t be too surprising
that all your problems look like a nail.

Beginning programmers tend to lose sight of the fact that a function really should only perform one task.
Their tendency is to craft a function that is a Swiss Army knife—trying to do too much in a single function.
While a Swiss Army knife is convenient, it really doesn’t do any of the tasks as well as a dedicated tool does.
Which would you rather do—use a Swiss Army knife’s saw blade to cut down a tree, or use a chain saw?

Further, as the complexity of a given task increases, so do the ways in which you can solve the problem.
If someone came to you and asked you to write a fire alarm system for a hotel, there are probably a bazillion
different ways to accomplish that task. Now the question is: Where do you start? That’s the topic of the next
section.

The Five Program Steps

When I was teaching programming courses, we would have in-class quizzes from time-to-time. Time allotted
for the quizzes was usually about 30 minutes, and the programming task was always manageable within that
time line. Virtually all of the students started banging on their keyboards the instant the clock started.

Bad move.

Ah, but there was always a student or two who stared at the ceiling, scribbled some notes on a piece of
papey, all before they started writing a single line of code. While they often starting writing code five or ten
minutes later than the other students, they always turned in a worthy solution. How come? Why?

The reason is because they thought about their plan of attack before they started throwing statements
on the screen. Most students seem to think movement or activity means a solution. Not so; yet most students
didn’t seem to know where or how to start solving a programming problem. That’s the purpose of this
section: to give you a way to begin to organize a solution to a programming problem.

The simple fact is that every program you can think of can be reduced to five basic program elements, or
steps. When you first start to design a solution to a programming problem, you should think of that program
in terms of the following Five Program Steps: 1) Initialization, 2) Input, 3) Processing, 4) Output, and
5) Termination. Let’s consider these steps in a little more detail.

1. Initialization Step

The purpose of the Initialization Step is to establish the environment in which the program will run. For
example, if you've ever used Microsoft Excel, Word, or similar programs, the File command frequently has a
list of the most recently used files. Internet browsers allow you to define a home page. A print program often
has a default printer that is initialized. A database program often establishes a default network connection.

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ARDUINO C

In all of these cases, data is fetched from somewhere (i.e., a data file, memory, EEPROM, the registry) and is
used to establish some baseline environment in which the program is to run.

Simply stated, the Initialization Step does whatever background preparation must be done before the
program can begin execution to solve its primary task. It's the same in the world of pcs. Ports need to be
initialized, sensors have to be activated, thermocouples need to stabilize, plus a host of other possible events.

As a general rule, the program statements in the Initialization Step are only performed once when the
program first begins execution. The code in the Initialization Step is not executed again, unless the pc is reset
or power is lost and reapplied.

2. Input Step

Every computer program has a task that is designed to take some existing state of information, process it in some
way, and show or otherwise use the new state of that information. If you are writing a fire alarm system, you take
the information provided by the fire sensors, interpret their current state, and, if there is a fire, do something
about it. If the sensor shows no fire, perhaps a second set of sensors are read and the process repeated. Indeed,
your program may do nothing for decades but take new readings every few seconds and determine if some
remedial action is necessary. Alas, the day may come when a fire is sensed and remedial actions are taken. Still,
the entire process depends upon inputting fresh data from the sensors in a timely fashion.

The Input Step is the sequence of program statements that are necessary to acquire the information
needed to solve the task at hand. That information, or data, may come from a sensor, a potentiometer, a
file handle, a database or printer connection, a Wi-Fi signal—the list of data sources is almost endless.
Regardless of the source, however, the purpose is to provide input that proves useful to the solution of the
problem at hand.

3. Process Step

Continuing with our fire alarm example, once the input from the sensors is received, some body of code
must be responsible for determining if the sensors are detecting a fire or not. In other words, the voltage (i.e.,
temperature) must be read (input) and then interpreted (i.e., the data processed) to determine the current
state of the sensors. In a desktop application, perhaps the data input is the price and quantity of some

item purchased by a customer. The Process Step may perform the task of determining the total cost of the
purchase to the consumer.

Note that a program may have multiple Process Steps. For example, with our consumer, there may be a
process to determine the sales tax due on the purchase. In this case, the process of determining the total cost
of the order becomes an input to the process that calculates the sales tax due. The sales and taxes due could
be the inputs to yet another process (e.g., consumer billing or updating a database).

In all cases, however, the Process Step is responsible for taking a set of inputs and processing it to get a
new set of data.

4. Output Step

After the Process Step has finished its work, the new value is typically output on some device or sent to

some other entity for further processing. In our consumer sales example, we might now display the total
amount the consumer owes us. The Output Step, however, isn’t limited to simply displaying the new data.
Quite often, the new data is saved or passed along to some other program. For example, a program may
accumulate the sales figures throughout the day and then update a database at night so some other program
can generate a sales report for management to review the next morning. In our fire alarm example, the
Output Step may cause an LED for a particular sensor to continue to display a green color under normal
conditions. If a fire is sensed, perhaps the LED displays red, so whomever is in charge can see what area of
the building is on fire.

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ARDUINO C

The Output Step could be the Input Step for another program. For example, the Output Step might be
an average of several temperature readings where, if a certain temperature is reached, two vats of chemicals
are mixed together. It this example, the Output Step of the temperature program becomes the Input Step for
a vat-mixing program.

Simply stated, the Output Step is responsible for using the results of the Process Step. This utilization
could be as simple as displaying the new data on a display device or passing that new value on to some other
program or process.

5. Termination Step

The Termination Step has the responsibility of “cleaning up” after the program is finished performing its
task. In desktop applications, it's common for the Termination Step to perform the Initialization Step “in
reverse.” That is, if the program keeps track of the most recent data files that were used, the Termination
Step must update that list of files. If the Initialization Step opens a database or printer connection, the
Termination Step should close that connection down so unused resources are returned to the system.

Many pc applications, however, are not designed to terminate. A fire alarm system is likely designed
to continue running forever, as long as things are “normal.” Even then, however, there may still be a
Termination Process that is followed. For example, if the fire alarm system has a component failure, the
Termination Process may try to identify the failed component before the system shuts down for repairs.
Perhaps the Termination Process deactivates the alarm system before a maintenance shutdown.

Simply stated, the Termination Process should allow for a graceful termination of the currently running
program. In most of the projects you examine in this book, the Termination Step is not used. It is assumed
that the program continues until power is removed or there is a component failure.

The Purpose of the Five Program Steps

I can’t even begin to guess how many times I've given an in-class coding problem only to have the students say: “I
don’t even know where to start” Well, clearly they weren’t paying attention, because that’s the purpose of the Five
Program Steps—to serve as a starting point for designing a program. As mentioned earlier, there is a tremendous
urge to just start banging out source code on the keyboard the minute the programming task is defined.

Big mistake.

Even a one or two sentence statement for each of the Five Program Steps is probably enough to get you
started on the design and coding of a given program. An algorithm is nothing more than a formal statement
of how a given set of inputs are manipulated to produce a desired result. An algorithm is like a recipe or
a set of blueprints: it describes what you need to do to reach a desired goal or endpoint. And so it is with
programming: the Five Program Steps can be used to formulate a plan for solving a given programming
problem. Although algorithms are more closely tied to Steps 2 and 3 (i.e., Input and Processing), the Five
Program Steps should help you formulate an algorithm to solve whatever task is at hand.

Fight the urge to “look busy” by just hacking away at the keyboard without a program design based on
the Five Program Steps. Creating a program design may seem like too much work, but trust me, you'll save
a ton of time in the long run. (Where did the phrase “a ton of time” come from? Is time a resting place for
Higgs-boson particles?)

A Reuvisit to Your First Program

Listing 2-1 shows the program code that you loaded and ran in the previous chapter. Let’s look at that program in
terms of our Five Program Steps. First of all, Listing 2-1 is the source code for your first program. Source code refers
to the series of C language statements that constitute the program. It is the source code that the C compiler parses
(i.e., reads and checks for syntax and semantic errors) and ultimately translates into binary code (i.e., the 1s and 0s)
that the pc understands. Almost all of the source code is built up from C language statements ... but not all.

30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ARDUINO C

Note The programs you write using the Arduino C and its IDE are also called “sketches” in the Arduino
literature. However, | will use the term “program” instead of sketches.

Listing 2-1. The Source Code for Your First Program

void setup()
// Start of setup() function body

Serial.begin(115200);// Step 1, Initialization

// Step 2, Input (the letters between the quotes)
// Step 3. Process - Serial object formats data for display
// Step 4. Output - Display the message on the monitor
Serial.println("This is my first Arduino program!");
// End of setup() function body

void loop()
// Start of loop() function body
} // End of loop() function body

The setup() Function

Every Arduino program must have a setup() function. While it is common to have program statements and
directives appear before the sefup() function, it is the sefup() function that marks the actual start of the program.
The purpose of the setup() function is to set the environment in which the program is run. In Listing 2-1, the
Initialization Step initializes the Serial object for use in the program with the following statement:

Serial.begin(115200);// Step 1, Initialization

Note that the statement ends with the semicolon. The two slash marks (i.e., the //) are used to
introduce a comment in the program. I will have more to say about program comments later in the chapter.
For now, just think of program comments as little notes to help clarify what the code is doing.

This is the only remaining statement in our short program:

Serial.println("This is my first Arduino program!");

However, that single statement is really doing a lot of work. First, the sentence that appears between the
two double quote marks is a sequence of characters that represents the input data for the program. As such,
it serves as the Input Step (Step 2) of the Five Program Steps. The sequence of characters is the message that
you want displayed on the Serial device.

Once the data is provided by Step 2, those characters within the quote marks are prepared for display
by the Serial object. The result is that Step 3, the Process Step, converts what appears on the screen into
the host character set. For the Arduino, the characters are processed using the ASCII (American Standard
Code for Information Interchange) character set. For example, when you see a capital A displayed on
your monitor, what the processor sees is the integer value 65. (A complete ASCII table can be found at
www.bibase.com/ascii.htm.) When the Process Step is completed, your message is ready to be displayed.

As mentioned in the previous chapter, the printin() method of the Serial object does the actual work
moving your message to the output device for display. In this program, the output device is the Serial
monitor. Therefore, the Output Step, Step 4, is tasked to the println() method, which results in your message

31

www.it-ebooks.info

http://www.bibase.com/ascii.htm
http://www.it-ebooks.info/

CHAPTER 2 © ARDUINO C

appearing on the Serial monitor on your PC. (Recall that C++ uses the term method in lieu of the C term
function. For all practical purposes, they are the same. However, I try to use the term method when the code
is part of a C++ class, and I reserve the word function when the code is written in C.)

The loop() Function

At this point, the program proceeds to the loop() function, which appears at the bottom of Listing 2-1.
Similar to the sefup() function, every Arduino program must have a loop() function. However, in our simple
program, there is are no statements in the statement body for the loop() function. That is, no program
statements appear between the opening and closing braces of the loop() function.

Because there are no further program statements in the program source code in Listing 2-1, our
program is finished. After all, if there are no more program statements, there’s nothing left for the program to
do, so our program ends. We have reached Step 5, the Termination Step.

Well, not really.

Arduino programs are designed in such a way that they proceed to the loop() function after the
setup() function’s closing brace is reached, even if there are no statements in the loop() function body. In
other words, even though you can “see” it, after your message is displayed on the Serial monitor, it merrily
proceeds to the loop() function and spins around inside of it doing nothing! Stated differently, your program
never ends ... there is no Step 5, or Termination Step. Indeed, you program continues to spin around in the
empty loop() function doing nothing until you remove power or there is some kind of component failure.

Note You can prove that loop() runs forever by looking at the C code file named main. cpp in your Arduino
directory at hardware/arduino/avr/cores/arduino/main.cpp.

Because you may not know enough C to decipher what appears in the file at this moment, after a few more
chapters you can return to that file and you’ll be able to confirm that /oop() does get called, even if it is empty,
and that it does continue to execute forever.

You can demonstrate that loop() repeatedly executes with one simple change to the program shown in
Listing 2-1. Simply move the last program statement in setup() into loop(). Your modified program should
look like Listing 2-2.

Listing 2-2. The Source Code for Your First Program, As Modified

void setup()
// Start of setup() function body

Serial.begin(115200);// Step 1, Initialization

// Step 2, Input (the letters between the quotes)casll

// Step 3. Process - Serial object formats data for display
// Step 4. Output - Display the message on the monitor

} // End of setup() function body

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ARDUINO C

void loop()
// Start of loop() function body

Serial.println("This is my first Arduino program!");
} // End of loop() function body

Now recompile and upload the new version of your program and invoke the Serial monitor. Any change
in the displayed output?

If you modified the program correctly, the output on your Serial monitor should look like Figure 2-1. As
you can see, the program message is displayed over and over because the loop() function is executing over
and over. In other words, the purpose of the loop() function is to execute the statements in its function body
over and over, ad infinitum.

my Ardulno program!
my Arduino program!
my Arduino program!
my Arduino program!
my Arduino program!
my Arduino program!
my Arduino program!
my Arduino program!
my Arduino program!
my Arduino program!
my Arduino program!
my Arduino program!
my Arduino program!
my Arduino program!
my Arduino program!
my Arduino program! v

¥] Autoscrol \Nolineending v | | 115200 baud v

Figure 2-1. Output from the modified first program

So, how useful can it be to just repeat the same sequence of instructions over and over? Actually, it
can be very useful. You might have a building with 100 fire sensors scattered throughout the building. One
statement in loop() causes the program to go out and read the sensor to see if there is a fire. Finding no fire,
the code changes some kind of sensor index, and the code goes out and reads the next fire sensor. Finding
no fire, it increments the sensor index and reads the next sensor, and continues doing so until all 100
sensors have been read. Assuming all is well, the loop repeats itself and we visit sensor 1 again. The program
constantly repeats this sequence until either there is a fire, or the power is removed, or some component in
the system fails. The hypothetical loop() function might look something like this:

void loop()

int sensorIndex;
int fire;

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ARDUINO C

for (sensorIndex = 1; sensorIndex <= 100; sensorIndex = sensorIndex + 1) {
fire = ReadSensor(sensorIndex); // Return 1 if fire, 0 otherwise

if (fire == 1) { // If fire, do the following statements...
SoundAlarm();
TurnOnSprinklerSystem();
CallFireDepartment();

WaitForAllClear();
}
// If fire equals 0, go read the next sensor
}

Although you are not ready to completely understand the code fragment presented here, you can see
we define two variables named sensorlndex and fire. A for loop starts by setting the index equal to 1, and
then calls a function named ReadSensor(sensorIndex), sending the index number of the sensor we want to
read (sensorIndex) to the function. Evidently, the ReadSensor() function returns a value of 0 if there is no fire
detected and a value of 1 if there is a fire. The if statement checks to see if a fire was detected or not. If there
is a fire, the four function calls within the if statement block are called. If there is no fire, those statements are
skipped and we look at the next sensor.

Even though I have not discussed for loops or if statements, it’s pretty easy to see what the intent of the
program is. Clearly, the program is designed to monitor and protect the building “forever” Only when there
is a fire does the code deviate from its simple repeated sampling of the sensors.

Arduino Program Requirements
The following are important lessons to learn in this section:
e Every Arduino program must have a setup() function.

e The setup() function is only executed once when the program first starts, making it a
good candidate for Step 1, Initialization code.

e Every Arduino program must have a loop() function.

e The loop() function is repeatedly executed until power is removed, a program is
reset, or a component fails. Programs Steps 2 through 4 usually appear within loop().

The Blink Program

The Arduino IDE has numerous sample programs distributed with it. One of the sample programs is the
Blink program. To load Blink into the IDE, use the File » Examples » Basics » Blink menu sequence, as
shown in Figure 2-2.

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

01.Basics AnalogReadSerial
02.Digital BareMinimum
03.Analog . Blink
File | Edit Sketch Tools Help | 04.Communication DigitalReadSerial
New Ctrl+N 05.Control Fade
Open... Ctrl+0 06.Sensors ReadAnalogVoltage 4
Sketchbook \ 07.Display : /4
Examples ' 08.5trings /
- Close Ctrl+W 09.USB
Save Ctrl+S 10.StarterKit
Save As... Ctrl+Shift+S ArduinolSP
Upload Ctrl+U)
Upload Using Programmer Ctrl+Shift+U Audio
| Bridge
Page Setup Ctrl+Shift+P DmxSimple
Print Ctrl+P EEPROM
Preferences Ctrl+Comma Espioa
Ethernet

Quit Ctrl+Q Firmata

Figure 2-2. Menu sequence for Blink example

The source code for the Blink program is shown in Listing 2-3.
Listing 2-3. The Blink Program

/*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.

Most Arduinos have an on-board LED you can control. On the Uno and
Leonardo, it is attached to digital pin 13. If you're unsure what
pin the on-board LED is connected to on your Arduino model, check
the documentation at http://arduino.cc

This example code is in the public domain.

modified 8 May 2014
by Scott Fitzgerald
*/

// the setup function runs once when you press reset or power the board
void setup() {

// initialize digital pin 13 as an output.

pinMode(13, OUTPUT);

www.it-ebooks.info

ARDUINO C

35

http://arduino.cc/
http://www.it-ebooks.info/

CHAPTER 2 © ARDUINO C

// the loop function runs over and over again forever
void loop() {
digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second
digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

As mentioned earlier, the program source code refers to the series of C language statements that
constitute the program. It is the source code that the C compiler parses (i.e., reads and checks for syntax
and semantic errors) and ultimately translates into binary code (i.e., the 1s and 0s) that the pc understands.
Almost all of the source code is built up from C language statements ... but not all. (As mentioned earlier,
most Arduino literature refers to Arduino program source code as sketches. However, I prefer to use the term
“program” rather than sketch.)

Program Comments

I mentioned program comments before, but now we want to consider them in greater detail. The first dozen
or so lines in the Blink program are as follows:

/*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.

Most Arduinos have an on-board LED you can control. On the Uno and
Leonardo, it is attached to digital pin 13. If you're unsure what
pin the on-board LED is connected to on your Arduino model, check
the documentation at http://arduino.cc

This example code is in the public domain.

modified 8 May 2014
by Scott Fitzgerald
*/

If you look closely at these lines, you can see that none of them ends with a semicolon. That is, none of
the lines forms a C program statement since all program C statements must end with a semicolon. If that’s
the case, what are they and why are they part of the source code?

The preceding lines are called comment lines. Comment lines are used to document what’s going on in
a program for whomever may be reading the code. There are two basic types of comments: single-line and
multi-line.

Single-Line Comments

You saw several examples of single-line comments in Listings 2-1 and 2-2. Single-line comments begin with
a pair of slash (//) characters. There can be no spaces between the two slashes. (Otherwise the compiler
might think it was looking at the division operator.) Upon seeing the two slash characters, the compiler
knows that what follows from the two slashes to the end of the current line, is a program comment that does

36

www.it-ebooks.info

http://arduino.cc/
http://www.it-ebooks.info/

CHAPTER 2 * ARDUINO C

not need to be compiled. As such, comments that begin with // must appear on the same line as the two
slash characters. If you fold a comment to the next line without the leading slashes, it will be seen as a syntax
error by the compiler.

Again, the following is an example of this type of comment:

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:

Multi-line Comments

Multi-line comments begin with a slash-asterisk pair (/*) and end with an asterisk-slash pair (*/). There
are no spaces between the two character pairs. Everything in between these two character pairs is treated
as a comment and is ignored by the compiler. Unlike single-line comments, multi-line comments can span
multiple lines. You can see an example of a multi-line comment at the top of Listing 2-3.

Note that you could write the multi-line comment at the top of Listing 2-3 as

// Blink
// Turns on an LED on for one second, then off for one second, repeatedly.

and the program would behave exactly the same. However, multi-line comments are useful for long
comments that span many lines because they take fewer keystrokes to implement. The compiler could care
less which you use. The important thing to remember is that comments invoke no penalty in terms of memory
space or the performance of the program, so there’s no reason not to use them as needed.

When to Use Comments

Well, what does “as needed” mean? Fair question. Comments should be used any time you wish to
document what a program is doing or about to do. Reading code isn’t always easy and it might be hard for
the reader to figure out what’s going on in a particular section of code. In such cases, a comment may make
it easier for someone to decipher what the code is supposed to do. For example, if you have a black box
function that implements some really scary mathematical equation, you might add a comment to explain
what’s going on. If the function is really complex, it’s not uncommon to put a multi-line reference comment
into the code that has a book and page number (or perhaps an Internet URL address) where the reader can
go for further information.

At first blush, it may seem that comments are directed to someone other than the person who actually
wrote the code. Frequently, that is true, especially if you write code in a commercial environment with other
programmers who may have to work with your code. However, even if you are the only person who will ever
see the code, you'll be amazed how a piece of code that was so easy to understand this morning may as
well be written in Sanskrit six months from now. Comments should be used to help the person reading the
code ... whomever that may be.

Yet, the question still remains: When do you add comments to a program? Too few comments often
make the code difficult to understand. There simply are not enough comments to be helpful to your
understanding of the code. However, too many comments can have the same effect because they “get
in the way” of understanding the code. Comments are clutter if they don’t contribute any real benefit to
understanding the code.

There are no hard-and-fast rules for commenting the program source code. My preference is to use a
multi-line comment before most function blocks or any line (or lines) of code that do something unusual or
“tricky.” You will see examples of function block comments in later chapters.

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ARDUINO C

You should use single-line comments when you do something unusual that may take a few seconds or
more to understand. For example,

X =y / 2.0;
x =y * .5; // Divide the number in half

Both statements produce the same result for floating point numbers; they divide the number held in
variable y in half. However, the second form is slightly faster because division is the slowest math operation
you can use. The comment simply jogs the reader’s mind as to what'’s being done. (Normally, you would not
do this anyway. It would only be noticeable if the calculation was being done thousands of times in a big
program loop.)

As a general rule, comment those lines of code that do something that makes you pause to understand
what that line is doing. Commenting every line is almost never necessary in a program. Commenting
obvious program statements is a waste of time:

X =X+ 1; // Take the value of x and add 1 to it.

Really? If the reader can'’t figure out what the preceding statement is doing without reading the
comment, they really shouldn’t be reading the program source code in the first place. The correct use of
comments should result in relatively few comments in a program. I'll have more to say about comments as
you gain more programming experience.

The setup() Function in Blink

There is only one program statement in the setup() function:
pinMode(13, OUTPUT);

This statement activates (or “calls”) a function called pinMode(), which is a function provided to you
with the Arduino IDE. We know this function must be buried within the IDE because we don’t see the
program source code for it in Listing 2-3. Therefore we can deduce that pinMode() is a function that is part
of the “standard function library” that is part of the IDE. As pointed out in Chapter 1, a function is a small
collection of program statements that is designed to perform a specific task. Some tasks are so common
to almost all programs that they are collected together into a function library. A function library is nothing
more than a collection of pre-written functions—each designed to perform a specific task—that you can
reuse in your own programs. This collection of related functions is grouped together into a library. The
pinMode() function is one of the functions found in the Arduino function library. Indeed, a good amount of
your learning effort is to discover what tasks have already been solved for you by one of the functions in the
function library.

Okay, so how do you find out what those functions are and what they do?

How to Find Information About Library Functions

If you want more information about a function that you think is in the Arduino standard library, visit
http://arduino.cc/en/Reference/HomePage, and you will see a page similar to that seen in Figure 2-3.

38

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_1
http://arduino.cc/en/Reference/HomePage
http://www.it-ebooks.info/

CHAPTER 2 * ARDUINO C

P pirvosel

Home Buy Download Products - Learning -~ Forum Support - Blog .' 0 -

Reference Language | Libraries | Comparison | Changes
Language Reference

Arduino programs can be divided in three main parts: structure, values (variables
and constants), and functions.

Figure 2-3. Using the Arduino Language Reference

Note how I have typed pinMode() into the search bar. If you then click the small magnifying glass on
the right edge of the text box, the search program will search for more details on whatever you typed into
the search text box (e.g., pinMode() in our case). The search brings up a Google page for the pinMode()
function. Usually, the first reference shown is the one you would select. However, if you double-click the
word “pinmode” to highlight it, then right-click and select Find in Reference, the page seen in Figure 2-4 is
found and displayed.

©.0)

ARDUINO

Home Buy Download Products - Learning -~ Forum Support -~ Blog

Reference Language | Libraries | Comparison | Changes

pinMode ()

Description

Configures the specified pin to behave either as an input or an output. See the description of

digital pins for details on the functionality of the pins.

Figure 2-4. The pinMode() description

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ARDUINO C

If you read the complete description, you will find that the pinMode() function is used to set the way in
which a pin is to be used in the program. In the Blink program, the reference tells us that the statement

pinMode (13, OUTPUT);

means that Arduino pin number 13 is going to be used as an OUTPUT pin. Simply stated, the symbolic
constant OUTPUT is also defined within the Arduino IDE, which means that we will be outputting data on
pin 13. If we wanted to read some device or sensor attached to pin 13 as a data source, we would use the
following:

pinMode(13, INPUT); // If we want to read a device attached to pin 13

All of the digital pins on the Arduino can be configured as OUTPUT or INPUT pins.

So, why pin 13?

As it turns out, almost all Arduino (and compatible) boards have a built-in LED tied to pin 13. By
defining pin 13 for use as an OUTPUT pin, we can turn this onboard LED on and off under software control,
hence the program name “Blink”.

I don't like seeing numeric constants, like the preceding 13, simply stuck in a program’s source code. It
would be much better if there were a way to give meaning to the number. I call such numbers magic numbers
because their purpose or derivation is often a mystery ... especially if you are reading source code you didn’t
write. You will see how to reduce the number of magic numbers in a program in Chapter 4.

Note Although | have never found an Arduino-compatible board that didn’t have an onboard LED, this
could be the case for a “homegrown” board. If that were the case, you could attach the anode of an LED to pin
13, and connect the cathode to a resistor (220 ohm to 1000 ohm, 1/10W or larger is fine) , and run the other
end of the resistor to ground (GND on the Arduino board). This would pulse the external LED when the Blink
program is run.

The pinMode() function call is the only statement in the setup() function, so our Initialization Step
consists of a single statement. Obviously, more complex programs can be expected to have more statements
in setup().

It is important for you to remember that the setup() function is only called once when the program
first begins execution. This is why we can refer to setup() as the Initialization Step in our program. If you
wish to call setup() a second time, you would have to press the Reset button on the pc board. The Reset
button halts the current execution of the program and restarts it by calling sefup(). You can also reset the
board by removing and reapplying power to the board. The setup() function is called automatically (on
most newer Arduino boards) each time you upload a new version of the program code from your PC to
the pc board.

40

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://www.it-ebooks.info/

CHAPTER 2 * ARDUINO C

THE BACKPACK ANALOGY

You will often read the phrase “calling a function” as well as “returning from the function” or even “return to
the caller”. These are common idioms used by programmers, and they have a specific interpretation. Think
of a function as a black box with front and back doors. Think of yourself as the person who marches through
the program causing each program statement to execute.

The term “calling a function” means that any time a “function is called,” you put on a backpack, stuff it

with any information this function may want (e.g., 13 and OUTPUT for our pinMode() function call, which are
called function arguments), and then set off to “call on the function.” The door to the black box opens and
you walk in and start executing whatever instructions are contained in the black box. If the black box needs
information from the outside world, it takes that information (13, OUTPUT, which are now called function
parameters) from your backpack before it begins its task. (I go into more details about parameters vs.
arguments in Chapter 6.) The black box then does its thing, and upon completing its task, it may (or may not)
put some new information in your backpack. It then ushers you to the back door and sends you back to the
point immediately following the program point that caused you to visit the black box in the first place.

This process of going back to that precise program point is called “returning to the caller” or “returning
from the function.” Therefore, calling a function is nothing more than a journey to some set of pre-written
program statements that are designed to accomplish a specific task. Once that task is complete, program
control returns to the statement immediately following the function call.

So what is the second function argument in pinMode(), named OUTPUT, all about and where is it
defined in the program? A function argument is simply a piece of data that the function needs to have
to complete its task. OUTPUT is a symbolic constant that can be thought of as a variable name that is
embedded within the compiler. A symbolic constant is a name that is tied to a specific data value. There is a
programming convention (not a rule) where symbolic constants are written in uppercase letters. Because
C is case sensitive, you could define a variable named output and the compiler knows that it is a different
variable than its own symbolic constant named OUTPUT.

Why use symbolic constants? Simply stated, one reason is because it makes the program code easier to
read. Which of the following would you rather read in a program?

pinMode(LED, OUTPUT);
or
pinMode(13, 1);
There are other reasons for using symbolic constants. I will explain them in later chapters. For now,

however, simply think of symbolic constants as a series of uppercase letters that are tied to some predefined
value with the intent of making the code easier to read.

The loop() Function

After the setup() function completes its work, every Arduino C program automatically calls the loop()
function. Stated differently, when the Initialization Step (Step 1) is completed via the function call to
setup(), we are ready for Step 2, the Input Step. Because there are no more statements in setup(), the

41

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://www.it-ebooks.info/

CHAPTER 2 © ARDUINO C

remaining Program Steps must be in the loop() function. The code for the loop() function is reproduced as
follows:

// the loop function runs over and over again forever
void loop() {
digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second
digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

Inside the loop() function, the program calls a pre-written function named digitalWrite(13, HIGH),
passing in two arguments to the digitalWrite() function: the I/0 pin number to write to and the state we
wish to place the I/0 pin into (HIGH in this case). Once again, HIGH is a symbolic constant held within the
compiler and is interpreted to mean we want to turn the pin on, which supplies a voltage (5V) to I/0 pin 13.
This voltage then turns on the LED.

Note the purposes the digitalWrite() function serves. First, it tells the function which I/0 pin to change
and what state to place the I/O pin in. Once the function receives these two pieces of information (via
your backpack!), it places the LED in the desired state. In this case, the function turns the LED on. In other
words, passing in the two pieces of information to digitalWrite() serves as the Input Step (Step 2) of our Five
Program Steps. digitalWrite() also serves as part of the Processing Step (Step 3) because it takes the input
data from the Input Step and changes the state of the LED according to the inputs it just received. Given
these inputs, the LED is turned on at this point. That is, the function processes the input data and the LED
“displays” (Step 4, Output Step) light.

You can probably guess what the delay(1000) call does. When the delay(1000) function call program
statement is reached, the program puts the number 1000 into your backpack and you trundle off to the
delay() black box. Once you're inside the black box named delay(), the code within the black box takes
the value 1000 from your backpack and executes the code contained within the black box. In other words,
delay() needs some information, called a function parameter, from the “outside world” to complete its task.
If you look up the description for delay() (http://arduino.cc/en/Reference/Delay), you will find that
the function returns no value to the caller. Therefore, when delay() is finished doing its thing, it hands you
an empty backpack and shows you the back door of the black box. Program control, therefore, resumes
execution with whatever the next statement is after the delay(1000) statement.

The delay(1000) function call causes the program’s execution to pause for 1000 milliseconds (or one
second). Because the LED is turned on, the one-second time delay has the effect of letting us observe the
LED with illumination. If the calls to delay() function were left out of the program, the LED would be
turned on and off for such a short period of time that our eye would not even be able to tell it was blinking.
In an operational sense, therefore, the delay() function call serves as an extension of the Output Step (Step 4)
of our Five Program Steps by letting us observe the current state of the LED.

As you probably guessed, the next call to digitalWrite(13, LOW) and its subsequent call to the
delay(1000) function turns the LED off for one second. This is still part of the Process and Output steps.
Turning the LED off is just as much an Output process as turning it on.

Once the delay(1000) function is finished, the closing brace of the loop() function is read. However,
because loop() establishes what's called a program loop, program execution returns back to the first
statement in the loop() function body and performs a second pass through the loop starting with
digitalWrite(13, HIGH) again. This turns the LED back on. This sequence repeats until power is removed
from the circuit, which means the LED simply sits there and blinks until the power is removed from the pc
board, a component fails, or the cows come home.

Because the program is designed to loop forever, there really is no Termination Step (Step 5). Most
microcontroller programs are written to chug along until they are stopped by some outside force (e.g., losing
power or component failure). There are exceptions to this generalization, but they are relatively rare.

42

www.it-ebooks.info

http://arduino.cc/en/Reference/Delay
http://www.it-ebooks.info/

CHAPTER 2 * ARDUINO C

delay(): Good News, Bad News

The delay() function is an easy-to-use way of injecting a time delay into a program. That's the good news.
The bad news is that, during the delay time period, the Arduino board is essentially brain dead. That is, the
central processing unit (CPU) is concentrating so hard on getting the time delay right, it can’t do anything
else. In many applications, this isn’t a problem. However, imagine our fire alarm sensor situation with the
new World Trade Center. In a building that large, there might be 10,000 fire sensors. If you used a polling
method to read each sensor, and it takes a hundredth of a second for each “visit,” a round-trip through

the sensor list will take 100 seconds. Now further suppose that the instant you leave a given sensor, it
immediately detects a fire. It would be 100 seconds before you knew about the fire. Giving a fire a 100-second
head start is not a good thing.

Because of this limitation of the polling method for reading sensors, most programmers would use
what'’s called an Interrupt Service Routine (ISR). Simply stated, all of the sensors are tied to an interrupt pin
on the Arduino board, and if a fire breaks out, the sensor immediately sends a message to the interrupt pin
and executes the code associated with the ISR, even if it’s not that sensor’s turn to be read. Therefore, using
an ISR effectively does away with the 100-second delay.

Well ... maybe.

If you are using delay() in your program, the Arduino CPU is comatose while delay() is doing its thing.
That means that no ISR can be serviced until after the delay period is finished. So if you do a delay(600000)
call in your fire alarm program, the fire could get a 10-minute head start before you even know a fire has
started!

There are better ways to put a delay in your program, which we will explore later on. If you're curious
right now, look at the program named BlinkWithoutDelay (File » Examples » Digital » BlinkWithoutDelay).
This program shows how to put a delay into a program, but still allow ISRs to interrupt things if necessary.

Summary

In this chapter you learned how to build program statements from operands and operators. You then

saw how statements can be enlarged to statement and function blocks, ultimately leading to a complete
program. You also learned the Five Program Steps and how they can be used to help design a program.
Finally, these concepts were applied to a dissection of the Blink program example. With these preliminaries
behind you, you can move on to learn about the various types of data you can use in your programs.

EXERCISES

1. Name the basic building blocks of a programming language.

Answer: Operands, operators » Expressions » Statements » Statement blocks »
Function blocks

2. What is a binary operator?

Answer: A binary operator is an operator that requires two operands to create an
expression.

3. Why is an understanding of operator precedence important in an expression?

Answer: Operator precedence dictates the order in which subexpressions are evaluated in
complex statements. Without this understanding, it is possible that a complex statement
will not have the subexpressions evaluated in the order you wish, leading to erroneous
results.

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ARDUINO C

Which of the Five Program Steps is least likely to appear in your programs, and
why?

Answer: The Termination Step. The reason is because many uc programs are designed
to run forever and may never reach a termination point unless power is removed or a
component fails.

What is the purpose of the /* and */ character pairs?

Answer: This sequence of characters mark the start and the end of a multi-line comment
in a program. They are also useful in “commenting out” a chunk of code during program
testing and debugging.

What does “calling a function” mean?

Answer: It means that program control is transferred from its current place in the program
to the code associated with the function that is to be executed.

What does “return to the caller” mean?

Answer: Return to the caller occurs when program control finishes executing the code
associated with a function and program control returns to the point at which the function
was called.

When would using delay() be a poor program choice?

Answer: Because delay() prevents communication with any of the Arduino’s I/0 pins while
the delay() is being processed, it would be a bad choice with programs that use Interrupt
Service Routines.

Write a general purpose accounting system for your Arduino.
Answer: Naw ... just kidding.

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Arduino C Data Types

When we refer to a C data type, we are referring to the attributes that a piece of program data has. As you
will learn, certain data types are better suited to specific tasks than other data types, even though more than
one data type might work. Selecting the right data type often results in a program that runs faster and uses
less memory. In the pc world, where speed and memory are rare commodities, it pays to know what your
data type choices are. In this chapter you will learn about the data types the Arduino C brings to the table.
Arduino C supports almost all of ANSI C’s data types.

As mentioned in Chapter 2, a variable is little more than a chunk of memory that has been given a
name. When you define a variable, you must also tell the compiler what type of data is to be associated with
that variable. The data type of the variable is important because it determines how many bytes of memory are
dedicated to that variable, and what type of data can be stored in the variable.

Byte?

As you probably know, computers only know two things: On (1) or Off (0). Decades ago, computer
manufacturers decided to arrange these binary digits, or bits, into groupings of 8 bits. Each group of 8 bits
taken as a unit is called a byte. Because a byte can only have two states, 1 or 0, bytes are most happy using
base 2 arithmetic, rather than the base 10 that you are used to. If you recall your high school math, 2° is
256. So a byte can have its bits arranged in 256 unique combinations. Because 0 is a valid number, a byte of
computer memory can represent the values 0-255. I will have more to say about binary data later.

As you will learn later in this chapter, there are two basic types of variables: value types and reference
types. If the variable is defined as a value type, there is a very specific range of numeric values possible with
that data type.

A list of the basic value data types is presented in Table 3-1.

© Jack Purdum 2015 45
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_3

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_2
http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

Table 3-1. Arduino C Value Data Types

Type Byte length Range of values

boolean 1 Limited to logic true and false

char 1 Range: -128 to +127

unsigned char 1 Range: 0 to 255

byte 1 Range: 0 to 255

int 2 Range: -32,768 to 32,767

unsigned int 2 Range: 0 to 65,535

word 2 Range: 0 to 65,535

long 4 Range: -2,147,483,648 to 2,147,483,647

unsigned long 4 Range: 0 to 4,294,967,295

float 4 Range: -3.4028235E+38 to 3.4028235E+38

double 4 Range: -3.4028235E+38 to 3.4028235E+38

string ? Anull ('\0") terminated reference type data built from
a character array

String ? An reference data type object

array ? A sequence of a value type that is referenced by a single
variable name

void 0 A descriptor used with functions as a return type when

the function does not return a value

Note There are several other data types that are defined for the Arduino IDE (e.g., long long); however,
because doing anything with them is relatively inefficient, | do not discuss them here.

Keywords in C

Each of the data types shown in Table 3-1 (i.e., boolean, char, int, etc.) is a keyword in C. A keyword is any word
that has special meaning to the C compiler. Because keywords are reserved for the compiler’s use, you cannot
use them for your own variable or function names. If you do, the compiler will flag it as an error. If the compiler
didn’t flag such errors, the compiler would get confused as to which use of the keyword to use in any given
situation.

There are other C keywords that cannot be used to name a data type in your programs. Many of these
keywords are for language constructs (e.g., for, while, struct, etc.) that are an integral part of the language.
You will learn these keywords as we progress through the book. In other cases, pre-written functions like
the delay() function you used in the last chapter should not be used for your own variable names. While
not exhaustive, you can find a partial list of reserved C keywords at http://arduino.cc/en/Reference/
HomePage.

46

www.it-ebooks.info

http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage
http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

Variable Names in C

If you can’t use keywords for variable or function names, what can you use? There are three general rules for
naming variables or functions in C. Valid variable names may contain the following:

1. Characters a through z and A through Z
2. The underscore character (_)

3. Digit characters 0 through 9, provided they are not used as the first character in
the name

Just about everything else is not acceptable, including the C keywords. Note that the rules also mean
that punctuation and other special non-printing characters are not allowed either.

If you happen to use a variable name that is also the name of an Arduino library function, you will run
into problems when you try to use the two in the same program. If you named a variable delay and then
tried to call the delay() function, the compiler would get cranky and complain because it is confused by the
variable and the function that share the same name. The rule is simple: Don’t do that! Surely you can think of
avariable name that doesn’t collide with an existing function name.

Valid variable names might include the following:

jane Jane ohm ampere volt
money day1 Week50_system XFXF

Using the same rules, the following would not be valid names:

“carat 4]July -negative @URL
%percent not-Good This&That what?

As an exercise, explain to yourself why each of these erroneous variable names is wrong.

Given these limits, how does one create a “good” variable name? As a general rule, I like variable names
that are long enough to give me a clue as to what they do in a program, but short enough thatI don’t get tired
of typing their name. Using this notation, variable names begin with a lowercase letter, with each subword
capitalized. (This form of notation is often referred to as camel notation.) The following are examples of
camel notation style:

myFriend togglePrinter emptyPaperTray closeDriveDoor

I think this style makes it easy to read the variable names. C could care less which style you use.
However, keep in mind that it is unlikely that you will write perfect (error-free) code every time you write a
program. Using variable names that make sense and are easy to read makes debugging just that much easier.

Also keep in mind that C is case sensitive, which means that myData and MyData are two different variables.
With that in mind, let’s examine the common data types available for use in your C programs.

The boolean Data Type

The boolean data type is limited to two values or states: true or false. These two values are unchangeable
(i.e., constants) that are defined within the compiler and are the only two values a boolean variable can
assume. Therefore, the following is a valid data definition for a boolean variable:

boolean mySwitch = false;

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

This is probably going to be used to store the state of a switch (e.g., the switch state is frue when the switch
is On and it is false when the switch is Off). However, you may also see code like the following fragment:

boolean switchState;

// some more program statements
switchState = ReadSwitchState(whichSwitch);
if (switchState) {

TurnSwitchOff(whichSwitch);

} else {

TurnSwitchOn(whichSwitch);
}

Walking Through the Function Call to ReadSwitchState ()

Even though we don’t cover the if statement until the next chapter, you can probably figure out what’s
going on here. The ReadSwitchState() function returns a boolean value that is true if the switch is on, or
false if the switch is off. Recall from Chapter 2 what the function call statement means. When you call the
ReadSwitchState() function, you grab your backpack, stuff the current value of whichSwitch into it, and
jump to the black box that contains the ReadSwitchState() code. Once inside, the code takes the value

of whichSwitch out of your backpack and uses it to process the code in its function block. Note that the
ReadSwitchState() function sends a value back to the caller. We know that because of the assignment
operator (=) that appears before the function call statement. Therefore, just before you leave the black box,
the function grabs your backpack and puts a value in it that was calculated as the result of the function call.
The function then tells you that you are free to return to the caller.

However, when you return from the call to the ReadSwitchState() function, the assignment operator
causes the code to grab your backpack, take out the value put there by function call, and assign that value
into switchState. (Technically, your backpack is actually something called the program stack, but we’ll flesh
out that detail later in the book.) Because switchState is defined as a boolean variable, we know that is the
type of data that is being returned from the function call to ReadSwitchState() (i.e., that’s the type of data the
function stuffed into your backpack). Therefore, because switchState is defined as a boolean data type, only
the values true or false can be stored in switchState.

Binary Numbers

Because digital computers only understand two states, On (1) and Off (0), they use a binary (base 2)
numbering system. Alas, you and I grew up with the base 10 numbering system, so base 2 seems a bit strange
at first. However, it’s not hard to understand how a base 2 number is constructed.

Consider Table 3-2. You can think of a computer bit (binary integer) as a small unit of data that can
assume only one of two values: on (a value of 1) or off (a value of 0), which is consistent with the binary
nature of digital computers. Most CPUs group bits together into a single entity called a byte. Each byte is
comprised of 8 bits. Most programming languages start counting things with the number 0 rather than 1.
Therefore, the bits in a byte begin with bit 0 and end with bit 7.

Because the “high” bit for an 8-bit byte is bit 7, that bit is used as the sign bit if the data can have positive
and negative values. If the sign bit (i.e., bit 7) is turned on for a char data type, for example, the number is
interpreted as a negative value. If you add up all the values “to the right” of bit 7 (i.e., line 2 in Table 3-2, or
64 through 1), you'll find that it totals to 127. If you look at the range for a char data type in Table 3-1, you'll
see the highest positive value is 127. If bit 7 is turned on for a char, the interpretation is that this is a negative
number, so the value becomes -128. This should help you understand how the ranges are set for the different
data types. For an unsigned data type (e.g., unsigned char, unsigned int, unsigned long), there is no need for a

48

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_2
http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

sign bit—all values are positive, so the high bit is just another positive bit available for use. This explains why
the maximum value for an unsigned number is about twice that of a signed data type.

Table 3-2. The Base 2 Interpretation of an 8-Bit Data Value
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Power of 2 27 26 25 24 23 22 2! 20
Decimal value 128 64 32 16 8 4 2 1
Binary number 0 1 0 0 0 0 0 1
Decimal value 64 1

Now, let’s examine Table 3-2 in greater detail. You can see how the bit positions correspond to various
powers of 2. For example, if you take the value 2 and raise it to the 6® power, the resulting value is 64. If you
recall your high school math, any number raised to the 0 power is 1. Moving from Bit 0 to the left, you can
see in row 2 how the value doubles as you move to the next higher bit position.

The question becomes: How can I form a binary value? Suppose you want to form the decimal (base 10)
value 65. To create that value, you would need to turn on bits 0 and 6 (see the last row in Table 3-2.) Because
2 to the 0" power is 1, and 2 to the 6 power is 64, adding these two values together produces 65, binary
01000001. So, how would you create the value 5? If you turn on bits 2 and 0, you get a value of 5
(i.e., 00000101). What about the value 10? In that case, turn on bits 3 and 1 (i.e., 00001010).

Wait a minute! It appears that shifting all the bits to the left one position is the same as multiplying the
number by 2. Likewise, shifting all the bits to the right one place is the same as dividing by 2. That’s exactly
right. Arduino C supports bit shifting. You may see examples of bit shifting in some code you look at down
the road. I will have more to say about that later on. Bit shifting only works with integral data types.

The char Data Type and Character Sets

When computers first came into existence, all of the characters that were deemed necessary could be
represented with relatively few values. Your keyboard, for example, probably has fewer than 127 keys on it.
Because of the relatively small number of characters needed, the American Standard Code for Information
Interchange (ASCII) character set was developed based on 8-bit (i.e., 1 byte) values. By treating the eight bits
as an unsigned quantity, the ASCII character set was later extended to include limited graphic characters,
too. The ASCII character set was the norm for decades. However, as computers fanned out across the

globe, the need to extend the character set became obvious. The Japanese Kanji character set, for example,
has almost 2,000 characters in it. Clearly, these characters cannot be represented in an 8-bit byte. For this
reason, the Unicode character set was developed.

The Unicode character set is based upon a 2-byte value for each character. From a programmer’s point
of view, Unicode characters are unsigned quantities, hence over 65,000 characters can be represented. (See
the 2-byte range of values in Table 3-1. For details on the Unicode character set, see www.unicode.org/
charts. For the ASCII character set, see waw.asciitable.com.) Because of the desire to “internationalize”
computer software, more and more programmers moved to the Unicode character set. However, there were
diehard ASCII programmers, too. Perhaps as a compromise, there are Unicode character sets for different bit
lengths. For example, UTF-8 is the Unicode Transform Format for 8-bit character sets. Now you can select
from UTE-8, UTF-16, and UTF-32.

We will stick with the ASCII (1 byte) character set in this book. If you need Unicode in your software,
you can cobble it together using Arduino C. However, I will leave that as an exercise for you, if you're
interested.

49

www.it-ebooks.info

http://www.unicode.org/charts
http://www.unicode.org/charts
http://www.asciitable.com/
http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

Generating a Table of ASCII Characters

One of the sample programs included with the Arduino C IDE is one that can generate a table of the
ASCII character set. You can see the menu sequence to follow in Figure 3-1. The File » Examples »
04.Communication » ASCIITable menu sequence loads the source code for the program. Compile and
upload the program as you did in Chapter 1 by pressing the button with the arrow on it (the Compile/
Upload button). Now select the Tools » Serial Monitor menu choice or simultaneously press the Control,
Shift, and M keys at the same time. This loads the Serial monitor so you can view the data being sent back
to your PC.

Once again, we won’t go through the code because we don’t have enough under our belt yet to make
it worthwhile. (You will write your first program in the next chapter.) For now, the ASCIITable.ino program
will at least allow you to see the ASCII characters displayed as characters, decimal (base 10), hexadecimal
(base 16), octal (base 8), and binary (base 2) numbers.

01.Basics
02.Digital L4

03.Analog L4
File | Edit Sketch Tools Help 04.Communication "

(ASCliTable

New Ctrl+N .OS.ControI ' Dimmer
Open... Ctrl+0 06.Sensors ' Graph
Sketchbook ' 07.Display ! Midi
Examples) 08.Strings) MultiSerialMega
Close Ctrl+W 09.USB) PhysicalPixel
Save Ctrl+S 10.StarterKit ' ReadASClIString
Save As... Ctrl+Shift+5 ArduinolSP SerialCallResponse
Upload Ctrl+U s | SerialCallResponseASCIl
Upload Using Programmer Ctrl+Shift+U Bridge | SerialEvent
Page Setup Ctrle Shift+ P Dirediamiol | VirtualColorMixer
Print Ctrl+P EEPROM »
Preferences Ctrl+Comma Eplora i

Ethernet L4
Quit Ctrl+Q Firmata »

GSM 4
Figure 3-1. Loading the ASCIITable sample program

Figure 3-2 presents part of the output from the ASCIITable program. By examining the output from the
program, you can see the relationship between the different numbering systems.

50

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_1
http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

: 65, bin: 110101

: 110110
: 67, bin: 110111
: 70, bin: 111000

: 111001
: 72, bin: 111010

: 111011

+ 111100
: 75, bin: 111101
: 76, bin: 111110
: 77, bin: 111111
: 100, bin: 1000000
: 101, bin: 1000001
: 102, bin: 1000010
: 103, bin: 1000011
+ 104 hine 1000100

Noline ending v | | 9600 baud

Figure 3-2. Part of the ASCII character set

If you look at the extreme left edge of Figure 3-2, toward the bottom, you'll see the character ‘A’. If you
wanted to create a variable and initialize it to the value for the letter 'A’, you could use this:

char c = 'A";

After the compiler processes this statement, variable ¢ would contain the letter 'A". Note that character
constants that are used in an assignment statement are surrounded by single quote marks. If you read the 'A’
line in Figure 3-2, you can see that the numeric value 65 represents the letter 'A’. What this means is, when
you touch the Shift key and the letter A on your keyboard, the value 65 is transmitted to your computer.

If you prefer to think in base 16 numbers, the value 41 is sent (i.e., 16 * 4 + 1 = 65). In base 8, the value is 101
(i.e., 8*8 + 0 + 1 = 65). However, since computers only understand 0s and 1s, what the computer actually
receives for the keyboard character 'A' is the binary value 01000001. (Figure 3-2 leaves the leading 0 off of the
binary display for the ASCII table because the 8" bit is always 0.)

The byte Data Type

The byte data type is also an 8-bit value, but there is no sign bit, so its range is almost twice that of a char.
(Can you explain why an unsigned char has the same range as a byte? Think about it.) You may use the byte
data type to store any value between 0 and 255. If you ever find yourself in a situation where you are running
out of memory for data storage, changing the data from an int data type to a byte might save the day.

Given that byte and unsigned char have the same range of values, how can you decide which to use?
Well, from the compiler’s point of view, it doesn’t matter. However, as you gain experience, you'll find
yourself falling into conventions that most C programmers use. That is, if you are reading data from a
sensor, many sensors route their data through a port one byte at a time. As a result, programmers often use

51

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

the byte data type to represent raw data coming in through a data port. On the other hand, all flavors of the
char data type are often associated with textual (i.e., ASCII) data. The choice is yours.
The most commonly used 8-bit data type is the char. However, byte is available when you need it.

The int Data Type

The int data type is an integer value in C and is a signed quantity. Because an int is a signed quantity, an int
can assume either positive or negative whole numbers (see Table 3-1).

Fractional values are not allowed for any integer data types. If a math operation with integer values
yields a fractional value (e.g., 9 / 5), that fractional value is truncated (not rounded) and only the whole
number is retained (i.e., the result is 1, not 1.8 or 2).

In Arduino C, an int data type is a 16-bit value, as shown in Table 3-1. In some other languages
(e.g., Java, C#, C++) an int is usually a 32-bit (4-byte) entity. If you have programmed before in some of these
other languages, you need to be aware that an int in Arduino C has a smaller numeric range than it carries in
other programming languages. (Often these other languages refer to a 16-bit int as a short int. The actual
bit-size of an int data type is the bit size of the registers in the host pic. A register is an internal piece of
hardware buried within the pc that is designed to hold a group of bits. For the Arduino boards we are using,
these registers are designed to hold 8 bits.)

Because you can also have unsigned int data types, you can increase the upper limit of positive
values by almost a factor of two. However, the price of this greater range is that unsigned data types
cannot store negative values. The int data type is used more frequently than the unsigned int data type in
most programs.

The word Data Type

Asyou can see in Table 3-1, the word data type has the same storage requirements and range of values as

an unsigned int. Given that’s the case, why even have a word data type when an unsigned int could be used
instead? The term word is actually more associated with assembly language programming and reflects the
largest group of bits that can be handled by the CPU with a single instruction. While there is no hard-and-
fast rule about using the word data type, you tend to see it used most often as a variable that is involved with
bit manipulations or when hexadecimal (base 16) numbers are being used instead of decimal (base 10)
numbers. You will study bit manipulations in a later chapter. For the moment, you can think of the word data
type as being similar to an unsigned int, but used to suggest low-level data manipulations.

The long Data Type

Because the long data type uses 32 bits (4 bytes), it has an approximate range of values of between plus or
minus two billion. Like the other data types discussed so far, the long data type is also an integer data type
and, as such, cannot be used to represent fractional values. However, because there are 2! possible values
(the 32 bit is the sign bit again), the range of values is very large. As a general rule, if you are certain that all
possible data values for a program fall within the range of an int, using an int is a better choice than a long if
for no other reason than the memory requirements for a long are twice that of an int. Also, the Atmel family
of pcs that we are using here all use 8-bit (1 byte) registers. Therefore, shuffling 2 bytes of data for an int will
usually be faster than moving 4 bytes of data for a long. Although the performance hit for a long may not be
noticeable except where you're spinning through a tight loop of values, it’s still worth keeping the data type
trade-offs in mind.

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

The float and double Data Types

Arduino C does allow you to use floating point numbers. That is, you can have data values in your program
that use fractional values. In fact, if you look at the Arduino.h header file (usually located at \hardware\
arduino\cores\arduino), you will find symbolic constants defined for PI, TWO-PI, and so forth. In that file,
piis defined as:

#define PI 3.1415926535897932384626433832795
So, you could define a float as
float pi = PI;

and the compiler will substitute the number 3.1415926535897932384626433832795 for PI and assign that
value into pi. (Recall that C is case sensitive, so pi and PI are viewed as different entities in C.) The range of
values for a float is roughly plus or minus 3.4 times 10 to the 38" power. That’s a big number: A value with up
to 38 digits. Each float requires 4 bytes of storage space.

In most languages, a double data type has twice the storage requirements as a float (i.e., 8 bytes instead of
4 bytes). As such, the range of values is much larger (often some value to the 308" power.) However, Arduino C
makes no distinction between a float and a double. Both data types are treated equally in Arduino C.

Floating Point Precision

The precision of a number refers to the number of significant digits you can expect for that number. In Arduino
C, the highest precision you can expect for a floating point value is 7 digits of precision. What this means is
that even though you can represent a floating point number with 38 digits, only the first 7 are significant. The
remaining 31 digits are the computer’s best guess as to what the digits should be. Given that fact, it seems
misleading that PIis defined the way it is. For all practical purposes, PI could be defined as

#define PI 3.141592
and forget the rest of the digits because the computer won’t be able to represent those digits in any math

operation with greater precision than six or seven digits. However, if you're just going to display pi and not
manipulate it in any way, then PI gives you that constant with considerable precision.

Note In some Arduino literature, you will see variables defined using uint8_t, uint16_t, or perhaps other
terms that are similar. These constants are used to help define the data type for the underlying C++ compiler.
It's pretty easy to figure out what they mean. For example, uint8_t translates to an unsigned int comprised of
8 bits. (The _telement helps to mark it as a data type.) Unless stated otherwise, we use the standard C data
types presented in Table 3-1.

The string Data Type

A string is a sequence of ASCII characters treated as a single entity. In other words, it’s a string of characters.
The string data type may be implemented two different ways. The first we shall discuss is to define the string
as a character array. An array is nothing more than a grouping of one or more elements of a data type and

53

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

each of those elements share a common name. (We will cover arrays in detail in Chapter 5.) In this case, you
can define a string as

char myString[15];

which allocates enough memory space for a string with 14 characters in it. Note that the base data type for a
string is an array of chars.

Wait a minute.... Why 14 characters and not 15?

The reason is because C needs to append a null character (' \0") to the end of the character array for
the compiler to use the char array as a string data type. The compiler uses this null byte to mark the end of
the string. Therefore, any string variable is limited to the number that appears within the brackets minus 1.
In our example, we have set aside enough memory for 15 characters. Because the last of the characters must
be used by the string termination byte (i.e., the null character, ' \0"), we can only use 14 characters for the
actual string data. Keep in mind, if you forget the null termination character, '\0', for the string, don’t be
surprised when your code seems to be marching through memory without stopping.

Arduino C is smart enough to know when to add the null termination byte in many cases. For example,
all of the following are valid ways to define and initialize a string variable using a character array.

char name[] = "Jane";

char name[5] = "Jane";

char name[100] = "Jane";

char name[4] = "Jane"; // Uh-oh!.

In the first example, note how the brackets following the variable name are empty (e.g., name/]).

The reason is because we decided to let the compiler figure out how many bytes of storage are needed based
on the number of characters appearing between the double quote marks on the right side of the assignment
operator. Since the name Jane has 4 characters, the compiler sets aside 5 bytes of storage to make sure there’s
enough for the name plus the null termination character.

The second form simply has the statement hard-code the 5 bytes that are needed. The last form
reserves 100 bytes of storage, where the first four contain the characters for “Jane” and the 5" character is
the null character (\0) that terminates the string. This third form would allow you to expand name/[] up to 99
characters in length at some other point in the program, if needed. (You know why it’s 99 characters.) In the
last example, there is no room for the null termination character, so the compiler complains that the string is
too long.

So, which is the “best” option to use? Personally, I like the first statement where the size is missing
between the array brackets. There are two reasons for my choice. First, the compiler is really good at
counting—even better than me, especially when I'm tired. Second, if I find out Jane actually prefers to be
called Janie, I only have to edit her name, not the array size. Still, because all three forms work, your needs
and preferences will dictate the form you choose. Keep in mind, however, the third form can be very wasteful
of precious bytes of memory.

You can also initialize a string on a character-by-character basis, if you wish. In that case, surround each
character with a single quote mark, each character separated from the next by a comma. (Single quote marks
are used to denote a single character constant. Double quotes are used for a sequence of characters, or a string,
as seen earlier.) Take a look at this example:

char name[] = { 'J', 'a', 'n', 'e', "\0'};
char name[5] = { 3", 'a', 'n', 'e', "\0'};
char name[] = { 'J', 'a', 'n', 'e'
char name[5] = { 'J', 'a', 'n', 'e'};

-Q

54

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_5
http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

Notice that the compiler is smart enough to know the null termination character must be added, even
if you don’t explicitly write it in the initializer list. Also notice that when you initialize a character array on
a character basis, the initializer list starts with an opening brace ({) and terminates the list with a closing
brace (}). The characters within the list are surrounded by single quote marks, each separated from the
other by a comma.

String Data Type

The String data type is different than the string data type that is built up from the char data type. (Note
the uppercase letter S for this data type.) The String data type is actually a C++ class that is built up from
the string data type but is treated as an object rather than a simple character array. What this means is
that you have a lot of built-in functionality with the String data type that you would have to code yourself
with the string data type. For example, suppose you have a sequence of characters that you read from a
sensor into a String variable named myData. Further suppose you need to convert them all to uppercase
letters.

If you defined myData as a String object, you could perform the conversion simply as

myData = myData.ToUpperCase();

and you're done! The reason this works is because, within the String object is a method that contains the
code to do the conversion for you. (Recall that C++ refers to functions that are buried in the class as a
method.) You simply define the variable as:

String myData = String(100);

This defines a String named myData with enough space for 99 characters. To use a method that is built
into a class, follow the variable name you've given the class with a period (called the dot operator) followed
by the method you wish to call. For example:
myData = myData.ToLowerCase();

Such functionality is common with programming languages like C++, C#, and Java that support the
object-oriented programming (OOP) paradigm. (Chapter 14 presents a quick overview of OOP.) While

Arduino Cis not an OOP language, it is nice that you can use some OOP features. Table 3-3 shows some of
the methods that are available when you use String objects.

Table 3-3. Built-in String Functions

Function Purpose
String() Define a String object
charAt() Access a character at a specified index
compareTo() Compare two Strings
concat() Append one String to another String
endsWith() Get the last character in the string
equals() Compare two Strings
(continued)
55

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_14
http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

Table 3-3. (continued)

Function Purpose

equalsignoreCase() Compare two Strings, but ignore case differences

getBytes() Copies a String into a byte array

indexOf() Get the index of a specified character

lastIndexOf() Get the index of the last occurrence of a specified character
length() The number of characters in the string, excluding the null character
replace() Replace one given character with another given character
setCharAt() Change the character at a specific index

startsWith() Does one string begin with a specified sequence of characters
substring() Find a substring within a String

toCharArray() Change from String to character array

toLowerCase() Change all characters to lowercase

toUpperCase() Change all characters to uppercase

trim() Remove all whitespace characters from a String

While we're not ready to use all of these functions now, they are presented here for completeness. We

will use some of them in later chapters.

Which Is Better: String or strings Built from char Arrays?

Listing 3-1 shows a program that uses two String data type variables and adds them together to form a new
String, and then displays it on the Serial monitor.

Listing 3-1. A Program to Concatenate Strings

void setup() {

// put your setup code here, to run once:

Serial.begin(115200);
String firstName
String lastName = "Purdum";
String fullName
Serial.println(fullName);

}
void loop() {}

firstName + lastName;

The program does its job and uses 3626 bytes of memory when using a String class object.
Now let’s write a program that uses character arrays instead of the String class object. The code appears

in Listing 3-2.

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

Listing 3-2. A Program to Concatenate Character Arrays

void setup() {
// put your setup code here, to run once:
Serial.begin(115200);

char myName[12] = "Jack ";
char lastName[] = "Purdum";
strcat(myName, lastName); // A standard library function to concatenate
// character arrays Serial.println(myName);
}

void loop() {}

The program shown in Listing 3-2 displays the same results, but only uses 2044 bytes of memory. Given
how scarce memory is in the pc world, most programmers do not use the String class for processing string
data. True, the String class is convenient, but at a price of increasing memory demands by over 40 percent
seems too expensive. For that reason, we concentrate on string data that is built from char arrays.

The void Data Type

Programmers argue whether the void data type is really a data type at all. The term void really means the
absence of a useful data type. One use for the void keyword is when it is used with functions to show that a
function does not return a useful value. For example, if you look at the ASCII table program, both the setup()
and loop() functions are defined as:

void setup() {
// the setup code body
}

void loop() {
// the loop code body
}

The use of void here means that no data is returned from either of these two functions. Using our
backpack analogy, void means that the function puts nothing in the backpack before it shows you the back
door of the black box. You are returning to the caller with an empty backpack. As such, there is no reason
for code to be generated to unpack your backpack upon return from a void function, since there is nothing
useful inside your backpack.

Another use of void is to say that no information is passed in the form of parameters to the function.
This means that you can leave your backpack on the porch when you call a function, because nothing’s
stuffed into it anyway. In other words, you could write the two functions as

void setup(void) {
// the setup code body
}

void loop(void) {
// the loop code body
}

and the program would compile and run exactly as before. That is, “empty” parentheses means the function
is defined with a void argument list. Most programmers who use Arduino C do not use the keyword void

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

between the opening and closing parentheses of a function. Personally, I like the use of void in this context,
as it serves to confirm that no information is being passed into the black box from the outside world. I will
admit, however, that I am likely a crowd of one who likes this convention.

The array Data Type

Virtually all of the basic data types support arrays of those types. An array is little more than a collection of
identical data types that share a common variable name. You've already seen examples of character arrays.
The following statements show some other array definitions:

int myData[15];
long yourWorkDay[7];
float temp[200];

Each of these statements defines an array of a specific type. Suppose we use the following data
definition:

int val[4];

Let’s further assume that the compiler places the array starting with memory address 500. You can
envision an array like the one shown in Figure 3-3.

500 502 504 506

val[0] | val[1] | val[2] | val[3]

Figure 3-3. How an array of ints looks in memory

Because each element of the array uses an “int-sized” chunk of memory, which we know from Table 3-1 is
2 bytes, you can see that the first element of the array, val[0], uses locations 500 and 501. The second element
of the array (val[1]) uses memory locations 502 and 503, and so on. There are a number of things we can
generalize from Figure 3-3.

Array Generalizations

e The number of array “units” are called array elements. The array definition, like
int val[4], tells us that the compiler creates the array with 4 array elements.

e Anarray index tells us which element of the array is being referenced.

e Array elements always begin their index with 0, not 1. That is, the first element in the
array is val[0], not val[1]. Sometimes you will hear this fact referred to as zero-based
indexing.

e Because array elements are numbered starting with 0, we can derive the N - I Rule:
The highest valid array index is always 1 less than the number of elements in the
array. In the case of int val[4], the number of elements is 4, but the highest valid array
index is 3 (see Figure 3-3).

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

e Trying to index into an array using an index higher than dictated by the N - 1 Rule
may appear to work, but often results in spectacular program failure.

I will postpone additional details about arrays until later chapters. If we need any specifics before that
chapter, I will be sure to point them out.

Defining vs. Declaring Variables

Most programmers use the terms “define” and “declare” as if they were the same. They are not! If you
learn nothing else in this book, please let it be that defining a variable and declaring a variable are entirely
different animals. To illustrate this difference, let’s take a simple definition of an integer variable named val:

int val;

Although this may seem like an innocuous statement, there is a lot of stuff going on behind your
back. Let’s walk through what'’s actually going on. While I've taken a few liberties to make things easier to
understand, the basics described here are essentially what actually happens.

Language Errors

First, when the compiler sees this statement, the first thing it does is check the statement for errors. There
are basically three types of program errors: syntax errors, semantic errors, and logic errors. A logic error
usually means you've implemented an algorithm badly. This type of error usually manifests itself with a
program that compiles without error, but gives the wrong results. A syntax error occurs whenever you write a
program expression that does not follow the rules of the language being used. A semantic error occurs when
you follow the rules of the language, but use the wrong context. For example, English grammar rules say a
sentence needs a noun and a verb. The sentence “The dog meowed.” follows the syntax rules, but it breaks
the semantic rules because dogs don’t meow. If the compiler detects either type of error, you get one of those
ugly orange error messages displayed at the bottom of the IDE. However, since our statement is correct, the
compiler then moves to the next phase of the compile process.

Symbol Tables

The next step causes the compiler to scan its symbol table to see if val has already been defined in the
program. Table 3-4 shows a simplified symbol table. (My software company produced C compilers and our
symbol table had just under two dozen columns in the symbol table. The ellipsis (...) is used to denote the
added complexity one would actually find in a real symbol table.) Simply stated, a symbol table is a compiler
construct that keeps track of the variables you've defined in a program.

Table 3-4. A Simplified Symbol Table

ID Data type Scope Ivalue
myData int 0 600
X float 0 610

What Table 3-4 shows is that two variables, myData and x, are already defined in the program. The ID
column stands for Identifier and is the name for each defined variable. Often you will hear programmers use
the term “identifier” instead of “variable name.” Operationally, they are the same. You can see that myData

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

is an int data type, whereas x is a float. Both variables have a scope level of 0 (an explanation of which I will
defer for later.)

You can think of the first three columns as an attribute list for a variable. An attribute list is nothing
more than terms that are used to describe something. For example, an attribute list for me might be: male,
six-feet tall, and two years younger than dirt. The attribute list for myData is: an int data type, scope level
0, and an lvalue of 600. The lvalue column presents the memory address of where each variable resides in
memory. Therefore, reading the attribute list for myData from the symbol table tells us that we can find the
integer variable residing at memory location 600 in SRAM memory.

Ivalues and rvalues

An lvalue refers to the memory location where a particular data item resides in memory. Therefore, the
lvalue for a data item is the memory location where that item is stored. For lvalues to make sense, consider
what happens after the compiler has determined that our statement to define val is syntactically correct.
The next thing the compiler does is check to see if you have already defined a variable named val. If you had,
there would already be an entry in the symbol table for val. If that were the case, the compiler would issue
a “redeclaration error” for val. (As you will learn shortly, this error message should be “redefinition error”)
Because there is no definition for val at this point, everything looks good so far.

So far, the symbol table now looks like Table 3-5.

Table 3-5. The Symbol Table After Syntax Checking on val

ID Data type Scope Ivalue
myData int 0 600
x float 0 610
val int 0 2??

It is important to note that the lvalue for val is still unknown. That is, val doesn’t have a dedicated place
to live in memory yet.

Still, because there is no duplicate definition error, the compiler sends a message to the system’s Memory
Manager (MM). In essence, the compiler sends a message to the MM that says: “Hey, MM! It's me ... the
compiler. My programmer needs 2 bytes of free memory. Can you fulfill my request?” At that point, the MM
scans its list of available free memory, and likely finds two free bytes somewhere. We'll assume the free
memory it finds resides at a starting memory address of 625. The MM returns a message to the compiler with
the 625 memory address.

The compiler then issues a message: “Hey, Arduino! It’s me ... the compiler. You can use the 2 bytes of free
memory starting at memory address 625.” At that point, the compiler changes Table 3-4 to look like Table 3-6.

Table 3-6. The Symbol Table After Adding New Variable val

ID Data type Scope Ivalue
myData int 0 600

x float 0 610
val int 0 625
60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

Note what has happened here. We now have a memory address where the new variable val lives. You
have defined variable val because it now has a known memory address, or lvalue. Therefore ...

e adataitem is defined if and only if it has a known lvalue in the symbol table

e adataitem is declared if it exists in the symbol table, but does not have an assigned
lvalue

Memorize the difference between the two and don’t be afraid to correct other programmers who mix up
the two terms. The distinction is important, as you will find out later.

You will see an example of a data declaration later in the book. For now, however, keep in mind that
a data definition means you can locate a variable using its Ivalue. A data declaration is nothing more than
an attribute list for a data item ... it has no Ivalue. That is, data declarations for a data item tell you its ID, its
type, and its scope level, but it does not yet exist in memory. Data declarations are used primarily for data
type checking purposes.

We can depict the Ivalue with the simple diagram shown in Figure 3-4, which reflects the state of the
symbol table, as seen in Table 3-6. That is, val has been defined because it has a known lvalue (i.e., 625) and,
therefore, val exists in memory starting at memory address 625. (The term lvalue comes from the old assembly
language programming days and stood for “location value,” or a reference to where a data item was stored in
memory. Some students find it easier to remember “left value” since the lvalue forms the “left leg” of Figure 3-4.)

VAL

L VALUE R VALUE

625 | | ?

Figure 3-4. An lvalue-rvalue diagram

Notice that we have the rvalue marked with a question mark in Figure 3-4. The reason is because the
rvalue is unknown at this moment in time. The rvalue of a data item is what is stored at a data item’s lvalue.
Because C is not required to initialize a non-static data item’s rvalue to zero or any other particular value
when it is defined, you should always assume that the rvalue of a data item contains whatever random bit
pattern may exist at its lvalue until a value has explicitly been assigned into the data item. Because of this
fact, we show the rvalue for val as a question mark: it contains whatever junk happens to be at its lvalue.
(rvalue is also a hangover from assembly language programming days and stood for “register value” Again,
some students think of it as “right value” since it forms the “right leg” in Figure 3-4.)

Also keep in mind that the lvalue is always the starting memory address for a data item. That is, val is
stored at its Ivalue, which is memory address 625. However, because val is an int data type, it actually uses 2
bytes of storage and occupies memory addresses 625 and 626.

Understanding an Assignment Statement

Suppose you want to assign the value 10 into val after it has been defined. The following is the statement to
do that:

val = 10;

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

Again, this is a simple statement involving a single expression and the binary assignment operator.
However, stop and think about what the compiler has to do to process the statement. First, the compiler
must check the statement for syntax errors. No problem there. Next, the compiler must go to its symbol table
to see if a variable named val exists. Again, everything looks fine because val is in the symbol table. Next, it
makes sure val has a valid Ivalue (memory address), which it does (i.e., memory address 625). If the lvalue
column was empty (all rows in the Ivalue column in the symbol table are initialized to null when the table is
created because null is never a valid memory address), the compiler would know this is a data declaration,
and the variable is not yet defined. It should be clear that a variable that is not defined cannot have a value
assigned into it. However, since val has a valid lvalue (or memory address), the compiler can process the
assignment statement.

To process the assignment statement, the compiler goes to the data item’s lvalue in memory and
copies the value on the right-hand side of the assignment statement (i.e., 10) into the 2 bytes of memory
at the lvalue memory location. It knows it must use 2 bytes of memory because of the int designation
in the second column of the symbol table (see Table 3-6). This means that the rvalue of val is changed
from a random bit pattern in memory to 10. This is shown in Figure 3-5. If you could look at memory
locations 625 and 626, you would see 00001010 00000000. (Most PCs store the low byte first and the high
byte second at the memory locations. The end result is the same: the value 10 is stored at the lvalue 625.
Sometimes at cocktail parties you'll hear people discussing the “Endian” problem. Simply stated, it refers
to whether the low or high byte comes first in memory. For details, see http:\\en.wikipedia.org/wiki/
Endianness.)

VAL

L VALUE R VALUE

625 | | 10

Figure 3-5. The lvalue-rvalue diagram after processing the assignment statement

Note that any time your program needs to use the data stored in val, it uses val’s lvalue to go to that
memory address and fetch “int bytes” of data (each int is 2 bytes) from that memory location. (I've taken
some liberties here, because the actual processing takes place on your uc board, not the PC, and the storage
locations are known by the time you are ready to run the program. Still, the simplification presented here
should help you understand how variables and memory relate in a program.)

The Bucket Analogy

Understanding Ivalues and rvalues is so important to a true understanding of C that I developed the Bucket
Analogy to make it easy to remember the details about lvalues and rvalues. Suppose you have various
buckets lying around. Each bucket is just big enough to hold a specific number of bytes of data. Some
buckets can only hold 1 byte of data, whereas others can hold 2 bytes. Still others can hold 4 bytes, and so
on. Using Table 3-1, you can see that a 1-byte bucket could hold a byte, char, unsigned char, or boolean data
item. A 2-byte bucket could be used to hold an int, unsigned int, or a word. A 4-byte bucket could be used for
a long, unsigned long, float, or double. Let’s further assume you have a whole room filled with these various
sized buckets.

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

Now consider the following two program statements:

int val;
val = 10;

These are the same statements we discussed earlier. The first statement fills in the symbol table
information, as we discussed earlier, and is shown in the last line of Table 3-6. In the first statement, the word
int tells us the type of data and val tells us its name. You will also hear the word int as it’s used here referred
to as a type specifier. Likewise, you may hear the term identifier used instead of term variable name. Potato,
paataahto....

In the Bucket Analogy, the type specifier in the first statement can be thought of as determining the size
of the bucket needed to hold the relevant data. From Table 3-1, you know that an int requires a 2-byte bucket
to hold its data. The lvalue for val tells you where that bucket is located in memory. As we saw earlier, the
second program statement

val = 10;

means that we go to val’s bucket located at memory address 625 and pour 2 bytes of data into the bucket
with the data arranged in such a pattern as to form the value 10. This can be seen in Figure 3-6. The Bucket
Analogy tells you that the bucket’s size is determined by the variable’s type specifier (e.g., int), the location of
the bucket is its lvalue (e.g., 625), and if you peek inside the bucket, you see its rvalue (e.g., 10).

Figure 3-6 also shows a 1-byte bucket stored at memory location 700 with the character 'A’ stored in it.
The bucket stored at memory address 700 is only half as big as the bucket used to store val. The bucket is
smaller because it only takes 1 byte to store a char data type.

Low Memory

625

W

700

High Memory

Figure 3-6. The Bucket Analogy for val

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

The Bucket Analogy provides the following three conclusions:
e Thesize of a bucket depends upon the type specifier for the data type being stored
e Where the bucket is stored in memory is the data item’s lvalue
e The contents of the bucket is the data item’s rvalue

Any time you use a variable in a program, you are probably locating a specific bucket using its lvalue
and using the contents of that bucket (i.e., its rvalue) in some expression.
Now consider the three statements in the following code fragment:

int val = 10;
int sum;

sum = val;

It should be clear that the last statement must use lvalues and rvalues to resolve the assignment
expression used in the statement. Let’s walk through the process.

In the previous program statement, the compiler goes to the symbol table and finds the lvalue for val.
The compiler uses the memory address (val’s Ivalue) to fetch val’s 2-byte bucket. Peeking into the bucket, we
can see the rvalue of 10.

Next, the compiler the looks up sum’s lvalue, goes to that memory address, and fetches its bucket.

Now that both buckets (i.e., operands) are available, the assignment operator causes the compiler to pour
the 2 bytes of val's bucket into sum’s bucket. The assignment process, therefore, replaces whatever may have
been in sum’s bucket with the contents of val’s bucket.

There’s an important lesson here: all simple assignment statements copy the contents of the bucket on the
right side of the assignment operator into the bucket of the operand on the left side of the assignment operator.
It should also be obvious that all simple assignment statements copy the right operand’s rvalue into the left
operand’s rvalue. By thinking in terms of rvalues and lvalues, you will develop a more robust understanding of C.

Using the cast Operator

Consider the following statements:

int val = 65;
char letter;

letter = val;

The first two statements define buckets for val and letter, and place them in memory at (we assume)
locations 625 and 700, respectively. Figure 3-6 shows where the buckets are, but val now has the number 65
stored in it. Therefore, val’s lvalue is 625 with an rvalue of 65 and letter has an lvalue of 700 with an rvalue of
the random bit pattern that existed when it was defined. Now consider the last expression:

letter = val;

Simply stated, this statement grabs the val bucket and tries to pour 2 bytes of data into letter’s 1-byte
bucket! Not good. Doing this runs the risk of spilling 1 byte of information, because letter’s bucket is too
small to hold all of val's data. One byte of potentially valuable information is going to dribble onto the floor.

Even worse, the Arduino C compiler does not even complain about the data dribble! It merrily makes the
assignment and moves on. As a result, letter could contain some bogus value that could cause you problems

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

in your program later on. Clearly, this was just a bad design by the programmer, who should have known
better than to try and shove a 2-byte int into a 1-byte char.

Why didn’t the compiler complain about the type specifier mismatch? The reason is because the C++
compiler is configured to not issue certain error messages and warnings. The error and warning messages
are suppressed because new programmers are often intimidated by too many error messages. If you wish
to see these messages, you can alter your IDE preferences (File » Preferences) and set the “Show verbose
output during:” option by checking the “compilation” check box.

As it turns out, and as you saw in Table 3-1, a char is capable of holding the value 65 without overflow.
Therefore, our assignment of the int into the char doesn’t cause a problem ... in this case.

However, suppose val was initialized to 300 instead of 65. Now the value cannot be stored in a char
because the value is too large for a single byte. The compiler still won’t complain, even though the value
cannot be represented with a char. Even so, 1 byte of data is going to be slopped on the floor during the
assignment.

The Cast Rule

The Cast Rule is simple: whenever an assignment expression has a larger data type being assigned into a
smaller data type, use the cast operator.
So, what is the cast operator? Consider the following example:

int val;
long bigVal =25000;

val = bigVal;

Once again, the statement has a larger data type (a 4-byte long) being assigned into a smaller data type
(a 2-byte int). This assignment runs the risk of losing 2 bytes of information. However, in this case, the value
25000 can safely be stored in both a long and an int, so no data loss occurs. However, you should still apply
the Cast Rule, as follows:

val = (int) bigVal;

The preceding cast operator is (inf). In other words, the cast operator is nothing more than two
parentheses surrounding the destination data type. Because you want to cast a long to an int, you
surround the destination data type (int) with a set of parentheses. In other words, to use a cast, surround
the destination data type with parentheses, and then place the cast in front of the variable that is the
source data type (e.g., the long). The data type of the cast operator (i.e., int) must match the data type
that is to receive the results of the cast (val is an inf). That is, if you are assigning a value into an int, the
cast must also be an int. Again, the cast operator must be placed immediately in front of the data item
whose rvalue is to be cast into the new data type. In this example, the (int) cast must appear immediately
before bigVal. The cast has the effect of acting like a funnel that compresses the data so that it fits into the
smaller data type.

Silent Casts

Suppose later in the program code we see something like this:
bigVal = val;

Does this need a cast? Technically, no, it does not. The reason a cast is not needed in this example is
because you're trying to pour the contents of a 2-byte bucket into a 4-byte bucket. Because the destination

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

bucket is bigger than the source bucket, there’s no risk of spilling data on the floor. I have not found any
compiler that complains about this type of mismatched data assignment, even though the code is implicitly
casting (i.e., changing) an int to a long. In other words, the compiler is casting the data without telling you
about it. This is called a silent cast because there is no indication that the cast is taking place.

I hate silent casts.

The reason I hate silent casts is because they almost always come back at some point in the program
to bite you in the butt. As a result, you should always use a cast when you use an assignment statement
between two different data types. Even though it is not strictly necessary, you should rewrite the preceding
statement as:

bigVal = (long) val;

If nothing else, the cast documents that you really did want to force the data of an int into a long.

The Arduino compiler doesn’t complain about either noisy or silent casts, which, to me atleast, is a
bug for the “noisy” cast. To be on the safe side, always use the cast operator when performing an assignment
expression involving two different data types. It will save you time in the long run and your instructor will be
impressed that you truly understand what’s going on with such expressions.

There are other expressions where a cast should be used, but I discuss those in later chapters after you
have a little more experience under your belt.

Summary

You've covered a lot of important concepts in this chapter and I implore you not to read further until you
completely understand the concepts presented in this chapter. One of the major tripping points for C
students is the concept of pointers. (Pointers are an advanced topic and are not covered until Chapter 8.)
However, if you really do understand lvalues, rvalues, and the Bucket Analogy, you will sail through the
concept of pointers without so much as a hiccup. The benefits associated with really understanding the
concepts in this chapter are not limited to just pointers. Many other programming concepts are also based
on a good understanding of the concepts presented in this chapter. Invest the time to truly learn these
concepts now. It will pay huge benefits later on.

EXERCISES
1. Which of the following variable names are valid and which ones would draw a
syntax error?
bigFeet your Feet switch 12Meters
_SystemVal -Negative NoGood realGood

Answer: your Feetis not valid because it has a space character in its name. switch
is invalid because it is a C keyword. 72Meters is invalid because it starts with a digit
character. -Negative is invalid because it starts with a math operator. All the rest are
acceptable.

2. How do you pronounce the word “char” as in
char c;

Answer: This is probably not the most important question to ask, but one I still do get
asked. Some pronounce it like “char” as in “charcoal” or to “char” a steak. Others

66

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_8
http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

pronounce it as “care” as is “caretaker.” There is no right or wrong answer. It just depends
upon whether you identify with something that is burnt and ugly or someone who lovingly
takes care of puppies. I'll let you guess which one | prefer.

Suppose you have a char variable. Write the binary values for 32, 72, 111, 128.

Answers:
32 = 00100000
72 = 01001000
111 = 01101111
128 = ?

You can't represent 128 with a signed char because the max value is 127. If you set the
high bit, the interpretation is the value —1, not 128.

Suppose you're at a cocktail party and someone asks you what “precision”
means in Arduino C. What's your answer?

Answer: Precision refers to the number of significant digits a floating number has. In
Arduino C, the numeric range for floating point numbers is fairly large ... up to 38 digits.
However, only the first 6 (sometimes 7, but don’t count on it) digits are significant. All the
remaining digits are the computer’s best guess as to their value.

What's the difference between the string and String data types?

Answer: The string data type is made up of nothing more than an array of char data.
The String data type subsumes the string data type, but adds a number of methods that
can be used with the String data type (e.qg., see Table 3-3). It’s not too much of a stretch
to think of the String data type as a shell—or wrapper—that encompasses string but
also has other methods defined within it. (String uses O0OP methods.) The good news

is the added functionality that String brings to the party. The bad news is that the extra
functionality means more memory resources are chewed up, even if you don’t use that
extra functionality. Because resources are so scarce with ucs, we avoid using the String
data type.

What'’s an Ivalue? What'’s an rvalue?

Answer: An Ivalue is a location in memory where a data item resides. An rvalue is the value of
that data item.

Relate Ivalues and rvalues to the Bucket Analogy.

Answer: Think of the bucket as something that can hold data. The size of the bucket
depends upon the number of bytes of data the bucket needs to hold (e.g., 1 byte for a
char, 2 bytes for an int, 4 bytes for a float, etc.). It is the data item’s type specifier that
determines the size of the bucket. When you define a variable, as in

int k = 25;
the type specifier, int, determines you need a 2-byte bucket; the Ivalue is where you place the

bucket in computer memory; and the rvalue tells you the value that you see when you peek
into the bucket (i.e., 25).

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * ARDUINO C DATA TYPES

What’s wrong with the following statements and how do you fix them?

int val;
double x = 1000.0;
val = x;

Answer: The last statement is an assignment statement, so you are taking the rvalue of x
and copying it into the rvalue of val. Using the Bucket Analogy, you are pouring the contents
of a 4-byte bucket into a 2-byte bucket, so the potential exists for losing data. You fix this
by using a cast operator, as in

val = (int) x;

The cast has the effect of skimming off 2 bytes of “unused” water and just assigning the
meaningful data (i.e., 1000) into val. Alas, it’s up to you to know the max value the int can
hold before the “skimming” process starts throwing the kids out with the bath water.

Keep in mind that the Arduino compiler does allow silent casts, and these are almost never
a good idea. As a rule, always use a cast when you use the assignment operator with
differing data types.

68

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Decision Making in C

The real power of a pic is its ability to read data, make a decision based on that data, and then take the
appropriate action(s). Stated differently, a pic has the ability to make decisions based upon the information
provided to it from the “outside” world via various input devices. In this chapter, you will learn the various
expressions that enable your program to make decisions based upon the state of some set of data.

Relational Operators

As you might guess, a decision is often based upon comparing the values of two or more pieces of data. You
make such decisions all the time, probably without thinking much about the process that is involved in
making the decision. The phone rings and you get up to answer it. Implicitly, you made a decision whether
to answer the call or not. Further, that decision involved comparing the expected benefits from answering
the call (e.g., it might be someone you want to talk with) versus the expected costs of not answering the call
(i-e., I may miss out on talking to someone important). Some decisions are better than others. Indeed, the
definition of a dilemma is when you have two or more choices and they are all bad.

Table 4-1 presents the relational operators available to you in Arduino C. The relational operators form
the basis of all decision making in C. All the operators in the table are binary operators, which means each
relational operator requires two operands.

Table 4-1. Relational Operators

Operator Interpretation

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to

== Equal to

= Not equal to

The result of all relational operations is either logic true (non-zero) or logic false (zero). For example:

5>4 // lLogic true; 5 is greater than 4

5<4 // logic false; 5 is not less than 4

5==4 // logic false; 5 is not equal to 4

5 1=4 // logic true; 5 is not equal to 4

© Jack Purdum 2015 69
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming

for the Arduino, DOI 10.1007/978-1-4842-0940-0_4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

Clearly, you can also use variables in the expressions. If a = 5 and b = 4, then:

b // Logic true
b // logic false

=b // logic false

= b // logic true

—_ 1l AV

These expressions are exactly the same as the previous set, only we substituted variable names for the
numeric constants. Now let’s see how to use the relational operators with some C statements.

In a computer program, unless the central processing unit (CPU) is told to do otherwise, the CPU
processes the source code program instructions in a linear, top-to-bottom manner. That is, program
execution starts at whatever is designated as the starting point for the program and plows through the source
code from that point to the next statement until all of the statements have been processed.

The if Statement

In an Arduino C program, the program starting point is the function named setup(). The program processes
all of the statements in the setup() function block, starting with the first statement and marches through the
statements from statement 1 to statement 2 to statement 3 ... until it reaches the closing parentheses of the
setup() function block. You can, however, alter this linear processing flow by using an if statement.

The syntax for an if statement is as follows:

if (expressioni)

{ // Start of if statement block
// execute this if statement block only if expressioni is true
} // End of if statement block

// statements following the if statement block

An if statement block consists of the ifkeyword followed by a set of opening and closing parentheses.
Within those parentheses is an expression that evaluates to either logic true or logic false. After the closing
parenthesis of the if test expression is an opening brace character ({). The opening brace marks the start
of the if statement block. The opening brace is followed by one or more program statements, called the if
statement block, that are to be executed if the iftest is logic true. Almost every programmer on the planet
indents the statements within the if statement block one tab stop. The if block statements are then followed
by a closing brace (}), which marks the end of the if statement block.

Note You can change the indent size using the IDE Edit menu and clicking the Increase Indent or Decrease
Indent option. If the indent space is too large, some of the source code disappears off the right edge of the
screen. To see the end of a long source code line means you may have to use the horizontal scroll bar. If the
indent is too small, it’s harder to see the statement block controlled by the if statement. You can experiment
and find out what works for you. Personally, | prefer an indent of two spaces. It’s enough of an indent to see the
statement blocks, but it’s small enough to minimize the number of statements that need the horizontal scroll
bar. If you can’t decide, you can let the IDE decide for you. The menu sequence Tools » Auto Format (or Ctrl+T)
will automatically format your code using the default formatting. If you modify the indent amount, the auto
format uses your settings for formatting the source code.

70

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 * DECISION MAKING IN C

What if Expression1 Is Logic True?

Consider the following code fragment:
int b = 10;
// some more program statements..

if (b < 20) {
b = doSomethingNeat(); // Do this is b is less than 20

}
doSomethingElse(b);

The code fragment begins by defining an integer variable named b and initializing it to 10. Then some
unspecified statements are executed followed by an iftest. If b has remained unchanged by the unknown
statements, its value is still 10. Because b is less than 20, the expression is logic true, the if statement block is
executed, and function doSomethingNeat() is called. Evidently, the doSomethingNeat() function has an int
function type specifier. This means that just before you leave the function, the doSomethingNeat() function
code places an int value in your backpack and, when program control returns back to the if statement block,
the code opens your backpack, takes out the int, and assigns it into b . Then the statement following the if
statement block is executed, which means doSomethingElse(b) is called.

What if Expression1 Is Logic False?

If the iftest on expressionl is false, the if statement block is skipped and the call to doSomethingNeat() is

not made. Therefore, after a false expression1 test, the next statement to be executed by the program is
doSomethingElse(b). You can see the path of program execution more clearly in Figure 4-1. A logic true result
of the relational test causes program flow to execute the statement(s) inside the if statement block. If the
relational test result is logic false, the if statement block is skipped and the program resumes execution at

the first statement following the closing brace of the if statement block. As you can see, a decision has been
made in the program based upon the program’s data.

logic false(—‘ ’—)Iogic true
if (expression 1) {
// statements
}
/I more statements

Figure 4-1. Execution paths for if test

One more thing: you will make the following mistake somewhere down the road:

if (val = 10)
{

size = 10;
}

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

Note that the relational test (expressionl) expects a true or false result. In this case, however, we used
a single equal sign (i.e., the assignment operator) by mistake for the relational expression rather than the
proper “is equal to” operator (==). This means the code performs an assignment statement, not a relational
test. This is what I call a Flat Forehead Mistake (FFM). You know, the kind of mistake where you slam the heel
of your hand into your forehead while muttering: “How could I make such a stupid mistake!” Relax. All good
programmers have a slightly-flattened forehead and you should expect your fair share of such hammerings.
The good news is that, although you might make a FFM mistake a second time, you'll find the error more
quickly the second time. Anytime you end up in an if statement’s statement block when you know you
shouldn’t be there, check for this type of error. It’s pretty easy to forget the second equal sign character.

Braces or No Braces?

When the if statement block consists of a single program statement, the braces defining the statement block
are optional. For example:

if (b == 10)
b = doSomethingNeat();
doSomethingElse();

works exactly the same as it did before. If the two versions behave the same, why the extra keystrokes?

There are several reasons why you should always use braces for if statement blocks. First, always using
braces adds consistency to your coding style, and that’s a good thing. Second, adding the braces delineates
the if statement and makes it stand out more while you're reading the code. Finally, while you may think
only one statement is needed right now, subsequent testing and debugging may show you need to add
another statement to the statement block. If that’s true, you must add the braces. If you don’t always add
braces you get something like the following:

if (b == 10)
b = doSomethingNeat();
doBackupNow();
doSomethingElse();

The indenting suggests the programmer wanted to call both doSomethingNeat() and doBackupNow()
only when b equals 10. However, the way the code is written, the call to doBackupNow() is always called
because what the programmer actually has written is:
if (b == 10) {

b = doSomethingNeat();

}
doBackupNow();
doSomethingElse();
Always remember that the if statement block without braces default to a single statement being

controlled by the iftest. My suggestion: always use braces to delineate the if statement block even when it’s
not required. That way you lessen the chances that it will appear the code has a mind of its own.

A Modified Blink Program

Let’s write a program that uses the example Blink program from the IDE as its starting point, but makes some
modifications to it. The original Blink program (File » Examples » Basics » Blink) blinks the Arduino’s

72

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 * DECISION MAKING IN C

onboard LED. The program we're developing uses two external LEDs, two resistors, and a few breadboard
jumper wires. The circuit is designed to light one of the LEDs for one second (just like the original Blink
program), and then turn it off and then turn the other LED on. The circuit is shown in Figure 4-2.

LED1
Red (633nm)

R1
4700
I
l . Y » . -
S| tae eadiRil b e 2RISR Pin 11
i |

fritzing

Figure 4-2. An alternating LED Blink program

The Circuit

The circuit involves connecting one wire from digital I/O pin 10 on the Arduino to a 470 ohm resistor. The other
end of the resistor is connected to the anode (long) leg of the LED. The cathode end of the LED is connected to
the Arduino ground (GND) pin. Note how we have connected a wire from the Arduino GND pin to the ground
rail of the prototyping board. The term rail refers to any row of pins that are all connected together. In Figure 4-2,
all of the connection points of the right-most pin column of the breadboard are connected together. Because we
have connected this common column of connection points to ground, we call it the “ground rail”. If you wanted
to, you could connect a wire from the +5V pin on the Arduino board to the second right hand pin column and
create a +5V rail. (The breadboard shown in Figure 4-2 is symmetrical in that you could have used the leftmost
two columns for the same purpose.) Many breadboards mark these rails with a minus sign for the ground rail
and a plus sign for the positive voltage rail. Some manufacturers may also use the color red to mark the positive
voltage rail and black from the ground rail. The ground rail serves as a common ground for both LEDs.

As a general rule, most circuits that use jumper wires like you see in Figure 4-2 use black wires to denote
a GND connection and red wires for positive voltage connections. Obviously this is not a rule etched in
stone, but one that can help when debugging a circuit.

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

Circuit Resistor Values

So, what should the value be for each of the resistors? It really depends upon the specific LEDs you are using.
The maximum load on an Arduino I/O pin should never exceed 40mA (milliamperes), but I prefer to think of
20mA as the maximum current. The max current rating on my LEDs is 50mA, so they fall well within the I/O
pin rating. Ohms Law states that volts = amps x ohms. You can rearrange the terms and state

Resistance = Volts / Amps

because the Arduino board operates with 5 volts and the maximum amperage is 20 milliamps (or .020 amps),
the resistance value turns out to be 250 ohms. (These calculations do not take into account the forward
voltage of the LED, which results in less current. This errs on the safe side for the LED.) However, that
resistance is running the Arduino I/0 pin at my maximum current rating, which may not be such a great idea.
As aresult, I increased my resistor values to 470 ohms. You can always start with a higher resistance value and
see what works. Decreasing the resistance value will increase the brightness of the LED. Drop the resistance
too far and the LED will do its imitation of a Supernova, thus creating a small void in the universe ... not good.
Increase the resistance too much and it will be extremely dim. Obviously, it makes more sense to err on the
high side. For most LEDs, resistor values between 150 and 1000 ohms will work just fine. The schematic for
the circuit is shown in Figure 4-3.

orel D3 PWM

Arduino
A Uno L
A3 (Rev3) a8

L

AAISDA D9 PWM . R1, 470

12/MIS0 e R2,4?U§
R ETLa Se——— {’

LED1

Figure 4-3. Schematic for alternate Blink program

74

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 * DECISION MAKING IN C

The polarity of the LED does matter as you can see in the circuit diagram in Figure 4-3. While there are
exceptions, the negative (cathode) terminal for most LEDs is shorter than the anode and usually has a flat
edge on the plastic lens just above the cathode. The good news is that, even if you do get the leads reversed,
the worst thing that (usually) happens is that the LED does not light. The circuit can be seen in Figure 4-4.

Figure 4-4. The modified Blink program

The Modified Blink Program

Now let’s look at the program code. Listing 4-1 presents the source code for our modified Blink program. The
first two lines define int variables named LED1 and LED2. However, notice the const keyword that appears
immediately before the int keyword.

75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

const Keyword

The const keyword is what is called a data type modifier. In this particular case, the const keyword is used to
modify the int type specifier. The use of the const data type modifier means that any variable defined with
the const data type modifier cannot change that variable’s initialized value during the course of program
execution. In our program, this means that LED1 and LED2 have the values 10 and 11, respectively, the
entire time the program runs and those values are etched in stone. If you tried to assign a new value to a
const variable after its definition, like this:

LED1 = 8;
the compiler would issue an error message like this:
error: assignment of read-only variable 'LED1'

This says that LED]1 is a read-only variable (i.e., a constant) and cannot be changed.

Why use a const variable? Perhaps the most important reason is because we have wired the circuitry to
use those particular LEDs using those specific pins. If we change those pin assignments, the program isn’t
going to work correctly. The const specifier means you cannot inadvertently change those pin assignments
in the program as it executes.

Another reason for using const data definitions is because they can lend clarity to your code. For
example, we could have written the statement to turn on an LED with the statement:

digitalWrite(10, 1);

But, which statement would you prefer to read when you're trying to figure out what the code does: the
preceding statement or the following statement:

digitalWrite(LED1, HIGH);

Anything you can do to make your code easier to read is a good thing. Using the keyword const (when
appropriate) is one of those good things because you have given the LED pin a name and it cannot be
changed as the program runs. (We don’t like magic numbers, right?)

We can make some const generalizations:

e Use const anytime you define a data item that you do not want to change during
program execution.

e The keyword const appears immediately before the data type specifier (i.e., const is
used before the int keyword).

e The variable being defined must include the value of the constant at the point of its
definition (i.e., the data definition must have an assignment operator ('=") as part of
the data definition).

e By convention, variables defined with the const data type modifier are often written
with all uppercase letters.

While the last generalization is not etched in stone, using all caps for the variable name makes it easy to
remember that it is a defined program constant.

76

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 * DECISION MAKING IN C

Listing 4-1. Modified Blink Code

/*
Alternate Blink
Turns on one LED on for one second while the other is off, then
reverses the LEDs for 1 second, repeatedly.
Dr. Purdum, 11/13/2014
*/
// Given each LED pin a name and don't let it be changed by the program:
const int LED1 = 10;
const int LED2 = 11;

// the setup routine runs once when you press reset:
void setup() {
// initialize the digital pins as an output.
pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);

}

// the loop routine runs over and over again forever:

void loop() {
digitalWrite(LED1, HIGH); // turn LED on (HIGH is the voltage level = 5V = ON)
digitalWrite(LED2, LOW); // turn LED off by making the voltage LOW (= OV = OFF)
delay(1000); // wait for a second
digitalWrite(LED1, LOW); // turn the LED off by making the voltage LOW
digitalWrite(LED2, HIGH); // turn LED on (HIGH is the voltage level)
delay(1000); // wait for a second

After the LED data definitions, the code calls the sefup() function which is responsible for actually
starting the program to run. That is, setup() performs the Initialization Step in our program. All the setup()
function does is initialize the two input/output (or I/O, since they can be used for either) pins to serve as
output pins via the calls to pinMode(). By using pinMode() to set the pins in their OUTPUT state, when one
of these pins is called using the digitalWrite() function, the pin’s state is set to +5 volts when the pin mode is
HIGH. If the pin’s mode is LOW, the voltage is driven to 0 volts on the pin, thus turning it off.

Note how the two statements set the environment for the way the Arduino pins behave in the program ...
exactly what we would expect an Initialization Step to do. Also note that pinMode() needs to know which pin
to use and what to change it to (INPUT or OUTPUT). So, out comes your backpack and you stuff it with the
appropriate pin number and pin state before each call to pinMode(). Once the two pin modes are set in the
setup() function, the program automatically proceeds to the loop() code.

The loop() function statement block begins with a call to digitalWrite() for LED1I, setting that pin to the
HIGH (i.e., voltage on) value. (More work for your backpack.) Next, another call to digitalWrite() is made,
but this time for LED2 with the mode set to LOW. The digitalWrite() call to LEDI has the effect of turning
LEDI on. The second call statement to digitalWrite() has the effect of turning LED2 off. Note that all these
calls make your backpack pretty busy.

After the two digitalWrite() calls, the delay(1000) call is made which causes the program to pause for 1
second. (The delay() function expects your backpack to be stuffed with a value measured in milliseconds;
1000 milliseconds is 1 second.) After the one second delay, the same sequence of digitalWrite() calls are
made, only the pin state in these calls is reversed, after which the program is again paused for one second.
If you study this code, you should be able to convince yourself that this sequencing causes the two LEDs to
blink back and forth once every second. This process continues forever, or until the power is removed or a
component in the system fails.

7

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

I encourage you to put this circuit together and run the program. If you have one of the Arduino Starter
Kits mentioned in Chapter 1, it will take you just a couple of minutes to build the circuit. Getting down and
dirty with the hardware and fiddling around with the software is the only way to really learn this stuff.

Software Modifications to the Alternate Blink Program

Now let’s modify the program to use if statement blocks. The only statement block that is affected is the
loop() function block. The modified code is presented in Listing 4-2.

Listing 4-2. The Modified Blink Program Using if Statements

/*
Alternate Blink
Turns on one LED on for one second while the other is off, then reverses the
LEDs for 1 second, repeatedly.

Dr. Purdum, Dec. 15, 2014
*/

// Give each LED a name:
const int LED1 = 10;
const int LED2 = 11;
long counter = 0;

// the setup routine runs once when you press reset or apply power:
void setup() {

pinMode(LED1, OUTPUT);

pinMode(LED2, OUTPUT);

}

// the loop routine runs over and over again forever:
void loop() {
if (counter % 2 == 1) {
digitalWrite(LED1, LOW); // turn LED off by making the voltage LOW
digitalWrite(LED2, HIGH); // turn LED on (HIGH is the voltage level)
delay(1000); // wait for a second

if (counter % 2 == 0) {
digitalWrite(LED1, HIGH); // turn LED on (HIGH is the voltage level)
digitalWrite(LED2, LOW); // turn LED off by making the voltage LOW
delay(1000); // wait for a second

counter = counter + 1;

}

where the new variable, counter, is a long data type that is initialized to 0 and defined just after the data
definitions for LED1 and LED2 near the top of the source code file. (You can load the Blink source code using
the File » Examples » Basics » Blink from the IDE. You can then examine the complete source code file.)
Let’s look at the code.

The conditional expression of the if statement compares 0 to the following subexpression:

counter % 2

78

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_1
http://www.it-ebooks.info/

CHAPTER 4 * DECISION MAKING IN C

The subexpression takes the current value of counter and, using the modulo operator (%), performs
a modulus 2 operation on it. The percent sign (%) is called the modulo (or modulus) operator and yields
the remainder after division. Because a modulo operation returns the remainder after division, any
number modulo 2 is the same as asking whether the number is odd or even. Consider the following:

1%2=1 // goes 0 times, with a remainder of 1 (it's odd)
2%2=0 // goes 1 time, with a remainder of 0 (it's even)
3%2=1 // goes 1 time, with a remainder of 1 (it's odd)

4%2=0 // goes 2 times, with a remainder of 0 (it's even)
5%2=1 // goes 2 times, with a remainder of 1 (it's odd)

and so on. Because counter is incremented by 1 (counter = counter + 1) each time we pass through the loop,
the modulo test has the effect of toggling the LEDs on and off because the value of counter % 2 alternates
between 1 and 0. If you look at the first if statement block, the if expression using the modulo operator
is going to alternate between 1 and 0. Since any non-zero value is treated as a logic true result, the first if
statement block is executed on each alternate pass through loop(). If the first if statement expression is logic
true, the second if statement test must be logic false. Could it also be true that each time counter is an odd
number, the first if statement block is executed and the second if statement block is skipped? Think about it.
With a little thought, you should be able to convince yourself that the new program in Listing 4-2 performs
pretty much exactly as it did in Listing 4-1.

Alas, the modified code is a good example of RDC ... Really Dumb Code. Let’s see why.

The if-else Statement Block

Think about the code in the previous section. If the first if test is logic true, the second if test must be logic
false. Likewise, if the first if test is logic false, the second if test must be logic true. Yet, in either case, we
evaluate an unnecessary if test on each pass through the loop. Clearly, if one if test is true, the other must be
false. That is, we always perform two iftests on each pass through the loop when we should be able to only
do one test. Do not proceed further until you understand what I've said here ... it’s important.

C provides another form of the simple if statement called the if-else statement. The syntax for the if-else
statement is:

if (expression evaluates to logic true) {

// perform this statement block if logic true
} else {

// perform this statement block otherwise
}

Asyou can see, the first statement block following the iftest is executed if, and only if, the relational test
is logic true. Otherwise, the else statement block is executed.

The if-else allows us to simplify our loop code somewhat by getting rid of an unnecessary if test, as can
be seen in the following code fragment:

void loop() {

if (counter % 2 == 1) { // Is it an odd number?
digitalWrite(LED1, LOW); // Yep...turn LED1 off (LOW)
digitalWrite(LED2, HIGH); // turn the LED2 on (HIGH)

} else { // If it's not odd, it must be even...
digitalWrite(LED1, HIGH); // turn LED1 on (HIGH)
digitalWrite(LED2, LOW); // turn LED2 off (LOW)

79

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

delay(1000); // wait for a second
counter = counter + 1;
}

Note how we were also able to get rid of one delay() call by using the if-else statement and use only one
if test expression. The preceding code fragment is an example of SDC ... Sorta Dumb Code. The reason that
this code is SDC is because we can simplify it a little bit more by defining two new variables names, led1
and led2. These two new int variables are not constants as before (hence lowercase letters) but are just plain
variables. Further, because the C language is case sensitive, there is no conflict between the names LEDI,
LED2 and led1, led2. Because led1 and led2 can have differing values, we can simplify the code a little, as
shown here:

void loop() {
if (counter % 2 == 1) {

led1 = 11; // LED on pin 11 will be 1lit

led2 = 10; // LED on pin 10 will go out
} else {

led1 = 10; // LED on pin 10 will be 1it

led2 = 11; // LED on pin 11 will go out

}
digitalWrite(led1, HIGH); // turn LED on (HIGH)

digitalWrite(led2, LOW); // turn LED off (LOW)

delay(1000); // wait for a second
counter = counter + 1;
}

In this case, we simply reverse the LED I/0 pins based upon the iftest and then make the call to
digitalWrite(). The program, of course, still behaves as before. A partial advantage is that you only have to
pack your backpack twice now, since we have removed one pair of calls to digitalWrite(). Try the code out
and verify that I'm not pulling your leg.

There are several lessons to be learned here. First, a simple iftest is good enough to make the program
work, but an if-else actually often is more efficient because you can reduce the number of if test expressions.
Second, the if-else statements can be reworked to make it easier to read and understand the code. This
second lesson leads to a third lesson: There’s more than one way to skin a cat. Just because you have a
program working doesn’t mean it’s the most efficient way to write the code. When you're dealing with
relatively small amounts of memory, even small adjustments to the code may mean the difference between
having the program run or running out of memory.

If this code was turned in for a programming assignment, I would give the person a C. That is, it’s
average code that works and that is what I would expect from everyone in the class. You'll see how to elevate
that grade later in the chapter.

Cascading if statements

Often a program requires specific actions to be taken when a specific value for a variable is read. For
example, you might have a variable name myDay that can assume the values 1 (Sunday) through 7
(Saturday). The code might look like this:

int myDay;

// Some code that determines what day it is...

80

www.it-ebooks.info

http://www.it-ebooks.info/

if (myDay == 1) {
doSundayStuff();
}

if (myDay == 2) {
doMondayStuff();
}

if (myDay ==3) {
doTuesdayStuff();
}

if (myDay == 4) {
doWednesdayStuff();
}

if (myDay == 5) {
doThursdayStuff();
}

if (myDay == 6) {
doFridayStuff();
}

if (mybay == 7) {
doSaturdayStuff();
}

CHAPTER 4 * DECISION MAKING IN C

Any time you see a repeating sequence like this, you need to scratch your head and ask: Is this good code?
Short answer: No. In fact, this is yet another example of RDC. The reason is because the way it is presently
written, the program often executes a lot of unnecessary code. For example, suppose myDay equals 1 (Sunday),
which means the first if test is true and we call doSundayStuff(). The problem is that the program then proceeds
to perform six more unnecessary if tests even though we know it’s Sunday and none of the other six tests can be
true. (On one consulting job, I saw this same type of code, but with 31 iftests because it was for the day of the
month rather than the day of the week. One of the rare examples of IDC: Incredibly Dumb Code.)

So, how do you fix this RDC? C allows you to nest if statements within an if statement. For example:

if (myDay == 1) {
doSundayStuff();
} else {
if (myDay == 2) {

doMondayStuff();

} else {

if (myDay == 3) {

doTuesdayStuff();

} else {

// you get the idea...

}

www.it-ebooks.info

81

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

If you follow the logic, when myDay equals 1, doSundayStuff() is called and all of the rest of the if tests
are skipped because the first else statement block is never executed if the first relational test is true. If the
first else statement block is skipped, all of the subsequent if and else statement blocks are also skipped. This
is called a cascading if statement block. The style convention with cascading if statements is to indent each
if test to make it easier to read and reinforce that you are looking at a cascading if statement. Try different
values for myDay until you are convinced that the unnecessary if blocks are, in fact, skipped.

Personally, I'm not a big fan of cascading if statements and avoid them when it makes sense to do so. The
main reason is because a long cascade can get to the point where you have to horizontally scroll the source
code window to see the code. Also, if the day happens to be Saturday (i.e., the last day in the cascading if block
to be tested), you still end up performing 7 iftests on myDay, which seems wasteful. Finally, I just find it hard
to read cascading if blocks. It would be a lot more efficient if we could just perform the test once and then jump
to the appropriate statement. Fortunately, that’s exactly how the switch statement works. However, before I
discuss the switch statement, let’s consider an easier way to increment or decrement a variable.

The Increment and Decrement Operators

In our discussion of the loop() function, the last line in the code fragment was this:
counter = counter + 1;

This statement simply takes the rvalue of counter, increments it by 1, and assigns the new value back
into the rvalue of counter. In other words, the statement is an increment operation on counter. This is such a

common operation in programming that C includes a special operator called the increment operator that is
designed specifically to increment a variable.

Two Types of Increment Operators (++)

There are two flavors for the increment operator: pre-increment and post-increment. The pre-increment
operator is written:

++counter; // pre-increment

Note that the increment operator (++) appears before the variable name. The interpretation is that the
rvalue of the variable (counter) is fetched, its value incremented and then used in whatever expression in
which it happens to appear.

The post-increment operator is written:
counter++; // post-increment

Notice that the ++ symbol appears after the variable name with the post-increment operator. In this

case, the rvalue of the variable (counter) is fetched and used in the expression, and then incremented.
You're probably saying, “So what?” Consider the following code fragment:

k = ++c; // pre-increment

What's the value of k? Is k equal to 5 or 62 Because this is a pre-increment operator, the rvalue of ¢ (5) is
fetched, its rvalue is incremented to 6, and then the value is assigned into the rvalue of k. So k is now equal to 6.

82

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 * DECISION MAKING IN C

Now consider if the last statement instead was written:
k = c++; // post-increment

In this instance, the rvalue of c (5) is fetched, that rvalue is then assigned into k, and then variable cis
incremented. In this case, k equals 5, not 6 as before, but c is still equal to 6.

The increment rules are simple: a pre-increment operator increments the rvalue before it is used in an
expression while a post-increment operator uses the rvalue in the expression and then increments the rvalue.
Keep this distinction buried in your mind because, if you don’t, a bug is going to bite you in the butt down
the road and the forest-for-the-trees problem makes it hard to see this kind of bug.

Two Flavors of the Decrement Operator(--)

As you might guess, the decrement operator (--) is similar to the increment operator, but is used to decrease
the rvalue of a variable by 1. That is,

counter = counter - 1;
could be written as
counter--;

because the decrement operator appears after the variable name, is it a post-decrement operation. Because there is
no other expression to evaluate (such as an assignment operator), you could also write the statement as:

--counter;

This is a pre-decrement operator. Again, you can use pre- or post-decrement operators in this statement
because no other subexpression needs to be processed. Either way, counter’s rvalue is decremented before
the next program statement is executed.

Suppose that c is 6 when the following expression is executed. What'’s the value of k when the statement
is finished executing?

k = --c;

The statement causes the rvalue of c to be fetched, its rvalue is immediately decremented to 5, and that
value is then assigned into k, leaving both variables c and k with the value of 5.

Now consider a similar statement, but using the post-decrement operator. If cis 6
k = c--;
the he statement causes the rvalue of c to be fetched and its rvalue (6) assigned into k, and then its rvalue is
decremented. As a result, k equals 6 but c equals 5.

Because the increment and decrement operators are unary operators (i.e., they only require one

operand), when used by themselves in a statement, as in

CHt;
++k;

you are free to use either the pre- or post-increment or decrement operator. However, when the pre- or post-
operators are used as part of a larger expression, you need to pay attention to how the operators are used.

83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

Precedence of Operators

Because we have added several new operators, let’s update our precedence table. In fact, we're going to add
all of the C operators even though you haven’t studied all of them. The complete list of precedence operators
is shown in Table 4-2.

Table 4-2. Precedence of Operators Table

Level Operators

1 (O [1-> .(dot)

2 ' ~ ++ -- +(unary) -(unary) * (indirection) & (address of) (cast) sizeof
3 * (multiplication) / %

4 + (binary) — (binary)

5 <L >>

6 < K= > =

7 == 1=

8 & (bitwise AND)

9 A

10 |

11 3&

12 [

13 ?

14 = 4= -= *= /= %= &= "= = K= >>=
15 , (comma)

While the precedence table looks like a lot to memorize ... it is! For that reason, I suggest that you write
this page number on the inside of the back cover page of this book because you will be referring to this
page often as you start writing your own programs. With a little practice, you'll find yourself using the table
less and less. However, I've been writing C code for over 35 years and I still need to refer to the precedence
table. For now, just write this page number inside the back cover page for easy reference. (I will discuss the
operators as we encounter them throughout the text.)

The switch statement

The switch statement is another control keyword and has the following syntax:
switch (expressioni) { // opening brace for switch statement block
case 1:

// statements to execute when expression1 is 1
break;

84

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

case 2:
// statements to execute when expressioni is 2
break;

case 3:
// statements to execute when expressioni is 3
break;

// more case statements as needed

default:
// execute if expressionl doesn't have a "case value"
break;
} // closing brace for switch statement block

// All break statements send program control here

DECISION MAKING IN C

Using the myDay example from the nested if discussion, each case statement block would correspond to
a day of the week. The last case statement block would then be for case 7. If expressionl somehow had a value
other than 1 through 7, the default statement block is executed, perhaps issuing some kind of error message
or condition (e.g., a red LED turns on). In other words, if a value for expressionl does not match any case value,
the default statement block is executed. Notice that any break statement sends program control to the same
place: the first statement following the closing brace of the switch. You can think of the default statement
block as a catchall for any value that doesn't have a corresponding case value for its statement block.

switch (myDay) { // Start of switch statement block
case 1:
doSundayStuff();
break;
case 2:
doMondayStuff();
break;
case 3:
doTuesdayStuff();
break;
case 4:
doWednesdayStuff();
break;
case 5:
doThursdayStuff();
break;
case 6:
doFridaytuff();
break;
case 7:
doSaturdayStuff();
break;
default:
Serial.println("Somethings went terribly wrong...shouldn't be here");
break;
} // End of switch statement block
// This is where control goes after any break statement

www.it-ebooks.info

85

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

The expressionl that controls the switch must evaluate to an integral data type. That is, expressionl
could be a byte, char, int, or long (including their unsigned counterparts), it cannot be a floating point type
(float or double) nor can it be a reference data type (e.g., array, string, or String). Although Arduino C also
accepts a boolean data type for expressionl, that seems suspect to me and I wouldn’t suggest using it. After
all, a boolean is either true or false so an if-else statement block would work.

Note that braces are not used to delineate a case statement block. Within the switch statement, case
statement blocks begin with the colon character (:) and extend through the break statement. The break
statement is required at the end of each case statement block.

So, where does program control go once it processes a break statement? A break statement causes
program control to jump to the first statement following the closing brace of the switch statement. In the
preceding syntax guide, control is sent to whatever statement happens to be where the last comment is. This
is the next statement after the switch appears in the source code.

If you forget the break statement for a given case, program execution “falls through” to the next case
statement. This can be a potential source of errors in your programs. However, there are also times when two
case values may need to execute the same program statements. In those situations, the “case fall through”
can actually simplify the code.

For example, consider Listing 4-3. In this program we use the Serial object to ask the user to enter a
letter between A and F, perhaps representing a course grade. The available() method of the Serial object is
only greater than 0 when the user has typed in a letter on the Serial monitor. (Make sure you set the Serial
monitor to use “No line ending” in the text box at the bottom of the monitor and the baud rate is 9600.)
When the user does enter a letter, we convert it to upper case by the call to toupper(), after throwing the
letter c in our backpack, and then reassign it back into c for the switch statement block. Note how letters ‘B’
or 'C' generate the same message. This illustrates a case “fall through.”

Listing 4-3. A switch Example

void setup() {
// put your setup code here, to run once:
Serial.begin(9600);
Serial.println("Enter a letter A - F:");
}

void loop() {
char c;

while (true) {
if (Serial.available() > 0) {
c = Serial.read();
c = toupper(c); // Make it upper case
switch (c¢) {
case 'A':
Serial.println("Great job");
break;
case 'B': // Note fall-through here...
case 'C':
Serial.println("You passed");
break;
case 'D':
Serial.println("You're on the edge");
break;
case 'F':
Serial.println("See you again next semester.");

86

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 * DECISION MAKING IN C

break;

default:
Serial.println("You can't even follow instructions?");
break;

If you look at case 'B', you can see that we omitted the break statement, which means program control
“falls through” case 'B' into case 'C'. In this example, that’s what we wished to do. However, most of the time
you will have a matching case-break for each state you need to control. The default statement is a catchall for
bad input.

A switch Variation, the Ellipsis Operator (...)

There will be times when you need a more broad type of switch fall-through. For example, it’s pretty
common to assign grades such that 0 to 59is an F, 60 to 69 is a D, 70 to 79 is a C, and so on. In this situation,
we want a fall-through that is broader than a single letter. In this situation, we can use the ellipsis operator.
The ellipsis operator allows us to state a range of values for the variable that is expression1. The following
code fragment shows how this works:

char letterGrade;
int grade;
// some code that gives grade a value between 0 and 100
switch (grade) {
case 0...59:
letterGrade = 'F';
break;
case 60...69:
letterGrade = 'D';
break;
case 70...79:
letterGrade = 'C';
break;
case 80...89:
letterGrade = 'B’';
break;
case 90...100:
letterGrade = 'A’;
break;
default:
Serial.println("Should never see this.");
break;

}

In the code fragment, note how the ellipsis operator (which is simply three periods placed in a row)
allows us to construct ranges of values for grade and react accordingly. It is important to note that you must
have a space before the first period and after the last period of the ellipsis operator. Otherwise you will get an
error message, probably saying something about a bogus floating point value. Obviously, you could write the
code as a cascading if statement, but I think the switch with the ellipsis is a little easier to read.

87

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

Note that this use of the ellipsis operator is an extension that is built into the GCC compiler ... it is not
part of the C standard. However, you can use it in your Arduino programs.
Just make sure your code does what you design.

Which to Use: Cascading if-else or switch?

I prefer the switch statement for several reasons. First, even following normal coding style conventions, it’s
pretty rare that you have to scroll the source code window horizontally like you may have to do with a long
cascading if-else block. Second, the switch-case statements actually result in a jump table, which means there
are no false iftests being evaluated like there can be with a cascading if statement block. (A jump table in this
context is little more than a list of memory addresses where code execution should continue.) Finally, and
this is subjective, I find it much easier to read a switch statement block than a cascading ifblock. While there
may be situations where a cascading ifhas to be used, the switch is almost always a better choice.

The goto Statement

The goto statement can also be used to direct program control to some point in the program other than the
next statement. However, teaching you how to use the goto statement is the same as teaching you how to
grow warts on your kids. Using a goto in your code is ugly and reflects bad coding style. If you really want to
learn about the goto statement, someone else will have to teach you.

Getting Rid of Magic Numbers

Now let’s see how you can raise your grade for the modified Blink program. If you look back to Listing 4-1,
you find the statements:

const int LED1
const int LED2

10;
11;

If you were a beginning jic programmer, would the numbers 10 and 11 make any sense to you? I don’t
think so. As a result, I call these “magic numbers” because they are constants in the program that have no
apparent meaning in and of themselves.

What if I added a few lines and changed the code to:

#define IOPIN10 10
#define IOPIN11 11

const int LED1 = IOPIN10;
const int LED2 = IOPIN11;

Now the data definitions for LED1 and LED?Z as least give me some idea of what the numeric values 10
and 11 mean in the program, plus I think it makes the purpose of LEDI1 and LEDZ2 a little clearer.

The C Preprocessor

When the compiler takes over and starts compiling your program code, you can think of it actually making two
passes through the source code. On the first pass, the compiler looks for directives that it must process before it
can actually start compiling your program code. These directives are called preprocessor directives because they

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 * DECISION MAKING IN C

must be “preprocessed” before the compiler can do its thing. Table 4-3 presents the some of the commonly

used preprocessor directives for Arduino C. (Chapter 11 contains more detail on the preprocessor.)

Table 4-3. Arduino C Preprocessor Directives

Directive Action

#define NAME value Ascribes the identifier NAME to the constant value.

#undef NAME Removes NAME from the list of defined constants

#line lineNumberValue Allows the compiler to refer to any line numbers in the file named filename.

“filename.ino”

#if definedConstant
expression operand

#if defined NAME
// statement(s)
#endif

#if Idefined NAME
// statement(s)
#endif

#ifdef
#ifndef

#else

#elif

#include “filename.xxx”

ino to be referenced as line lineNumberValue from this point on by the
compiler. Normally used in debugging. This is not in the Arduino C reference
material, but the compiler recognizes it.

Conditional compilation. Example:

#if LED == 12
#define VOLTS 5
#endif

This is not in the Arduino C reference material, but the compiler recognizes it.

Allows for conditional compilation of statements if NAME is defined. The
statement block ends with #endif. This is not in the Arduino C reference
material, but the compiler recognizes it and most libraries use it.

Same as #if defined, but processes a statement block only if NAME is not
defined. This is not in the Arduino C reference material, but the compiler
recognizes it.

Same as #if defined. This is not in the Arduino C reference material, but the
compiler recognizes it.

Same as #if /defined. This is not in the Arduino C reference material, but the
compiler recognizes it.

Can be used with #iflike as if-else statement, but to control compiled
statements. Example:

#if defined ATMEGA2560
#define BUFFER 64
#else
#define BUFFER 32
#endif

This is not in the Arduino C reference material, but the compiler recognizes it.
Used with #iffor cascading #ifs.

Opens the file named filename.xxx and reads the contents of the file into the
program source code. Usually, if double quotes surround the file name, the
search for the file is in the currently active directory. If angle brackets are used
(<filename.xxx>), the search begins in some implementation-defined manner.
This is not in the Arduino C reference material, but the compiler recognizes it.

Note that preprocessor directives are really not statements since they are not terminated with a semicolon.
Because of this, they must be written as shown in the examples that follow.

89

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_11
http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

The Arduino Language Reference (using Help » Reference from within the IDE or http://arduino.
cc/it/Reference/HomePage online) states that only #define and #include are supported. However, using
those preprocessor directives presented in Table 4-3 did not draw compilation errors with the Arduino 1.6.0
compiler. Since the Arduino IDE compiler is derived from the Open Source C++ compiler (GCC), you can
expect the directives to be supported.

The important thing to notice here is that the #define preprocessor directive gives you a way to define
a constant in a more meaningful way than does const. (Also, because a #define does not actually define a
variable with a Ivalue, it uses less SRAM memory.)

So what? Well, let’s see another benefit that #define brings to the party. Suppose you have the following
statements in a program you wrote:

int minCarFine = 125;
int minTruckFine = 125;
int minMotorcycleFine = 125;

Now suppose your state legislature passes a law such that the minimum truck fine is now $150. There
is a terrific temptation to do a global search for 125 and replace with 150. This is a train wreck waiting to
happen. For example, if your code has a constant 8125, it automatically would be changed to 8150 with a
global search and replace; probably not what you intended to do.

Suppose instead you wrote:

#define MINCARFINE 125
#define MINTRUCKFINE 125
#define MINCYCLEFINE 125

int minCarFine = MINCARFINE;
int minTruckFine = MINTRUCKFINE;
int minMotorcycleFine = MINCYCLEFINE;

The first good thing is the magic numbers are gone from the statements in the source code because
you have given them a name. Second, the source code is actually easier to read than before. Third, if the
politicians do change the fines, you can go to one spot in the program, make the following change:

#define MINTRUCKFINE 150

and recompile the program and all the instances where the truck fine is used are correctly changed to the
new value. No error-prone search and replace. The compiler does all the work for you. Good stuff.

One more thing about preprocessor directives that you need to keep in mind. That is, any #define is a
textual substitution in the source code ... nothing else. As such, all #defines are a typeless data declaration:
they do not have an Ivalue in the symbol table nor is their data type checked. Indeed, once the preprocessor
pass in finished, none of the #define’s exist anymore. They have all been substituted with their appropriate
text. Therefore, suppose you do something silly like:

#define VALUE 3.333
// some code
int myValue = VALUE; //0ops! Integers can't have a decimal point

The last statement is trying to place a floating point number into an int. Clearly, this is probably not
what the programmer intended, but the Arduino C compiler doesn’t complain. The compiler simply

truncates VALUE to 3 for myValue. The compiler can do this because it has no idea of the data type
associated with VALUE ... VALUE is typeless.

90

www.it-ebooks.info

http://arduino.cc/it/Reference/HomePage
http://arduino.cc/it/Reference/HomePage
http://www.it-ebooks.info/

CHAPTER 4 * DECISION MAKING IN C

Heads or Tails

Let’s write a program that uses our current two LED breadboard circuit to simulate tossing a coin. To do this,
let’s begin the exercise by using the Five Program Steps for our design.

Initialization Step

Recall that the Initialization Step is used to establish the environment in which we want the program to run.
Because we wish to use our two LEDs from the previous program, we need to initialize the I/O pins that
control the LEDs. We also know that we need to generate a series of random numbers for use in the program.
Where are those random numbers going to come from?

Any time you need a value or an object for use in a program, the first thing you should do is see if
someone else has already created code for that object. The first place to check is the Arduino Language
Reference. Sure enough, it appears that there is a random number generator available. Upon inspection, we
see a function named randomSeed() as well as random(). Further reading tells us that random() produces a
series of pseudo random numbers.

Pseudo random numbers?

What this means is that, while the values of the series of numbers is randomly distributed, you will get
the identical sequence of values each time you use random(). While this can be great while debugging a
program, it’s clearly not what we want when we are finished testing the program. Reading the randomSeed()
documentation we find out that we can “seed” the random number generator with a unique value at the
outset and random() then generates a unique set of random numbers for that seed value. Therefore, it seems
appropriate that we use randomSeed() in the Initialization Step.

We also need some working variables to store various values in the program.

Input Step

In this step we need to gather all of the data necessary to solve the task at hand. The only data that the
program uses is the random number produced by the random number generator.

Process Step

Our program needs to inspect the random number value and determine if it is a heads or a tails. The random
number generator produces numeric values, not heads or tails. Also, the type of data that is returned from
the random number generator is a long. Because there is no “heads” or “tails” data type, we need to invent
our own. Since a coin toss has a binary result (i.e., there are only two states possible: heads or tails), we can
view the random number as an odd or even result. You already know that a number modulo 2 yields either

1 or 0 as the result, depending on whether the number is odd or even. Perfect! We'll treat odd numbers as a
head and even numbers as a tail.

Output Step

As it turns out, the Output (or Display) Step is the most complicated step. The process is not difficult, just
busy. Our goal is to light one LED when the number is odd (i.e., a head) and the other LED when the number
is even (i.e., a tail.) It would seem, therefore, that we should turn both LEDs off for a second or so and then
turn the appropriate LED on for a few seconds based on the random number that was generated. Then we
should repeat the process over and over.

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

Termination Step

Because we aren’t doing anything fancy and the program is designed to run forever (or until the power is
removed or something fails), there is no Termination Step.

Now, load the IDE and write your version of the code before you look at the code presented in
Listing 4-4. You will learn twice as much doing it yourself than you will looking at my code. Plus, you may

have a better way to write the code. Give it a try.

Listing 4-4. The HeadsOrTails Program Code

/*
Heads or Tails

Turns on an LED which represents head or tails. The LED
remains on for about 3 seconds and the cycle repeats.

Dr. Purdum, Nov 12, 2014

*/
#define HEADIOPIN 11 // Which I/0 pins are we using?
#define TAILIOPIN 10
#define PAUSE 50 // How long to delay?
int headsCounter; // Heads/tails counters

int tailsCounter;

long loopCounter;

long randomNumber = oOL; // 'L' tells compiler it's a long data type,
// not an int.

// the setup routine runs once when you press reset:

void setup() {
Serial.begin(115200);
headsCounter = 0;
tailsCounter = 0;
loopCounter = 0;

pinMode (HEADIOPIN, OUTPUT);
pinMode(TAILIOPIN, OUTPUT);
randomSeed(analogRead(A0));

}
void loop() {

randomNumber = generateRandomNumber();
digitalWrite(HEADIOPIN, LOW);
digitalWrite(TAILIOPIN, LOW);

delay(PAUSE);
if (randomNumber % 2 == 1) {

digitalWrite(HEADIOPIN, HIGH);
headsCounter++;

92

// This seeds the random number generator

// Turn both LED's off

// Let them see both are off for a time slice

// Treat odd numbers as a head

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 * DECISION MAKING IN C

} else {
digitalWrite(TAILIOPIN, HIGH); // Even numbers are a tail
tailsCounter++;

}

loopCounter++;

if (loopCounter % 100 == 0) { // See how things are every 100 flips

Serial.print("After ");
Serial.print(loopCounter);
Serial.print(" coin flips, heads = ");
Serial.print(headsCounter);
Serial.print(" and tails = ");
Serial.println(tailsCounter);

}
delay(PAUSE); // Pause for 3 seconds

long generateRandomNumber ()

return random(0, 1000000); // Random numbers between 0 and one million

}

We begin the program with a series of #defines and data definitions:

#define HEADIOPIN 11
#define TAILIOPIN 10
#define PAUSE 50

int headsCounter; // Heads/tails counters
int tailsCounter;

long loopCounter;
long randomNumber = oL; // 'L" tells compiler it's a long data type,
// not an int.

Note that the #define’s remove many of the magic numbers in the program and make the code more
readable. If we want to change the pause between coin tosses, all we need do is change its #define and
recompile the program. (Of course, you have to upload the compiled code to the pc again, too.)

Next, we run the setup() code. Most of the Initialization Step code has been discussed before. However,
the statement

randomSeed(analogRead(A0)); // This seeds the random number generator

is new. The function call to RandomSeed() seeds the random number generator using the value returned by
a call to analogRead(A0) as the seed value. You can read the complete documentation for the analogRead()
function online at the reference URL mentioned earlier or directly from the IDE (Help — Reference).
However, basically, the function reads the voltage on pin 0 and maps it to a value between 0 and 1023.
Whatever that value is (and it changes constantly due to electrical noise on the unconnected pin), it is used
to seed the random number generator. Having done that, we're ready for the Input and Process Steps as
presented in the loop() function.

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

Note Unconnected pins are not always a good thing. Recently | was working on an RF circuit involving a
rotary encoder. | neglected to connect the encoder switch pin properly to the circuit and left it in a “floating”
(unconnected) condition. As my hand got closer to the encoder to turn it, the value on the floating pin spit out a
series of apparently random values that | was monitoring on the Serial monitor. Tying the pin to +5 volts through
a pull-up resistor solved the problem; a classic RDC move on my part. Moral: If a pin seems to have a mind of
its own and you don’t want random values appearing on it, check to make sure you didn’t leave it floating in the
circuit.

In the loop() function, generateRandomNumber() is called which returns a number between 0 and
1000000. (I go into detail about writing your own functions in Chapter 6. For now, just trust me on this one.)
Upon returning for the function call, our backpack is opened and a long value is taken out and assigned into
randomNumber. Next, the two calls to digitalWrite() turn off both LEDs and call delay() so that we can observe
that they are turned off. (It's okay to use delay() because we aren’t doing any interrupts or time-sensitive
processes.) We then use the modulo operator as before to determine if the random number is heads or tails.

The if statement again uses the modulo operator to determine if we have tested any multiple of 100 coin
flips yet. If the loopCounter equals an even multiple of 100, the remainder is 0 and the if statement block is
executed. The block simply displays the two counters for heads and tails for the total number of coin flips.
Notice the Serial method used in the last printin() statement has an “In” at the end of it. This causes the next
displayed line to appear on a new line.

You might also like to know that after 50,000 flips, my program produced 25,050 heads and 24,950 tails.
In theory, it should be 25,000 for each, but these numbers suggest that Arduino C has a pretty good random
number generator.

Summary

In this chapter, you learned various ways to make a decision in your program code. Each method has its
own advantages and disadvantages. With experience, you'll get a feel for which decision test is the best one
for the task at hand. You also learned a number of style conventions (e.g., using braces even when a single
if statement may not require it). Style considerations may seem silly to you at the moment, but if you work
in a commercial environment (or plan to do so), coding style becomes very important when a different set
of eyes has to view your code. Pick a style and use it consistently. It will make your code easier to read and
debug. Finally, I showed you how you can use some of the preprocessor directives to 1) make your code
easier to read and debug by removing magic numbers from your code, and 2) make changing constants at
some point in the future less error-prone.

EXERCISES

1. What’s wrong with the following code?
if (random())

Answer: the random() function returns a random number as a long data type. The if
statement expects the value between the parentheses (expression1) to be a Boolean

94

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://www.it-ebooks.info/

CHAPTER 4 * DECISION MAKING IN C

value, true or false, but the value is a long. This is a semantic error. That is, the code is
syntactically correct, but the expression is used in the wrong context. The compiler should
at least give a warning here, but it does not. Moral: Just because the compiler lets you get
away with something doesn’t always mean it’s right.

Are there any errors in the following code?

if (j =k)

{
doStuff();

} else {
doOtherStuff();

}

Answer: Rather than using the test for equality in the iftest expression, a single equal sign
is used instead. This will not draw an error message from the compiler because, again,
the syntax is correct. However, the programmer likely wanted to perform a relational test
between variables jand k (i.e., ==), not an assignment.

What happens when you run an LED without a resistor in the circuit?

Answer: You may get lucky and nothing happens. However, if you are using an LED with

a max current rating of less than 20mA, you could burn out the LED. If the current rating
for the LED is much above 40mA, you could burn out the pc board. Either way, the odds of
something good happening are stacked against you. Moral of the story: Use an LED with a
resistor having a value of 150-1000 ohms. Side observation: blue or white smoke coming
from a component cannot be put back into that component.

Modify the HeadsOrTails program so that it reports back to your PC how many
heads and tails were sensed during a given number of “coin tosses”.

Answer: You can use the code in Listing 4-3 as the base code, but modify the last if
statement block that uses the modulo operator to:

if ((headCount + tailCount) == desiredNumberOfFlips) {It is
assumed that you have a long variable named desiredNumberOfFlips
and that it has been set in setup() to the appropriate value.

Why is a switch statement block better than a cascading ifblock?

Answer: First, long cascading if blocks may force you to use horizontal scrolling to view all
of the code. Second, if you have, say, 10 if statements in the block and the 10" jf statement
is currently the one that needs to be executed, you will have to evaluate 9 false expressions
before you get to the one needed. Third, a switch builds a jump table so one evaluation

at the top of the switch causes the code to jump to the proper case, thus avoiding
unnecessary tests. Finally, most programmers find it easier to read a switch block than a
cascading if block.

Design a circuit that accepts digit characters from the Serial keyboard and interprets
the number so that 1 is Sunday, 2 is Monday, and so on. Based on the number
entered, you light a LED associated with that day of the week. You should use digital

www.it-ebooks.info

95

http://www.it-ebooks.info/

CHAPTER 4 © DECISION MAKING IN C

pins 4-10 for the LEDS. Keep in mind that people do make mistakes when entering
data. Listing 4-3 shows you how to read the Serial monitor for keystrokes.

Answer: There are so many ways to code this that there is no single answer. However, it is
really little more than wiring up additional LEDs like you see in Figure 4-3. | would suggest
you use a switch block to control the LEDs.

If you press the number 5 on your keyboard in the Serial monitor and click the
Send button, what does the following code do?

char c;
int num;

if (Serial.available() > 0) {
c = Serial.read(); // This fetches the '5'
// some code to make sure it was a digit character...
num = (int) (c -'0");

}

Answer: I’'m not going to tell you. Type the code in, get it working, and then explain to
your best friend what it does in a way that they can understand. If you can teach it, you
understand it. Hint; There’s a difference between digit characters typed on a keyboard and
numeric values. For additional help, look up “ASCII Table”.

96

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Program Loops in C

One of the things computers can do more efficiently than humans is repetitive tasks. People get bored,
and when that happens, their attention drifts and errors creep into the task at hand. Computers have the
attention span of a gnat (i.e., none), so they are great at performing repetitive tasks. Unless a p.c loses power
or a component fails, they will loop forever, unless instructed to do otherwise.

In this chapter, you will learn

e What makes a “good” program loop

e How to use a for loop

e How to use the while statement

e How to use a do-while statement and its differences
e Infinite loops

e The break and continue keywords

You have already used program loops in every program that we’ve discussed via the loop() function that
is present in every Arduino program. In this chapter, however, we will flesh out the details of program loops.

The Characteristics of Well-Behaved Loops

Most program loops are written to terminate at some point. However, other loops, like the loop() function,
are written to run forever. Indeed, to stop most pc programs requires removing power from the board,
uploading a new program, or pressing the reset button on the board to stop the current program from
running.

In the sections that follow, we will forget about the loop() function that is automatically included with
each new program and its infinite execution sequence. Instead, we want to look at loops that you control with
your own code. With that in mind, let’s examine the three conditions that constitute a well-behaved loop.

Condition 1: Initialization of Loop Control Variable

As used here, a loop is simply the execution of one or more program statements, and upon reaching the last
statement of the sequence, the program goes back to the first statement and repeats the execution sequence.
A well-behaved loop always initializes one or more variables to a known program state before the loop
statements begin execution. Usually, the value of one variable is used to control the number of iterations that
are made through the statement loop. The initialization condition often involves setting the control variable
to 0. This places the loop control variable in a known state. That is, the rvalue of the loop control variable is a
known value.

© Jack Purdum 2015 97
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

Some programmers “know” that a specific compiler initializes the rvalue of the variable to zero (or null,
if it is a reference type variable). However, there is nothing in the ANSI C standard that requires the compiler
to initialize all variables to 0 or null. Indeed, even null can be redefined by the compiler vendor to whatever
makes sense for their particular processor. As a result, the best assumption you can make about the rvalue of
a freshly defined variable is that it contains whatever random bit pattern (i.e., junk) happened to exist at that
particular variable’s lvalue. Assuming a variable is initialized automatically to some known state is just not a
good programming habit.

Condition 2: Loop Control Test

The second condition of a well-behaved loop is that a test is performed to see if another iteration through
the loop statements is needed. Usually, this test involves a relational operator and the loop control variable.
The outcome of the relational test determines if another pass is made through the statements controlled
by the loop.

Condition 3: Changing the Loop Control Variable’s State

The third condition of a well-behaved loop is that the variable or expression controlling the loop must change
state. If the control variable did not change state during the processing of the loop statements, the loop
executes forever. That is, the outcome of the test in Condition 2 would never change, which means the loop
would run forever. Loops that run forever are called infinite loops. Recall that the Arduino loop() function is
designed to do just that—run forever. However, that may not be the desired case for the code you are writing
inside the loop() function.

With these three conditions in mind, let’s examine the for loop control structure.

Using a for Loop

The general syntax structure of a for loop is as follows:

for (expressionl; expression2; expression3) {
// for loop statement body
}

// the first statement following the for loop structure

The for loop consists of the for keyword, followed by an opening parenthesis character ('('). After the
opening parenthesis come three expressions, each of which is separated from the other by a semicolon.

The third expression is followed by a closing parenthesis character ('(') which is immediately followed by an
(optional) opening brace. After the opening brace, there is one or more program statements that are to be
controlled by the for loop. These program statements are often referred to as the body of the for loop. After
the statements in the body, there is a closing brace, which marks the end of the for loop structure.

In the loop structure, expressionl usually initializes the variable that controls the loop. However, since
expressionl can have a comma-separated list of subexpressions, we can’t say expressionl always initializes
a loop control variable. (You will see an example of this in the next paragraph.) expression2 performs
some form of logical test to determine if another pass through the loop body is warranted. expression3 is
usually responsible for changing the state of the loop control variable, but is not required to do so. (In fact,
you could move expression3 into the loop body if you wanted to, but that’s not the conventional style.).
Figure 5-1 shows the program flow of the for loop.

98

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

false
true

in_t k;

OO O,
for (k = 0; k < 1000; k++) {

DoSomethingCool(k);

}

—>

Figure 5-1. The program flow using a for loop

To summarize, loop expressions of a well-behaved loop perform the following tasks:
e expressionl: Usually initializes a loop counter
e expression2: Usually performs a relational test
e expression3: Usually responsible for changing loop the counter (changes state)

Although there are exceptions to each of these expression summaries, they are the most common.

In Figure 5-1, the for loop begins with the definition of variable k, followed (perhaps) by some
additional statements. Then the forloop is entered, expressionl, or k = 0, is processed. Because that
expression is normally followed by a semicolon, expressionl is a complete statement.

Note that expressionl can have a comma-delimited list of subexpressions. For example, you may see
something like this:

for (k = 0, j = 1; k < 12000; k++) {

where j is initialized to 1 as part of expressionl. 'm not a fan of using a comma and a second (or more)
subexpressions. I think the code is more readable if only the controlling loop variable is initialized in
expressionl. You can always initialize j just before the forloop.

You can also move the definition and initialization of variable k into expressionl, as in:

for (int k = 0; k < 1000; k++) {

Note that, in this example, variable k is defined and initialized as part of expressionl.'m not a big fan of
this variant either. Also, if the definition of k is part of expressioni, that variable is removed from the symbol
table when the closing brace of the for loop is reached. If you need to use k after the loop finishes, defining
the variable as part of expressionI is simply not going to work.

Once expressionl is processed, control passes to expression2, or k < 1000 in Figure 5-1. (Note that
program control does not return to expressionl again as part of the for statement block ... it’s done for the
day.) What happens next depends on the outcome of expression2. If expression2 evaluates to logic true,
control is passed to the statements in the loop body, or point 3 in Figure 5-1. If expression2 is true and after
the statements in the loop body are processed, control is passed to expression3 (point 4 in Figure 5-1) for
evaluation. If expression2 evaluates to logic false, the for loop ends and control passes to the first statement
following the closing brace of the for loop statement block.

Usually, expression3 is used to change the state of the variable that controls the loop iterations, or
variable k in our example. You can also have a comma-delimited list of subexpressions, as in:

for (k = 0; k < 1000; k++, j--) {

99

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

Once again, I'm not a big fan of complex expressions in the for loop expressions. Personally, I'd push the
decrement of j back into the loop body’s statement block. I don’t have a strong theoretical argument for this
predilection; it’s just the way I do things.

After expression3 is processed, control passes back to expression2 to test whether another pass through
the loop should be made. The path now taken again depends upon the outcome of the evaluation of
expression2. If the expression evaluates to logic true, the loop body statements are executed again. If the
statement evaluates to logic false, the for loop ends and control is sent to the first statement following the
closing brace of the for statement block.

Program to Show Expression Evaluation

We can write a short program that shows the order in which the for loop expressions are evaluated. The
displayed results you see on the Serial monitor reflect what is shown in Figure 5-1. The source code appears
in Listing 5-1.

Listing 5-1. Demonstrate Loop Evaluation
void setup() {

int k;

Serial.begin(9600);

for (k = 0, Serial.print("Exp1 k = "), Serial.println(k); // Expression 1
Serial.print("Exp2 k = "), Serial.println(k), k < 10; // Expression 2
k++, Serial.print("Exp3 k = "), Serial.println(k)) { // Expression 3

Serial.print("In loop body, k squared = "); // for Loop statement body

Serial.println(k * k);
delay(1000);

}
void loop() {}

I should point out that this is a pretty ugly program and uses programming structures that I would
normally not use. However, it does show the sequence in which the three expressions are evaluated.
Figure 5-2 shows a sample run of the program. If you look at the first line in Figure 5-2, you can see that the

first expression is expressionl. If you look at the rest of the table, you can see that expressionI is never visited
again. After all, once k is initialized to zero, it doesn’t need to be reinitialized.

100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

Expressionl

Expression2

In for loop aguared
Expression3

Expression2

In for loop aguared
Expression3

Expression2

In for loop squared
Expression3

Expression2

In for loop squared
Expression3

Expression2

In for loop squared 16

v
B 2

Nolineending v | |115200baud v |

Figure 5-2. Output from Listing 5-1

The second line shows that expression2 is visited next. Because k is less than 10, that expression
evaluates to logic true, and the for loop body is executed. The loop body simply uses the Serial object to
display the square of the current value of k. The output is line 3 in Figure 5-2.

Now note how we immediately branch to expression3 to change the state of the loop counter
(i.e., k++). Once the loop counter is changed (i.e., the loop state changes), the code immediately evaluates
expression2 (i.e., k < 10) again to see if another pass through the loop is needed. Because k is less than 10,
another pass through the loop is made. If you follow the output shown in Figure 5-2, you should be able to
convince yourself of the expression evaluations up to the point where the loop state dictates that the loop
should end.

Listing 5-2 shows a little more practical use of a for loop.

Listing 5-2. Table of Squares
#define MAXLOOP 10
void setup() {

int squares[MAXLOOP];
int counter;

Serial.begin(9600);

// Construct the list

for (counter = 0; counter < MAXLOOP; counter++) {
squares[counter] = counter * counter;

}

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

// Display the list

for (counter = 0; counter < MAXLOOP; counter++) {
Serial.println(squares[counter]);

}

}

void loop() {
}

The code begins with a #define that is used to set the array size. MAXLOOP is also used to control
expression2 in the loop tests. In setup(), the statement int squaresflMAXLOOP]; defines an array named
squares[], which is used to hold the list of squared values. The Serial object is initialized and the first for
loop is entered. expressionl initializes counter to 0, since that is the variable that controls the state of the
loop. Because counter is 0 on the first pass through the loop, expression2 (counter < MAXLOOP) is logic true,
causing the code in the for loop statement block to be executed.

There is only one statement in the for statement block. The multiplication operator (*) takes the current
value of counter (i.e., 0), squares it (also 0), and then assigns that value into the first element (squares[0])
of the squares[] array. After the assignment, control goes to expression3 and increments the variable that
controls the loop (counter++). Note that this changes the state of the loop since counter controls the number
of passes being made through the loop.

After expression3 is executed, control immediately goes to expression2 for re-evaluation. Because
expression2 is still logic true (counter is now 1, which is less than MAXLOOP), the for statement body is again
executed. This process repeats up to the point where the counter has been incremented to 10. At that point,
expression2 is no longer true, and the first for loop terminates.

The first statement following the first for loop is the start of the second for loop. You should be able to
walk yourself through that code, step by step, on you own. (Don’t just say: “Yeah, I can do that” Do it!)

Most for loops behave in a manner similar to that shown in Listing 5-2. Make sure that you are
comfortable with how that code works before moving on. As a small test, read the code in Listing 5-3 and
describe to yourself what it does and what the Five Program Steps are in the program.

Listing 5-3. A for Loop Test Program

#define LED 13

void setup() {
// put your setup code here, to run once:
pinMode(LED, OUTPUT);

}

void loop() {
// put your main code here, to run repeatedly:
int counter;

for (counter = 0; counter < 1000; counter++) {
if (counter % 2 == 0) {
digitalWrite(LED, HIGH);
} else {
digitalWrite(LED, LOW);
}
delay(500);
}
}

102

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

To make sure that your assessment of the code in Listing 5-3 is correct, type the code into your Arduino
and run it. Did it do what you expected? If not, you should explain to yourself why it performed otherwise.
It's a good learning experience.

When to Use a for Loop

C provides you with several loop flavors, so how do you know which one to select? For the moment, let’s just
make a simple generalization and say: If you know how many passes are to be made through the loop before
the loop begins execution, a forloop is usually a good choice.

Another thing you'll like about for loops is that all three conditions for a well-behaved loop can be
found within the parentheses of the for loop. expressionl usually is used to initialize the variable that
controls the loop. expression2 usually involves a test that results in logic true or false, which determines
whether another pass should be made through the loop. Finally, expression3 usually changes the state of the
loop control variable. The syntax structure of the for loop makes room for all of the expressions to be in one
place, almost forcing you to write a well-behaved loop.

I'll have more to say about this topic after all loop structures have been discussed.

The while Loop

The second type of loop structure we examine is the while loop. The following is the syntax of the while loop:

while (expression2) {
// Statements in the loop body
} // End of while statement block

Notice that only expression2, the expression that tests whether another pass through the loop statement
body is needed, appears as an integral part of the while loop syntax. Obviously, you can still write a well-
behaved while loop; it’s just that the syntax structure doesn’t really confront you with the three conditions
the way the for loop syntax structure does. Indeed, any for loop can easily be written as a while loop.

Let’s rewrite the for loop from Listing 5-2 as a while loop:

// some additional statements

counter = 0; // This is expressioni
while (counter < MAXLOOP) { // This is expression2
squares[counter] = counter * counter;
counter++; // This is expression3
} // End of the while loop

Notice the placement of the well-behaved loop expressions.

e The first condition of a well-behaved loop states that the loop control variable must
be initialized to some known state. With a while loop, this initialization step must be
done before you enter the while loop because it is not part of the loop syntax itself.
This is why we have the statement counter = 0 just before entering the while loop.

e The second condition of a well-behaved loop is that some form of logical test must
be performed on whatever variable controls the loop (i.e., counter). The while
loop does have expression2 as part of its syntax structure, as can be seen by the
expression that appears within the parentheses that follow the while keyword.

The expression counter < MAXLOOP in our example is expression2 for a well-
behaved loop.

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

e The third condition of a well-behaved loop is that the state of the variable controlling
the loop must change. There is nothing that is integral to the while loop syntax
that forces you to write, or even think about, expression3. You must supply some
statement within the statements of the while loop body that changes the state of
whatever variable controls the while loop. In our example, the statement counter++
becomes expression3.

You should be able to convince yourself that the example while loop presented earlier is functionally
equivalent to the code depicted in Listing 5-2 using the for loop structure. The only real difference between
Jor and while loops is that the syntax structure of a while loop is a little less “in your face” about the
expressions necessary to write a well-behaved loop. If you tuck away that fact into the back of your mind,
you'll have fewer FFM experiences.

When to Use a while Loop

If you can write a while loop pretty much the same as a for loop, which one should you use? Indeed, if they
are functionally the same, why even have a whileloop? That’s sorta like asking why have both a tack hammer
and a sledge hammer in your arsenal of tools. While you could drive tacks with a sledge hammer, the tack
hammer makes certain tasks a little easier. The same is true with loops: one may be better-suited to a specific
job than another.

Although there are few hard-and-fast rules in programming, we can offer a few guidelines for your loop
choice decision. As a general rule, if you must perform a task a specific number of times, a for loop is often
the preferred choice. For example, suppose you're writing a piece of software that must cycle through all of
the lights in the building at the end of each business day and turn off any lights that are still on. If there are,
say, 1,500 lights in the building, you know your program code must visit each of those lights to perform its
task. Because the task must be performed a known number of times, most programmers would probably
write the code using a for loop.

Now suppose you are writing a program that must search through an inventory list of an unknown
number of parts looking for a specific part number. Perhaps the list contains new items that have just been
added and perhaps some out-of-date items. We are sure, however, that the part number is in the list. When
that part number is found, you want to exit the loop and use the information associated with the part for
some additional purpose (e.g., filling an invoice). In this case, you don’t need to examine every part in the
list; you want to quit the search once you've found the part for which you are looking. Most programmers
code such tasks as a while loop. The while loop idiom becomes the solution for a “search until” type of
problem. The main reason is that even though there may be a known maximum number of items to examine
(i.e., expression2), once you find what you're looking for, you bail out of the loop—you do not visit every item.
The program presented in Listing 5-4 illustrates a while type of loop.

Listing 5-4. Using a while Loop to Find a Target Value

int searchList[200];

void setup() {
int index;
int target = 5343; // Part number to find
Serial.begin(115200);

memset(searchList, 0, sizeof(searchList)); // Clear the array

searchList[160] = target; // Our target

104

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

index = 0; // Expressioni of well-behaved loop
while (true) { // Expression2 of well-behaved loop
if (searchList[index] == target) {
break;
}
index++; // Expression3 of well-behaved loop
}

Serial.print("Found target at index = "); // Display result
Serial.println(index);

}

void loop() {

}

The code in Listing 5-4 is pretty short, but it has a lot of useful items in it. The first thing we do is define
an array of 200 ints named searchList[]. Because we have placed the definition of searchList[] outside either
the setup() or loop() functions, it is said to have global scope. We discuss the concept of scope in a later
chapter. For now, just think of scope as the life and visibility of searchList[]. That is, the searchList[] array can
be accessed anywhere in the current source file of the program. As a rule, data items with global scope are
automatically initialized by the compiler to 0. This means that each of the 200 infs in the searchList[] array
have the value of 0 when the definition of the array is finished. Personally, I just don’t make that assumption.
Because of my distrust of global initializations, I do it myself, as you'll see in a moment.

After searchList[]is defined, execution enters the setup() function, where we define a couple of int
working variables, including one named target that we initialize to the rvalue of 5343. We also create a Serial
object so we can use the Serial monitor to display our program output. Next, we call the memset() function
after filling our backpack with three pieces of information (i.e., function arguments):

e the name of array we want to initialize
e the value we want to initialize the memory to (i.e., 0)
e the number of bytes we want to initialize

The memset() function is often a piece of hand-tweaked assembly language code that the compiler
people designed to initialize a block of memory to a specific value. (The memset() function is part of the
collection of function libraries that come with the Arduino IDE.) The three function arguments we stuffed
into our backpack provide the function with the information it needs to set the memory block (i.e., the
searchList[] array) to a specific value (i.e., 0). However, we have not seen the sizeof{) operator before.

The sizeof() Operator

The sizeof{) operator looks like a function call, but it isn’t. Instead, sizeof{) is an operator that returns the
number of bytes allocated for a data item. Because we have placed the name of the searchList array within
the parentheses of the sizeof{) operator, evaluating that expression returns the number 400.

400? Why 400?

The reason is because searchList[]is an array of 200 ints. Therefore, because each element in the array is
an int and each int requires 2 bytes of memory, the total number of bytes is 200 * 2, or 400 bytes of memory.

The next question you should be asking yourself is: How does the compiler know where those 400 bytes
are in memory? This is worth remembering: in C, anytime an array name is used by itself, it is viewed by the
compiler as the lvalue of the array. For example, if our definition of searchList[] caused the compiler to locate

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

the array at memory location 300, the lvalue of the searchList[] array is 300. Therefore, from the compiler’s
point of view, the call to memset()

memset(searchList, 0, sizeof(searchlList)); // Clear the array
actually looks like
memset (300, 0, 400); // Clear the array

which says: “Go to memory location 300 and set the next 400 bytes of memory to zero.” The value 400,
remember, is derived from the data type and size of the array (i.e., 200 elements at 2 bytes for each element).

Could you initialize the searchList[] array to 0 some other way? Sure! You could use something like the
following code fragment:

for (index = 0; index < 200; index++) {
searchListing[index] = 0;
}

The next question, however, is: Why would you? The memset() function is going to be at least as fast as
your for loop and is just sitting there waiting for you to use it ... plus, it’s already been tested and debugged.
Why reinvent the wheel?

After the call to memset(), the code sets element 160 of the searchList[] array to the target value of 5343.
This means that searchList[160] equals 5343, while all the other 199 values have been set to 0 by the call to
memset().

The next statement sets index to 0, which is really expression1 of a well-behaved loop. Note that,
unlike the for loop syntax, a while loop has expressionl set before you enter the loop code. An if statement
checks to see if the array element the code is presently examining (i.e., searchList[index]) is equal to target.
If we are looking at one of the elements whose value is 0, the if test fails (logic false) and the code in the
if statement block is skipped. This means that index is post-incremented (index++, which is expression3)
and the code goes back up to the top of the while loop to check expression2. However, because we wrote
the while loop’s expression2 as (true), the program enters the while loop’s statement block and once again
evaluates the if expression. This process repeats up to the point where index equals 160.

Eventually, index is incremented to equal 160. At that point, the iftest becomes logic true and we
execute the code in the if statement block. Because the only statement in the if statement block is a break
statement, program control immediately breaks out of the while loop and executes the first statement
following the closing brace of the while statement block. (The behavior of the break statement is similar to
what you saw with the switch statement in Chapter 4.) In our program, the break sends program control to
the first line after the while loop, which does a call to the Serial object to display a message and the value of
index where the match was found. Obviously, the value of index is 160.

You could rewrite the while loop program in Listing 5-3 as a for loop if you wanted to and it could be
made to function exactly the same way. However, the purpose of the program is easily satisfied with a while
loop, so that’s what we used.

The do-while Loop

The third type of loop structure is the do-while loop. The syntax is as follows:

do {
// Loop body statements
} while (expression2);

106

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

As with the while loop, only the second condition (expression2) is an integral part of the loop structure.
It is your responsibility to supply the missing two expressions of a well-behaved loop. Also, even though
this form of loop structure is similar to a while loop, it has one major difference: with a do-whileloop, you
are guaranteed that the loop body statements are executed at least one time. Consider the following code
fragment for a standard while loop:

int k = 1001;

while (k < 12000) {
DoSomethingCool(k);
k++;

}

When program control first enters the while loop, the test on k fails because k was initialized
to1001. Because expression2 is logic false (k is not less than 1000), the loop body statement to call
DoSomethingCool() is never executed. (You could write a for loop that initializes k to 1001 and get the same
result, right?)

Now let’s rewrite the code as a do-while loop:

int k = 1001;

do {
DoSomethingCool(k);
k++;

} while (k < 1000);

In this case, the call to DoSomethingCool() is made even though k is initialized (expressionl) to the same
value as in the while loop fragment.

Why a do-while is Different from a while Loop

Therefore, the same conditions for expressionl cause different results, depending on whether you use a while
or a do-while loop structure. The difference is because expression2 performs its test at the bottom of the while
loop after the statements in the loop body have been executed at least one time. The moral of the story is:
itis possible to never execute the statements in the loop body with either the while or for loops structures.
However, you are guaranteed that at least one pass through the loop body statements is made with a do-
while loop. You will likely find that you use the do-while loop variant much less frequently than the other two
loop structures. Still, it’s another tool to add to your tool belt.

The break and continue Keywords

The break and continue keywords are often used within loop structures. Simply stated, a break statement
sends program control to the statement that immediately follows the closing brace of the enclosing
statement body. (The enclosing statement body doesn’t have to be a loop structure, it can also be

a switch statement block.) The continue statement immediately sends program control to the test
conditions of the loop (i.e., expression2) for this pass through the loop. That is, any statements contained
in the loop following the continue statement in the statement block are skipped when the continue
statement executes.

107

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

The break Statement

An example may help you see how the break statement works. Suppose you have a situation where you
monitor the temperature of 200 vats filled with chemicals. When you find one that has reached a specified
temperature, you exit the loop and call a method that adds another ingredient to that vat. How might you
code such an algorithm? Consider the following code fragment:

#define MAXVATCOUNT 200

#define GOALTEMPERATURE 160

// Some statements and setup()

int vatTemperature;

int counter = 0;

Loop() {

while (counter < MAXVATCOUNT) {
vatTemperature = ReadVatTemp(counter);
if (vatTemperature >= GOALTEMPERATURE) {
break;

}

counter++;
if (counter == MAXVATCOUNT) // Reset so we stay in loop
counter = 0;

}
AddChemicals(counter);
if (counter < MAXVATCOUNT) {

counter++;
} else {

counter = 0; // Just in case this is the last vat
}

Now walk through the code, concentrating on the while loop. Because counter is initialized to 0, the
while test is true (counter is less than or equal to 200) so the code calls ReadVatTemp(counter), which reads
the temperature for vat number 0. That temperature is then assigned into vatTemperature. Let’s assume
that the temperature is 150 degrees. The iftest will fail, causing counter to be incremented by 1 (counter
now equals 1). The program then uses an if statement to test whether counter is less than MAXVATCOUNT.
Because the outcome of the iftest is false (i.e., counter is not equal to MAXVATCOUNT), counter remains
unchanged, and control is passed back to the while loop test expression2 (i.e., counter < MAXVATCOUNT).
Because counter is still less than MAXVATCOUNT, the process repeats.

Let’s suppose the first 50 vats don’t have the required temperature. However, vat number 51 does
return a temperature that is equal to GOALTEMPERATURE. Because the two temperatures are equal, the
break statement is executed. Because a break statement causes program control to be transferred to the
first statement following the closing brace of the loop structure, AddChemicals(counter) is called and the
chemicals are added to vat number 51 (the rvalue stored in counter). The code must then increment counter.
(Otherwise we might “double-add” chemicals to the same vat. We assume that the vat has enough time
before the loop revisits the vat for the reaction to have changed the temperature.) Because these statements
are contained within the loop() function, program control is transferred back to the top of the loop body and
the while statement is again tested using the new value for counter.

It should be clear that the break statement is used to exit a loop before the test in expression2 would
terminate the loop. It should also be pointed out that the break statement only breaks out of the loop containing
the break statement. If you are using nested loops, it may take multiple break statements to completely exit all
loops.

108

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

The continue Statement

Can you rewrite the preceding break code example to use a continue statement? Consider the following:

#define MAXVATCOUNT 200
#define GOALTEMPERATURE 160
// Some statements...including setup() code
int vatTemperature;
int counter = 0;
Loop() {
while (counter <= MAXVATCOUNT) {
vatTemperature = ReadVatTemp(counter);
if (vatTemperature < GOALTEMPERATURE) {// Big difference
counter++;
if (counter > MAXVATCOUNT)
counter = 0;
continue;
}
AddChemicals(counter);
if (counter < MAXVATCOUNT) {
counter++;
} else {
counter = 0; // Just in case this is the last vat
}

If you walk through the code, you should be able to convince yourself that the program behaves much
the same way it did before, but using a continue statement instead of a break. Note how the program control
flow is slightly different now. If the vat temperature is less than the goal temperature, the continue statement
executes, which sends control to expression2 of the while statement, thus ignoring all of the statements that
follow the continue statement. The same caveat applies to continue statements within nested loops. The
continue statement sends control to the expression for the loop containing the continue statement. Although
you won't use the continue statement that often, sometimes it offers a clean alternative for coding a loop.

A Complete Code Example

Let's reuse the circuit you used from Chapter 4 for the Heads or Tails program (see Figure 4-2). However, this
time let’s use the random number generator and look for a specific value to be produced. When the desired
value is found, the code should light the “found it” LED for one second, send a message to the PC via the
Serial monitor, and report the value of the loop counter. However, each time we cycle through the positive
values for the int variable that is controlling the loop, we should light the other LED for one second and send
a message back to the PC to show how many times we have recycled the int. (Recycling the int is explained
in a bit.)

Recall that the random number generator returns a long data type, which means there are several
billion possible return values from the random number generator. That could mean a long time between
LED flashes. Rather than growing a beard while we wait, let’s limit the range of the random number
generator to values between 0 to 5000.

Given all this information, how should you start coding the solution? You start with the Five Program
Steps.

109

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Fig2
http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

Step 1. Initialization

We need to set up the I/0 pins and the baud rate for the serial communication back to the PC, establish a
target numeric value, define our working variables, and seed the random number generator.

Step 2. Input

The input process is fairly simple: it’s the value returned from a call to the random number generator.

Step 3. Process

In this case, all we need do is check to see if the data from the random number generator is equal to our
target value. If the value is equal to our target value, we need to prepare to turn on the “found it” LED. We
also need to increment our pass counter variable and see if it is still positive. If not, we need to get ready to
flash the recycle LED.

Step 4. Output

If a match was found, we need to turn on the “found it” LED for one second. We also need to output a
message to the PC with the current value of the counter variable. If the counter variable went negative, we
need to turn on the recycle LED for one second and send a message to the host PC.

Step 5. Termination

Let’s put in a termination condition. If the recycle LED has “flipped” five times, let’s shut the program down.
The Serial monitor will tell us when the program ends.

You should try to write the code yourself at this point. You have enough knowledge under your belt to
get the job done. It would be a cop-out to just read the following code and move on. You will learn much
more, however, if you try to write the code first.

Listing 5-5. Random Number Match

// define the pins to be used.
#define MAX 5000L

#define MIN oL

#define TARGETVALUE 2500L

#define MAXRECYCLES 5

#define FOUNDITIOPIN 10 // Use the green LED
#define RECYCLEIOPIN 11 // Use the red LED
#define PAUSE 1000

int foundIt = FOUNDITIOPIN;
int recycle = RECYCLEIOPIN;
long randomNumber;

int recycleCounter = 0;

int counter = 0;

110

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

void setup() {

Serial.begin(9600);

pinMode(foundIt, OUTPUT);

pinMode(recycle, OUTPUT);

randomSeed(analogRead(A0)); // This seeds the random number generator

}
void loop() {

while (counter != -1) { // Check for negative values
randomNumber = generateRandomNumber();
if (randomNumber == TARGETVALUE) {
Serial.print("Counter = ");
Serial.print(counter, DEC);
Serial.print(" recycleCounter = ");
Serial.println(recycleCounter, DEC);
digitalWrite(foundIt, HIGH);
delay(PAUSE);
digitalWrite(foundIt, LOW);

}

counter++;

if (counter < 0) { // We've overflowed an int
counter = 0;
recycleCounter++;
Serial.print("recycleCounter = ");
Serial.println(recycleCounter, DEC);
digitalWrite(recycle, HIGH);

delay(PAUSE);
digitalWrite(recycle, LOW);
}
if (recycleCounter == MAXRECYCLES) {
FakeAnEnd(); // End program
}
}
}
long generateRandomNumber ()
return random(MIN, MAX); // Generate random numbers 0 and 5000
}
void FakeAnEnd() { // Fake the end of the program
while (true) {
5
}
}

You should feel fairly comfortable when looking at the code. The setup() function initializes the baud
rate for communicating with the host PC. The I/0 pins are set and the random number generator is seeded.

111

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

Inside the loop() function, the while loop tests to see if counter is negative; counter is an int, so if the current
value is 32,767 and it is incremented one more time, the value “rolls over” because the high bit (or the sign
bit) changes to a 1, which is interpreted as a negative number. This is what is meant by “recycling the int"

Because counter is initialized to 0 when the program starts, the first while test is logic true and we enter
the loop statement body. The code then calls the random number generator and checks the value against
the target value. If they match, an appropriate message is sent to the PC over the serial link and the “found
it” LED is lit for one second. If no match is found, counter is incremented. The iftest then checks to see if
counter “rolled over” to a negative value. If it did, counter is reset to 0, the recycleCounter is incremented, a
message is sent to the PC, and the recycle LED is lit for a second.

Finally, the code then checks to see if the recycleCounter equals the maximum number of recycles we
wish to run (i.e., equal to MAXRECYCLES). If so, the call to FakeAnEnd() makes it look like the program
ends. What actually happens is we create a while loop that has no expression! or expression3. If you think
about it, a loop that is missing those expressions results in an infinite loop because the state of the loop never
changes. An infinite loop, therefore, is a loop that never ends. Because there are no statements in the infinite
loop, it appears that the program has ended. However, what is really happening is that we are spinning
around in a tight while loop doing nothing.

Listing 5-5Is SDC

The code in Listing 5-5 is Sorta Dumb Code (SDC) for several reasons, even though it does perform as
designed. First, look closely at the code and ask yourself: Does the while test ever have a chance to see a
negative value for counter? The answer is No. The reason why the while statement never sees a negative
value is because we check for that possibility within the while loop code itself, and change it to 0 if it is
negative. Therefore, you might as well replace the while test with

while (true) {

which sets up an infinite loop for the while test. This is a more honest statement than the phony test
Listing 5-5 uses. (If something is always true, why waste the resources to test it?) The fact that we've created
an infinite loop won’t be a problem because we use FakeAnEnd() to terminate the program anyway.

Think about it.

Secondly, any time you see a repeating code pattern, try to think of ways to simplify it. In our case, the
statements

digitalWrite(foundIt, HICH);

delay(PAUSE);

digitalWrite(foundIt, LOW);

and

digitalWrite(recycle, HICH);

delay(PAUSE);

digitalWrite(recycle, LOW);

are almost the same. Why not replace these statements with
ToggleLED(foundIt, PAUSE);

and

ToggleLED(recycle, PAUSE);

112

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

and write the following new function:

void ToggleLED(int whichLED, int howLong) {
digitalWrite(whichLED, HIGH);
delay(howLong);
digitalWrite(whichLED, LOW);

While these are minor changes, they do remove some clutter from the loop body and make it a little
easier to read. (A more detailed discussion of writing functions is presented in Chapter 6. However, the
function discussed here is a pretty simple improvement to identify and a simple function to write.)

The process of simplifying or “cleaning up” the code is called refactoring. While refactoring in this
case may save a few bytes of memory and add the time overhead of a function call, these impacts are quite
small. Is it worth it? To me, yes, it is. Anytime I can do anything that makes the code easier to read with
little or no performance or resource penalty, I make the change. Sometimes I feel that in the rush to get
something to work, I cobble the code together with bailing wire and chewing gum. Refactoring simply allows
me to go back and reexamine the code so I can remove the bailing wire and chewing gum. Indeed, just
thinking about future code refactoring will make you a better programmer as you write the code.

Getting Rid of a Magic Number

The code fragment we used to discuss the sizeof{) operator, however, should have caused your brain to itch a
little. Why? One reason is because the for loop had a “magic number” (200) in it:

for (index = 0; index < 200; index++) {

Suppose you increase the list size 200 to 210 elements. Now you have to plow through all of the source
code looking for each occurrence of 200 and change it to 210. As I mentioned in an earlier chapter, this is a
VEry error-prone process.

What if we rewrote the for loop as the following?
for (index = 0; index < sizeof(searchlList) / sizeof(searchList[0]); index++) {

Given what you know about the sizeof{) operator, the statement resolves to
for (index = 0; index < 400 / 2; index++) {

which reduces to:

for (index = 0; index < 200; index++) {

Recall that sizeof{) returns a byte count of a specific data item, so the expression sizeof{searchList)
returns 400, as you saw earlier. Likewise, the expression sizeof{searchList[0]) returns the size of a single
element of the searchList[] array, or 2 bytes for each int element.

So, what is the advantage of using the sizeof{) form in the for loop? Well, if you increase the size of the

array to 210, the expression factors out to:

for (index = 0; index < 420 / 2; index++) {
for (index = 0; index < 210; index++) {

113

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

Now that you have removed the magic number and replaced it with the sizeof{) expressions, if you
change the array size, recompiling the code automatically changes to the new array size for you! No error-
prone process to wade through.

A Macro for an Array Size

This array size calculation using sizeof{) is so useful that programmers often create what is called a
parameterized macro definition for it. Recall that a #define is a preprocessor directive that causes a textual
substitution in the source code. Suppose you write this at the top of your program source code:

#define ArrayElementSize(x) (sizeof(x) / sizeof(x[0]))
Now further suppose you write the for loop like this:
for (index = 0; index < ArrayElementSize(searchList); index++) {

When the preprocessor pass finishes making its pass over your source code, the preceding statement
becomes this:

for (index = 0; index < sizeof(searchlList) / sizeof(searchList[0]); index++) {

Look familiar? Note how the x in the macro is replaced by the array name searchList(] after the
preprocessor does its magic. The parameterized macro named ArrayElementSize() allows you to pass a
parameter (i.e., the name of the array) to the macro, which can then determine the element count for the
array. Shazam! Less work for you to do and no magic numbers to boot!

Loops and Coding Style

The question of coding style relative to program loops really boils down to a few simple questions. First,
if a loop only controls a single statement, braces are not necessary to mark the start and end of the loop
statement body. So the question becomes one that we first asked when you studied if statements: If the
braces are not necessary, should I bother using them?

Yes ... next question.

Okay, rather than a flippant answer, the reason is because, more often than not, you will end up adding
one or more statements to the loop statement body, thus forcing you to add the braces anyway. This is
particularly true of debugging statements that use Serial. print() to examine the values of variables. Always
adding the braces also lends consistency to your code, and that’s almost always a good thing. Finally, the
braces make it easy to see the start and end of a statement block.

One mistake you will make is forgetting to have a matching closing brace. This happens most often when
you have a large number of program statements being controlled by the loop. You can always tell which is
the matching brace by placing the cursor immediately to the right of a brace. The IDE will highlight the other
brace that goes with the block defined by the brace. This works for both opening and closing braces.

The second question is: Should I place the opening brace of the loop statement body on the same line
as the loop keyword (e.g., for, while) or should I drop it down to the next line? That is, should you use

for (k = 0; k < 1000; k++) { // brace on same line
or

for (k = 0; k < 1000; k++)

{ // brace on new line
114

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

Actually, I prefer to leave the opening brace on the same line as the loop keyword because that lets me
see one more line of source code without having to scroll the display. Also, that was the “K&R” style back
in the Dark Ages when I first started using C. However, some IDEs, like Visual Studio, default to placing
the brace on the next line below the first letter of the loop keyword. Also, there are a lot of programmers
who prefer the brace on a new line because it makes it easier to see the statement block. If you work in a
corporate environment, you may not have a choice and have to use the style dictated by the shop. If you do
have a choice, whatever style you select, use it consistently.

Third, I don't think I've ever seen a competent programmer who does not indent the statements within the
loop body one tab stop. This is one of those situations where, if you see someone jump off a bridge, you should
follow suit and jump off, too. Always indent the statements within a loop statement body (and ifand switch
statement blocks, too!) It makes them stand out and easier to read, and “easier to read” means less time spent
debugging. If you're lazy, you can always use Ctrl+T (or Tools » Auto Format) and let the IDE format your code.

Finally, sometimes you read code where there is a very long loop body with a ton of statements within
the loop body. In those cases, you might see something like this:

while (k < MAXCOUNT) {
// a bunch of loops statements
} // End: while (k < MAXCOUNT)

The intent of the comment at the end of the closing loop brace is to help find where the loop statements
start and end. I rarely do this, but perhaps I should. However, as mentioned earlier, if you place the cursor
immediately after the closing brace of a loop, the Arduino IDE “boxes” the matching opening brace up at
the top of the loop. Because of this, and even though the comment is laudable, I usually don’t bother adding
such comments.

Portability and Extensibility

Often you hear programmers talk about writing “portable code.” Writing portable code is a goal that good
programmers try to fulfill. Simply stated, portable code refers to program source code that can be moved from
one programming environment and successfully recompiled in a different programming environment with no
changes to the source code. It would be like taking a program written for the Arduino IDE and successfully
recompiling it without change in the Visual Studio IDE.

Why is writing portable code so hard? There are a bunch of reasons. First, it’s pretty unlikely that all
of the functions you find in the Arduino IDE are the same as those in the Visual Studio (or NetBeans, or
Enterprise, etc.) IDE. For example, pinMode() doesn’t even exist in Visual Studio’s IDE. Still, if you stick with
functions that are part of the Standard C library for most of your code (e.g., like memset()), chances are pretty
good that the Visual Studio C compiler also has those library functions, too.

Another portability problem is data type sizes. For example, suppose you are writing hourly
temperature data to an SD card. Further suppose you need to know the number of bytes written to the file
each day. You could write it as something like

bytesWritten = 48;
because you know each int takes 2 bytes for the Arduino IDE, so 24 * 2 equals 48. Well, there you go again—
using those stupid magic numbers! If you decide at some later date that you need to write the data every 30
minutes, you're back to the search-and-replace issues again.

Instead, you write this:
#define SAMPLESPERDAY 24
byteshWritten = SAMPLESPERDAY * 2;

115

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

Better, but still SDC. What if you move from the Arduino to a bigger microcontroller that uses
4-byte ints, like the netDuino does? Now you are not using enough bytes for the data. So you modify the
preprocessor statements again to:

#define SAMPLESPERDAY 24
bytesWritten = SAMPLESPERDAY * sizeof(int);

Now you have bytesWritten coded in such a way that it is portable between the Arduino and the
netDuino, even though their int sizes are different. Writing code with the idea of portability in the back of
your head is always a good thing.

Okay, so what does extensible code mean? Code is extensible if it can accommodate different sized data
sets without changes to the source code. In other words, if you are writing code to work with a company’s
inventory list of 1000 items, extensible code means that you could take the same code and easily implement
it for another company that has an inventory list with 5,000,000 items in it. Extensible code is desirable,
especially in a business environment, because the software can grow painlessly with the company’s growth.

Often code fails (and extensibility ends) at what are called boundary conditions. For example, if your
inventory list has up to 1000 items in it, the boundary conditions are 0 and 1000. Boundary conditions set
the limits for many program structures, like for, while, and do-while loops. Program bugs love to hide in
boundary conditions. For example, beginning programmers might write this:

for (i = 1; i = 1000; i++) {
if (target == inventorylList[i])
break;
// more code...

There are a number of problems here. First, arrays start with 0, not 1, so the lower boundary condition
(i.e., 0) never gets used. Second, expression2 in the for loop should be a relational test, not an assignment
operator, so that’s going to cause problems. Third, if they replace the assignment operator (=) with the
test for equality (==), the code may die an spectacular death because the iftest expression becomes i ==
inventoryList[1000] at the upper boundary, even though there are only 0-999 valid inventory indexes.

Once again, getting rid of magic numbers is the first step to making the code extensible. Defining your
arrays like this

#define MAXINVENTORY 1000
// more code...
int inventorylList[MAXINVENTORY];

makes it easier to extend the program without using error-prone processes like global search-and-replace.

Finally, think before you write. A few minutes defining the Five Program Steps for a given problem is
a minimal preparation step to writing a new program. Thinking and preparation makes writing programs
easier—and easier usually means more enjoyable.

Summary

Because of the way Arduino C uses the loop() function in all its programs, you have been using loops since
you ran your very first program. However, this chapter has introduced you to program loops in a more formal
way, plus making you aware that there are several different loop structures. You should now be comfortable
using for, while, and do-while loops in your programs. You should also understand what the necessary and
sufficient conditions are for a well-behaved program loop.

116

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

Take some time to invent a few loop programs of your own. If you can tie the code to a circuit, so much
the better. You will always learn more if you try to create your own code.

EXERCISES

1.

Look at the following code fragment:

int k;
for (k = 0; k < 1000; k++) {

k = DoSomethingCool(k);
}

What happens if the function DoSomethingCool() ends up decrementing k before it passes
the value back to the for loop statement body?

Answer: If the function decrements k, on the first pass the value assigned into k by
DoSomethingCool() is —1. That value is then passed to expression3 (k++), which
increments k to 0. Control then passes to expression2, which checks to see if kis less
than 1000. Because k is now 0 again, the call to DoSomethingCool() is called again,
which assigns —1 into k ... again. Clearly, this ends up in an infinite loop.

What happens in the following code fragment?

#define EVER ;; // Just two semicolons...
// Some statements

for (EVER) {
// Do some statements here

}
// The rest of the program

Answer: Know what? I'm not going to tell you. Instead, create a small program with this
code in the loop() function and make the following changes:

for (EVER) {
Serial.println("Pass... ");
}

And then look on the Arduino IDE monitor (Ctrl+Shift+M) to see what happens. Try to explain
what you see.

Suppose you want to find a part that has the numeric ID number 1000 out of
an inventory that has 500,000 items. Although all part numbers are present in
the inventory list, they are not necessarily in sorted order. (That is, you can’t
assume that part number 1000 is the 1000 item in the inventory list.) Write a
code fragment for the loop to look for the part number?

Answer: Did you write code similar to the following?
#define INVENTORYCOUNT 500000

int counter = 0;

117

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 PROGRAM LOOPS IN C

int partlocated;
int targetPart;
targetPart = PartTolLookFor(); // Assume this sets k = 1000
while (counter <= INVENTORYCOUNT) {

partLocated = NextPartNumber(counter);

if (partlocated == targetPart)

break;
counter++;

}

If you did, ask yourself this: What is the size of the inventory count and what is the maximum
number that can be expressed with an int? Look at Table 3-1 and fix the problem.

In the most general terms possible, when would you use the various loop
structures?

Answer: Use the for loop when you must execute the loop body a known number of times.
Use a while loop when you are looking for a particular value in a list of possible values. Use
a do-while loop when you must execute the statements in the loop body at least one time
while searching a list.

What is refactoring?

Answer: Refactoring is the process of looking for ways to simplify and “clean up” your
code. Some of the biggest benefits of refactoring are to make the code more readable and
perhaps more efficient by removing duplicate or redundant code. You can find more details
athttp://c2.com/cgi/wiki?WhatIsRefactoring.

Which loop coding style do you prefer and why?

Answer: There is no answer. It will depend upon how you feel about style or whether you
even have a choice. Your style may be dictated by company guidelines.

Remember the TV show Knight Rider? The car named Kitt has a series of lights
that would sequence on and off, from left to right. Using Figure 4-2 as a guide,
add 5 or 6 more LEDs to the circuit. Now figure out the code to make the LEDs
flash in a sequence similar to Kitt’s lights.

Answer: I'm not going to show you the code, just give you some hints.
int leds[] = {4, 5, 6, 7, 8, 9, 10}; // These LEDs are wired to pins 4-10.

void setup() {
int i;

for (i = 0; i < sizeof(leds) / sizeof(leds[0]); i++) {
pinMode(leds[i], OUTPUT); // Initialize LEDs for output
}
}

void loop() {
// you're on your own...

}

118

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab1
http://c2.com/cgi/wiki?WhatIsRefactoring
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Fig2
http://www.it-ebooks.info/

CHAPTER 6

Functions in C

You already know what a function is, but let’s give it a formal definition. A function is a body of code designed
to solve a particular task. You should think of a function as a black box, the contents of which are unknown
to you. All you care about is that it addresses some task to be accomplished in your program. Hundreds of
functions are available for you to use in various function libraries. A function library is simply a collection of
functions that share a common area of interest (e.g., the Math and Time functions in Arduino C.) However,
many vendors have added new libraries of their own to support products and add-ons that they sell for the
Arduino family. Functions make your life easier because you can stand on the shoulders of those who came
before you. You can use their code rather than writing, testing, and debugging the code yourself.

In this chapter you will learn

e The various components that make up a C function

e What function arguments are

e What function parameters are

e How data is passed between your program and a function

e Which design considerations are important when designing a function
e What “pass-by-value” means

e What a program stack is and how it is used with functions

¢ What a function signature is

¢ What an overloaded function is

There is a lot of information packed into this chapter. Take your time and think about what you are
reading ... functions are a basic building block of all C programs.

The backbone of C is its robust library of functions. In fact, C is one of the few languages that doesn’t
have any I/0O capability built into the language. Initially, ANSI C only had 32 keywords; Arduino C has
slightly less. Contrast those keyword counts with a language like Visual Basic with over 170 keywords
and you may wonder how you can do anything with C. Actually, C purposely was designed to be a crisp
language with a minimal number of keywords. Rather than bloat the language with a high keyword count,
C pushes many standard language tasks off into its standard function library. The neat part about this
approach is that you are not constrained by the way the language does things. If you don’t like the way the
existing library routines do things, you are free to write your own replacement. Later on in this chapter, we
will write a replacement for the standard library routine that determines if a specified year is a leap year.
While I may think my IsLeapYear() function is better than yours, you are free to disagree and write your own
replacement. Such a design philosophy makes it easy to modify or extend the language as you see fit.

© Jack Purdum 2015 119
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_6

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

The Anatomy of a Function

Later in this chapter you will write a short program that asks the user to enter a year, and the program
informs the user if the year entered is a leap year. In doing this, you will write a function named IsLeapYear()
that tests whether a given year is, in fact, a leap year.

Let’s take a look at the general structure of a C function, as shown in Figure 6-1.

Function type specifier
Function name

Function argument(s)

int IsLeapYear(int year)

{
// The statements that perform the task <€—Function body

}

Figure 6-1. Parts of a function

Function Type Specifier

First, the function type specifier appears at the start of the function definition. In our example, we want the
function to return an integer value. For my specific purposes, I want the function to return the int value 1 if it
is aleap year, and 0 if it is not. Most leap year functions return a Boolean value that is logic true if it is a leap
year, and logic false if not. The purpose of a function type specifier is to define the type of data that is returned
when the function is called. Recalling our backpack analogy, the function type specifier tells you the type of
data the function code placed in your backpack just before you left the function and returned to the caller.
The type of data returned from the function can be whatever data type you wish it to be (e.g., float, long, char,
byte, etc.), depending on how you write your function’s code. If no value is returned from the function, the
type specifier must use the void keyword for the function type specifier.

Note Just because the function places a piece of data in your backpack to haul back to the caller does
not force the caller to actually use that data. Indeed, each of the Serial.print() methods you have used in
previous programs returned a count of the number of characters printed, but we have yet to actually use that
information. Each function description should tell you the function type specifier, and, hence, what'’s in your
backpack when you leave the function.

Function Name

The second part of a function is the name of the function. Function names follow the same naming rules
you use for variable names. Most library functions start with a lowercase letter, although thatis nota
requirement of the language. Personally, I tend to start the name of functions that I write with an uppercase
letter so that I know that I wrote the function and it did not come from a library of functions written by
someone else. Again, this is not a naming rule, simply a style convention I tend to follow. That way, if
something in the code isn’t working correctly and I see an uppercase function name, I know that I wrote that
code and it may contain the error. (Chances are pretty slim that an error exists in public library functions.)

120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

Good Names, Bad Names

The choice of a function name does matter. Good function names tell you what the function does, but
not how it does it. For example, suppose you need to search a list of data to find a particular value. There
are many different ways to organize and search the list of data (e.g., sort into ascending order, create

a binary tree, use hash codes, etc.) You decide to sort the data and then search the list using a binary
search algorithm. You name the function DoBinarySearch(). Now fast-forward a few months, you now
have learned how to use hash codes, and you discover that the hash algorithm will significantly improve
the performance of your program. You write the function and name it DoHashSearch(). Now you have
to go back through your source code and change all instances of DoBinarySearch() to DoHashSearch().
True, you could just change the code in the DoBinarySearch() to implement the hash code algorithm,
but that seems a little deceptive. Also, if someone else has to look at your code, they read it expecting to
find a binary search algorithm and end up scratching their head because they are reading a hash code
algorithm.

A better name for the function would be FindListItem(). The reason it’s a better name is because it tells
the user of the function what the function does, not how it’s done. If you decide to implement a different
algorithm at some later date, you can do so with a clear conscience because the function name says nothing
about how things are done. A function should be a black box in that it tells you what it does, but provides no
details on its implementation.

Some of you are saying: “But major language and compiler vendors do have functions named
ShellSort(), QuickSort(), and other algorithm-specific names.” True, but you want your functions to be
task-specific, not algorithm-specific. If you are working with a language that offers you a choice, great!
However, I would still write my own function, as in:

int FindListItem(int list[], int target)

{
ShellSort(list); // Sort the data
return FindItem(list, target); // Find the item

}

In this case, you've wrapped the details of how the sort is done in a function that says what is to be done.
If you decide later than some other algorithm works better, it is very easy to make the change and you don’t
have to lie about the implementation. Even better, the person using your code doesn’t have to do a search-
and-replace in their program. A simple recompile and your new algorithm is in the program!

Function Arguments

After the function name comes an opening parenthesis followed by zero or more function arguments.
Function arguments are used to pass data to the function that it may need to perform its task. In earlier
chapters, we used the analogy of stuffing data into your backpack prior to calling the function. Those pieces
of data were function arguments. Multiple function arguments are delineated with commas between
arguments. You often hear programmers refer to function arguments as an argument list. The argument list
ends with a closing parenthesis.

As mentioned before, you can think of a function as a black box with a front door, back door, and
no windows. (What goes on inside the black box, stays inside the black box ... no peeking as to its
implementation.) Program control enters the front door carrying a backpack with any data in it that
the function needs to perform its task. The contents of the backpack are the function arguments. Some
functions, like the setup() and loop() functions you've seen in every program, do not need outside help to
do their thing. In these cases, the function has a void argument list and the backpack is empty. (Indeed, you
can write the word void as the argument list for both setup() and loop(), recompile the program, and the
compiler is completely happy with the changes.)

121

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

After the function does its thing, the backpack emerges from the back door. The content of the backpack
is the data produced by the function. The type of data that is stuffed into the backpack is dictated by the
function type specifier of the function. If the backpack is empty, the type specifier for the function is void.

If, for example, the backpack contains a floating point number when control exits the back door, the
function type specifier for that function must be either float or double, depending upon the type of data the
programmer who wrote the function decides is needed.

For example, consider the following:

int buyNails;
int nailsPerFoot;
int numberOfFeet;
// some more code...
buyNails = NailsNeeded(nailsPerFoot, numberOfFeet);

The NailsNeeded() function has two arguments, nailsPerFoot and numberOfFeet. In this example, the
argument list for the backpack is stuffed with the value of these two int rvalues and control is sent to the
NailsNeeded() function. Once inside the function’s front door, program code removes the two ints, does
some form of calculation, places a count of the nails needed as an int into the backpack, and sends control
back to the caller. Upon return from the function, the content of the backpack is then dumped into the
rvalue of the variable named buyNails. Stated differently, the content of the backpack becomes the rvalue
of buyNails. One of the advantages of function arguments is that the compiler can check to ensure that you
are passing the correct type of data to the function. For example, if you tried to make the call to the standard
library function named bit() using this

bit(2.33);

the compiler complains because it knows that the argument to the function cannot be a floating point
number. Catching this kind of mismatch between the type of data being sent to a function and the data type
that the function expects is one form of type checking. The compiler also performs type checking on the
value returned from a function ... sort of. Suppose you want to square the value 10,000. You could write

int val = pow(10000, 2); //WRONG!

and the compiler doesn’t complain. However, this code is wrong on several levels. First, pow() returns

a floating point number and the code is trying to jam a 4-byte float into a 2-byte int bucket. Second, the
numeric value computed by pow() in this example would overflow the maximum value an int can hold.
(INT_MAX s a #define'd constant for the maximum value of an int. You can use this constant in your code for
range checking.). Third, the arguments to pow() are floating point numbers, so a decimal point is needed to
ensure the compiler processes the arguments correctly. The call should be this:

float val = pow(10000.0, 2.0);

The lesson here is that the Arduino C compiler performs some type checking, but some errors can slip
through the cracks. If a function is returning bogus values, make sure you're passing data to the function that
is consistent with its argument list. Also, make sure that the return value matches the variable type you are
using to hold the return value.

You can get more help from the compiler when tracking down bugs of this nature. Go to the File »
Preferences menu option and check the box that tells the compiler to issue “verbose” messages during
compilation. These verbose messages often are helpful when tracking down some types of program errors.
When the verbose mode is turned on, you will also get processing messages (displayed with white lettering)

122

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

that simply detail normal compile processes. The list can be quite long and scroll out of view. However,
compiler warnings are displayed in orange lettering and you can scroll back through the messages and
read those that are of interest to you. Personally, I find the additional messages distracting, so I leave the
preferences without using the verbose mode.

Function Signatures and Function Prototypes

The function type specifier, the function name, and the function’s argument list are collectively called the
function signature. The function signature for my leap year function is:

int IsLeapYear(int year) // Function signature
If you add a semicolon on the end of the function signature,
int IsLeapYear(int year); // Function prototype... note semicolon at end

The function signature becomes a function prototype. Function prototypes are used by the compiler
to check to see if you spelled the function name correctly, if you are passing it the correct data types to the
function, and if you are using any return value correctly. Because this information is used for type checking,
function prototypes usually appear at the top of the source code file so that the compiler reads them before
you actually use them. This allows the compiler to place the information about the function in the symbol
table, thus creating an attribute list for the function that can be used for type checking.

Note The Arduino compiler maintains an internal list of function prototypes for the standard library function
and creates ad hoc prototypes for the functions you write. If your project has two or more source code files,
you would normally create a header file for those additional source code files. Header files are used to pass
information to the compiler that it needs to properly process your program. For example, if you added a source
code file named MyFunctions.cpp (it's a C++ file), you would also create a header file named MyFunctions.h,
which would contain the function prototypes (and other information) for all of the functions defined in the
MyFunctions.cpp source code file. Then, at the top of your *.ino project file, the first line would be

#include "MyFunctions.h"

which tells the compiler to read that header file so it can do function type checking on your new functions. I will
have more to say about this in Chapter 11.

One more thing: there is no code generated with a function prototype. That is, the actual code for the
function appears elsewhere, either in a library or later in your code. As such, no actual program memory is
allocated for a function prototype. This means there is no Ivalue for the function prototype in the symbol
table. Only the function’s attribute list as constructed from the function signature is in the symbol table.
Because there is no lvalue, function prototypes are data declarations, not data definitions.

Finally, if you know a function’s signature or its prototype, you know the information necessary to use
the function. You also know what type of data is returned from the function. What you don’t know from
either of these things is how the function is implemented, which is as it should be. What happens inside the
black box stays inside the black box.

123

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_11
http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

Function Body

The function body begins with the opening brace ({) that follows the closing parenthesis of the argument list
and extends to the closing brace (}) of the function. Stated differently, the function body starts at the point
where the function signature ends. All of the statements between these two characters comprise the function
body. Obviously, the statements in the function body determine how the function is implemented.

If the function type specifier is anything other than void, at least one of the statements in the function
body must contain the keyword return. For example:

int VolumeOfCube(int width, int length, int height)

{
int volume;
volume = width * length * height;
return volume;

}

In this example, the function type specifier is an int, so the function must have a return statement in it. If
you forgot the statement

return volume;

the compiler should issue an error message. You can think of the return statement as an instruction telling
the compiler what to put into your backpack. If the function type specifier is void, there is no need to place
anything in the backpack. Otherwise, there needs to be a return statement telling the compiler what data
type to put in the backpack and return back to the caller.

Note that experienced C programmers tend to make their code as short as possible. As a result,
programmers often would write the code as

int VolumeOfCube(int width, int length, int height)
{

}

return width * length * height;
which removes the temporary variable volume.
Unfortunately, the Arduino C compiler lets you get a little lazy about return values. For example, if you wrote

int myFunction(int a)

{
}

int temp = a;

the compiler should complain that you are not returning a value from the function, even though you used
the int type specifier. Alas, unless you have the verbose compiler messages turned on, the compiler is mute
about this error. This can be nettlesome if you did something like

int number = myFunction(10);

because some kind of indeterminate junk is going to be assigned into number. Debugging this type of

error can be frustrating because the code looks so simple and you're getting no debugging hints from
the compiler. Just keep in mind: when the compiler seems to be executing code that isn’t there, it isn’t.

124

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

The compiler is doing exactly what you told it to do. It’s just not being real helpful in telling you what you
meant to do isn’t what it is doing.
On a more positive note, if you change the function type specifier from int to void

void myFunction(int a)

{
}

int temp = a;

and then try to do something silly like

int number = myFunction(10);

which tries to assign “nothing” (i.e., void) into number, the compiler issues an error message stating
void value not ignored as it ought to be

which is at least helpful in finding the error.

Overloaded Functions

Whenever a function shares a common name, but has two or more different signatures, it is called an
overloaded function. In most cases, it is the argument list that differs across signatures. (Technically, the C
programming language does not allow overloaded functions, whereas C++ does. Because the Arduino C
compiler is built upon the GCC compiler, Arduino C does permit overloaded functions. This is a good thing!)
Often, two signatures are used when a default value doesn’t solve the task at hand. For example, in Chapter 5,
Listing 5-4 uses the random() function, passing in lower and upper bound values for the random number:

randomNumber = random(MIN, MAX);
However, if we look at the documentation for random(), we see that we could have used
random(201);

because the function has an overloaded function signature with a single argument in its argument list.
Another example is

Serial.print(val);

which you have used in other programs. However, if you want to display val in hexadecimal instead of
decimal, you could use:

Serial.print(val, HEX);

Clearly, the print() method for the Serial object is overloaded because the same method name has two
(actually, more than two) function signatures.

Overloaded functions add a degree of consistency (i.e., using the same name) in a programming
situation where there is a small nuance of difference in what the function needs to perform its task.
Overloaded functions are not difficult to understand, but you do need to consult the documentation for any
functions you are not familiar with, simply because they well may be overloaded. If they are overloaded,
it simply means you have more choices in the way you go about solving a problem. I will have more to say
about overloaded functions in later chapters.

125

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_5
http://dx.doi.org/10.1007/978-1-4842-0940-0_5#FPar4
http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

What Makes a “Good” Function

I've already touched on some of the things that are part of a good function definition, but let’s consider those
conditions in a little more depth.

Good Functions Use Task-Oriented Names

A good function name is a description of what the function does. Usually, a function is designed to solve
some particular problem or task. If so, the function name should reflect what the function does. Often the
function name is action-oriented, such as GetThis(), DoThat(), SetBit(), ReadlIOBit(), and so forth. Such
names reflect the nature of the task at hand, not how that task is accomplished.

As mentioned earlier, function names should reflect what is to be done, not how it is done. The
exception is when you are writing a function that specifies the way something must be done (e.g.,
BubbleSort(), ShellSort(), CreateLinkedList(), etc.) Such method-oriented names are fine if a task requires
that the problem be solved a specific way. For example, suppose you need to search a 100,000-word
document for a specific phase. One way is a brute force approach where you just plow through the file
looking for the phrase. You might name that function BruteForceSearch(). A more sophisticated algorithm
uses a Boyer-Moore algorithm, suggesting you name the function BoyerMooreSearch(). Clearly, method-
named functions require you to suggest the underlying method or algorithm being used. However, more
often than not, you will be creating task-oriented functions. Using task-oriented function names makes it
easier for you to change the underlying algorithm without breaking existing code.

Good Functions Are Cohesive

A cohesive function is a function that is designed to accomplish a single task. Chances are, if you can’t explain to
someone what a function does in two sentences or less, the function is too complicated and is not cohesive. In
such cases, redesign the function and break it into smaller tasks and make each of those smaller tasks a function.

I mentioned that students often want to build a Swiss Army knife function—a function that is designed
to address multiple tasks at once, and, inevitably, doing none of them well. Also, such multiuse functions
require more control code in them to pick between the options. More code almost always means more time
writing, testing, and debugging the code. Also, by breaking the tasks down into simpler multiple functions,
you increase the odds that you can reuse those functions in other programs.

How do you know when a function lacks cohesion? First, the two-sentence rule is a good start in
deciding if the function attempts to do too much. Another tip-off is when you see an argument list with three
or more arguments. Usually, a single-task function doesn’t need all that much help in terms of data from the
outside world. Small backpacks are a good thing. When you see a long argument list, you should step back
and ask yourself if the function is cohesive.

Good Functions Avoid Coupling

Coupling refers to the need for one function to depend upon the results of another function to perform its task.
For example, earlier I mentioned a function named FindListltem() and suggested:

int FindListItem(int list[], int target)

{
ShellSort(list); // Sort the data
return FindItem(list, target); // Find the item
}
126

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

This is really not a good function because it has two tasks:
e Sorting the data
¢ Finding the item in the sorted list

It would be better to remove the ShellSort() function call out of the FindListItem() function, and move
the FindItem() function code into the FindListltem() function body. You could then toss the Findltem()
function away. The FindListItem() is no longer coupled to (or depends upon) the ShellSort() function to
perform its task. The function is also more cohesive now because it no longer is required to perform two
tasks. True, to have the code behave as before, you would need to have two calls:

ShellSort(list);
FindListItem(list, target);

However, in my mind, this divide-and-conquer approach is a good thing. If I later discover a new
function is more efficient at sorting the list (e.g., SuperfastSort()), I can replace the ShellSort() call with
SuperfastSort(). If we had the old form where the sort process is buried within the function, we're stuck with
ShellSort(). This is especially true for function libraries where you may not have access to the source code for
the library.

There are situations where you cannot totally avoid some level of coupling. If your program has to write
to a data file, you need to open the file first. If you're reading a sensor, there may be a sequence of tasks that
must be performed in a specific order for the sensor to do its job. For example, if you need to read a line
of text from a data file, it is better to have separate Open(), Read(),and Close() functions than to bury the
Open() and Close() functions within a Read() function. That way, you can still have a cohesive function with
minimal coupling.

Writing Your Own Functions

What is the first step you should do when writing your own functions? The first step should be to determine
if someone else has already written the function. A good place to start your search is http://arduino.
cc/it/Reference/Librarie and http://playground.arduino.cc. Reading about existing libraries may
even provide new insight into solving old problems. A Google search may also be a productive area of
investigation. If you purchase a shield or some other hardware-specific board, you should also see if their
web site hosts source code from their customers. Many do and some of the code is very good. Lesson
number one is: Don’t write code if you don’t have to.

Assuming you can’t find an existing function that fulfills your needs, then it is time to consider
designing your own function. For this example, you are going to design and write a function that determines
if a given year is a leap year or not. For the existing libraries I could find, their leap year function returns a
Boolean value of true if it is a leap year, or false if it is not a leap year. Although I could make do with those
existing functions, it doesn’t behave the way I want to use it. (We'll set the function design goals in a few
moments.) So, let’s make a small trip to the drawing board.

Function Design Considerations

Clearly, you need to design the function to accomplish a single (cohesive) task. Figure 6-1 provides a useful
roadmap for starting our design. Let’s examine the pieces of the function signature presented in Figure 6-1
from a design perspective.

127

www.it-ebooks.info

http://arduino.cc/it/Reference/Librarie
http://arduino.cc/it/Reference/Librarie
http://playground.arduino.cc/
http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

Function Type Specifier

First, what data type do we want the function to return? While the leap year function for most language
libraries (C, Java, C++, Visual Basic, C#) return a Boolean, we want ours to return an int. Why an int data
type for the return value instead of a Boolean? The reason is because the most common use for a leap year
calculation is to determine how many days there are in February for a given year. Perhaps the day makes a
difference in a billing cycle, interest payment, or some other calculation. Whatever the reason, if you use a
“standard” leap year calculation, you need code that looks something like the following:

// some SDC code... at least for my purposes
int daysInFeb;
if (IsLeapYear(year) == true)
daysInFeb = 29;
else
daysInFeb = 28;

This code is SDC for the task we have specified, so we might refactor it by initializing daysInFeb and
remove the else clause:

// still some SDC code...

int daysInFeb = 28;

if (IsLeapYear(year) == true)
daysInFeb = 29;

The problem is that we still need the if statement to set the proper number of days in February.
However, if you write the function to return 1 (as an int) if it is a leap year or 0 otherwise, then you can write:

// some PGC code...
int daysInFeb = 28 + IsLeapYear(year);

Given what we want the function to accomplish, this is Pretty Good Code (PGC) and is a good design for
our solution. As a general rule, less code is good code as long as its intent remains clear and it accomplishes
the task at hand.

Showoff Code

I just saw the following C statement online:
i=(i<<3) + (i<<1) + (*string - '0");

Essentially, what this does is take an ASCII digit code and multiply it by 10. While this is clever code, I
would fire the guy who wrote it if he worked for me because it’s “show-off code.” Writing code like this is difficult
for other programmers to decipher and just isn’t worth the hassle it costs to suport it. If you are writing code
for yourself and there’s some huge performance gain by bit-shifting the data, perhaps then it’s okay. However,
chances are such code is really not necessary. Indeed, the compiler may well optimize the difference away.

Function Name

What's in a name? A lot! We've already stated that we want task-oriented names, not method-oriented
names. We've already settled on a name. IsLeapYear() suggests that the function is going to address the task
of finding out if a given year is a leap year. Will this cause a function name collision (i.e., two functions with

128

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

the same name) in your code? After all, this name is used in some other libraries and the function signature
is the same. Even if you do happen to include a library with the same function name, the compiler gives
precedence to the function whose source code is being compiled. Because you are supplying the source
code for the function, name collision is not a problem. Also, our function type specifier is an int, whereas the
standard library is a boolean, which means the signatures are different.

Argument List

Our function does need data from the “outside world” to accomplish its task. Specifically, the backpack
needs to have an int data type that specifies the year stuffed into it before we call the function. Again,
visualizing a function as a black box with a single entry and exit point is a good mental picture for the way a
function should work. That is, after you write this function, handing the function to another programmer for
use of your function should prompt only three questions from them:

e What task does this function perform?
e Whatdata do I need to send to the function?
e Whatdata do I get back from it?

If you've done your design work well, the function name answers the first question, the argument
list answers the second question, and the function type specifier answers the third question. That is,
the function signature fills the bill. When the day is done, a programmer using your code could care less
how you write the code inside the function—as long as it accomplishes the task at hand with reasonable
efficiency.

Function Body

The function body begins with the opening brace, followed by the statements that are necessary to
accomplish the task at hand, followed by a closing brace. Because our type specifier returns an int, you
immediately know that one of the statements must use the return keyword to send an int value back from the
function.

If you think about it, the function argument list corresponds to the Input Step of the Five Program
Steps you learned in Chapter 2. The function body reflects the Process Step since it contains the statements
necessary to solve the task. What you need now is an algorithm that tells you how to determine if a year is a
leap year.

You can Google “leap year” and find the algorithm for the leap year calculation. An algorithm is simply
a step-by-step set of instructions for solving a problem. The leap year algorithm states: If the year can be
evenly divided by 4, but not by 100, it is a leap year. The exception occurs if the year is evenly divisible by 400, it
is a leap year.

Although you could write the code using a couple of nested if statements, C provides a less messy way of
writing the code. To implement this algorithm, let’s take a small detour and learn about the logical operators
C provides to you and how you can use them.

Logical Operators

Logical operators allow you to combine logical expressions. The logical operators are presented in
Table 6-1.

129

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_2
http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

Table 6-1. Logical Operators

Operator Meaning Example
&& Logical AND X&&Y
1 Logical OR X||Y

! Logical NOT X

The best way to illustrate the use of the logical operators is to first consider how they relate to a
concept known as a truth table. Truth tables show all of the possible outcomes of a logical test using two
expressions.

Logical AND Operator (&&)

The logical AND operator is formed by placing two & characters back-to-back with no space between
them (8&). Consider the truth table for the logical AND operator, as shown in Table 6-2.

Table 6-2. Logical AND (&&) Truth Table

Expression1 Expression2 Expression1 && Expression2
TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

Suppose you have variables k and j, and k equals 2 and j equals 3, then the statement
if (k ==2 8 j == 3)

finds expressionl (k == 2) is true and expression2 (j == 3) is also true. Looking in Table 6-2, because both
expressions within the if statement are true, the logical AND of the two expression is true. However, using the
same values for k and j, the following statement

if (k == 9 8&% j == 3)

results in expressionl being false (k is not equal to 9), which corresponds to the third row in Table 6-2 (i.e.,
False-True for the expressions) yielding a false condition for controlling the outcome of the if statement. As
you can see from Table 6-2, a logical AND operation only yields a logic true result when both expressions are
true. All other combinations are logic false.

In complex expressions, you may have multiple logical operators being used. (You will write one later
in this chapter.) If that’s the case, you also need to know where the logical operators fit in with respect to
operator precedence. Table 4-2 from Chapter 4 (the page number of which you wrote on the back cover of this
book, right?) shows that the logical AND and OR operators have precedence levels of 10 and 11 in Table 4-2,
respectively. As you can see from Table 6-1, the NOT operator is a unary operator and from Table 4-2 you can see
ithas a relatively high precedence level of 2. You can use the precedence table to resolve complex statements.

130

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Tab2
http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Tab2
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Tab2
http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

Logical OR (]|)

The logical OR operator is formed by placing two vertical bars—also called pipe (|) characters—back-to-
back with no space between them (| |). The truth table for the logical OR operator is shown in Table 6-3.

Table 6-3. Logical OR (||)

Expression1 Expression2 Expression1 || Expression2
TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

Once again, suppose you have variables k and j, and k equals 2 and j equals 3, then the OR expression in
the following

if (k=2 || j ==3)

is logic true. However, it is also true that

if (k=9] j==3)

results in logic true for the OR expression when it was logic false for the AND operator. A logic OR is only
false when both expressions are false. As long as at least one expression is true, the outcome is true. In fact, if
the first evaluated expression in an OR statement is logic true, the code will not even bother evaluating the

next part of the OR statement. This is called short-circuit expression evaluation and allows the compiler to
perform a small code optimization.

Logical NOT (!)

The logical NOT operator is the exclamation point (!). Because the logical NOT operator is a unary operator,
its truth table is a little simpler, as shown in Table 6-4.

Table 6-4. Logical NOT (1)

Expression1 ! Expression1
TRUE FALSE
FALSE TRUE

Asyou can see in Table 6-4, all the NOT operator does is invert, or toggle, the logic of the expression. For
example, suppose k equals 2 again. Then

if (! k == 2)

131

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

is logic false. Because expressionl is true (k does equal 2), Table 6-4 shows that the result of the logical NOT
operator is logic false. I surround the expression in a NOT operation with parentheses, as in

if (1 (k = 2))

because the test for equality operator (==) has a lower precedence than the NOT operator. Also, the
parentheses makes it more clear what the intent of the expression is.

Writing Your Own Function

Now that you understand the logical operators, let’s write the body of our function. Repeating our leap year
algorithm ... if the year can be evenly divided by 4, but not by 100, it is a leap year. The exception occurs if the
year is evenly divisible by 400, it is a leap year.

Let’s break this down, part by part.

First, the statement: “If the year can be evenly divided by 4” means that dividing the year by 4 should not
produce a remainder after division. This is precisely what the modulo operator (%) is intended for: it returns
the remainder after integer division. You can write this element of the algorithm as the logical expression:
(year % 4 == 0)

Second, the statement: “but not by 100” is actually saying: “but the year is not evenly divisible by 100.”
Again, the modulo operator (%) is designed for this type of operation, so you can write the expression as:

(year % 100 != 0)

Taken together, if both of these expressions are true, the year is a leap year. Therefore, you can write the
two expressions as:

(year % 4 == 0) && (year % 100 != 0)

If these two expressions are true, it is a leap year. This complex expression corresponds to the first row in
Table 6-2. You are not done, however, because of the “exception” stated in the algorithm.

The third expression is: “The exception occurs if the year is evenly divisible by 400, it is a leap year” You
can write this expression as:

(year % 400 == 0)

The algorithm states that, regardless of the other two expressions, if this expression is true, it is a leap
year. Therefore, if the complex expression

(year % 4 == 0) && (year % 100 != 0)
is true, or if the simple expression
(year % 400 == 0)

is true, the year is a leap year. Clearly, this is a situation where the OR operator is needed for the exception.

132

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

Now that you have broken the algorithm down into its component expressions, you can write the test on
year to determine if the year is a leap year. The complete iftest becomes:

if (year % 4 == 0 8% year % 100 != 0 || year % 400 == 0) {
return 1; // It is a leap year

} else {
return 0; // not a leap year

}

If you read the preceding if expression, you literally end up restating the leap year algorithm. Now let’s
take all the pieces/parts and fit them into a function.

The IsLeapYear() Function and Coding Style

No doubt you can take things from here and finish writing the leap year function. However, let me suggest
that the coding style that you use does make a difference. Although there are no coding style “rules” for
functions, the function style shown in Listing 6-1 has served me well over the years.

Listing 6-1. The IsLeapYear() Function

Vauioiuio

Purpose: Determine if a given year is a leap year

Parameters:
int year The year to test

Return value:

int 1 if the year is a leap year, 0 otherwise
¥k
int IsLeapYear(int year)
{
if (year % 4 == 0 8% year % 100 != 0 || year % 400 == 0) {
return 1; // It is a leap year
} else {
return 0; // not a leap year
}
}

This style starts the function definition with the documentation for the function using a multiline
opening comment sequence of characters (/*) followed by four more asterisks. The next line defines the task
that this particular function is supposed to address. The next statement (or statements if the function has
more parameters) tells the nature of the data that is being passed into the function. If you enter the black box
with an empty backpack, you should still have a parameters section. In that case, however, you just specify
void for the parameter list.

Arguments vs. Parameters

Note that I specifically use the term parameters here, but arguments elsewhere. When you call the
IsLeapYear() function, you determine which variable has its value sent to the function. You might, for
example, have an array of integer values, each of which represents a year. You may decide that year[3] has
its value passed into the IsLeapYear() function. That is, you get to decide which argument gets passed (e.g.,
IsLeapYear(year[3])) to the function.

133

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

Now look at things from the IsLeap Year() perspective. It has no choice about the data: the value to be
used is “dictated” to it ... that value is handed to the function (in a backpack shoved through the front door!)
and it has no choice in the matter. Therefore, think of an argument as a choice that the programmer makes
as to the value that gets sent to the function. Think of a parameter as a value that is forced into the code ...
there is no choice in the matter from the function’s point of view.

After the parameter list comes the Return value element of the function documentation. Clearly, the
value returned from the function is dictated by the function type specifier. However, the documentation
should state the interpretation of that value. In our case, a value of 1 means the year passed to the function is
aleap year, and 0 means the year is not a leap year.

Following the return value comes a series of four asterisks and a closing multiline comment character pair,
**4k%/ This sequence is used to delineate the end of the function documentation comment. The next line is
the beginning of the function definition and starts with the function type specifier (int), and is followed by the
function signature (IsLeapYear(int year)). The next line is the opening brace of the function body, followed by
the statement(s) that comprise the function body, followed by the closing brace of the function body.

Why Use a Specific Function Style?

Once again, C could care less about the coding style you use, so why use this style? For almost 20 years

I owned a software company that produced C programming tools and I insisted that every function a
programmer wrote followed this style ... exactly. If I found code that didn’t use this style, that programmer
had to buy lunch on Friday for all the other programmers. It didn’t take long for new programmers to learn
the coding style rules.

The reason for following these coding style rules was because it lent itself to creating a self-
documenting programmer’s manual. Early in the company’s history, I wrote a program that would search
through all the C source code files looking for the /***** character sequence. Once that sequence was
found, I knew that everything from that point until the program read the *****/ character sequence was
the documentation comment for that function. The program then copied the complete comment, plus
the line following the ending comment sequence (i.e., the function signature), into a simple text file. The
program also wrote the source file name (e.g., date.c) and the line number where the function started in
the source file.

After all the source files were read, the program sorted the functions by name and printed out the text
file. The resulting printout then contained a complete list of all the functions that were available in the
function library arranged in alphabetical order, including the source file name and line number.

Had a consistent style not been used by the programmers, this type of manual would be much more
difficult to produce and the process would have been less automated. Also, using a consistent style makes it
easier for programmers to read each other’s code. Even if you are just writing code for yourself, a consistent
style will still make it easier for you to read your own code, especially six months down the road. For those of
us who can’t remember what they had for breakfast, this programming consistency is a real plus. Whatever
style you end up using, make sure you use it consistently. It will make life easier for you in the long run.

Leap Year Calculation Program

The code in Listing 6-2 presents a complete program designed to take input from the user and determine if
the year entered is a leap year or not. The setup() function simply establishes the communications rate for
the Serial object and initializes the serial buffer. You can think of the serial buffer as a small (64-byte) section
of memory devoted to storing data from the serial port.

In the loop() function, the call to the Serial.available() function returns the number of data bytes
that are currently in the serial buffer. If any data is available, several working variables are defined and the
program calls ReadLine().

134

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Listing 6-2. Leap Year Program
/%%

Program: find out if the user typed in a leap year. The code assumes
the user is not an idiot and only types in numbers that are a valid
year.

Author: Dr. Purdum, Nov. 17, 2014
*%)

#define MAXCHARS 10
void setup()

Serial.begin(9600);
}

void loop()

if (Serial.available() > 0) {
int bufferCount;
int year;
char myData[MAXCHARS + 1]; // Save room for null

bufferCount = ReadLine(myData);

year = atoi(myData); // Convert to int

Serial.print("Year: ");

Serial.print(year);

Serial.print(" is ");

if (IsLeapYear(year) == 0) {
Serial.print("not ");

}

Serial.println("a leap year");

}
}

Vioioiuio

Purpose: Determine if a given year is a leap year

Parameters:
int yr The year to test

Return value:

int 1 if the year is a leap year, 0 otherwise
%k

int IslLeapYear(int yr)
if (yr % 4 == 0 & yr % 100 !'= 0 || yr % 400 == 0) {

return 1; // It is a leap year
} else {

www.it-ebooks.info

FUNCTIONS IN C

135

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

return 0; // not a leap year

}
}

Vadkiats
Purpose: Read data from serial port until a newline character is read ('\n')

Parameters:

char str[] character array that will be treated as a null-terminated string
Return value:

int the number of characters read for the string

CAUTION: This method will sit here forever if no input is read from the serial port
and no newline character is entered.
****/
int ReadlLine(char str[])
{
char c;
int index = 0;

while (true) {
if (Serial.available() > 0) {
index = Serial.readBytesUntil('\n', str, MAXCHARS);
str[index] = '\0'; // null termination character
break;
}
}

return index;

}

The code for the ReadLine() appears near the bottom of Listing 6-2. Although the ReadLine() code has
some SDC elements in it, it's good enough for our purposes here. The code uses an infinite while loop to wait for
a character to appear in the serial buffer. When that happens, the call to Serial.readBytesUntil() is made. (Notice
how library functions use a lowercase letter for the start of the method name, while my functions all start with
an uppercase letter. Most Arduino libraries use the objected-oriented syntax of an uppercase class name (e.g.,
Serial) followed by a lowercase method name (e.g., read()) with a dot operator separating the two names.)

The first argument in the readBytesUntil() method is a newline character (' \n'), which is C’s
abbreviation for pressing the Enter key). The purpose of the newline character is to terminate the input
stream to the Serial object. The second argument dictates where the Serial object is to place the characters
that are read from the Serial monitor. The third argument sets the limit to the number of characters that
are to be read. This limit ensures that we don'’t “overflow” the character string where we are storing the
characters. In other words, the three arguments say: “Read characters from the Serial object into str[] until
you read a newline character, up to a max of MAXCHARS.” Note that the drop-down box at the bottom of
Figure 6-2 has the Newline option selected. This means that when you click the Send button (or press Enter),
the newline character is appended to whatever has been typed in the input text box. This ensures that the
newline character is present for readBytesUntil() to terminate reading characters.

The readBytesUntil() method returns the number of characters read, which we assign into index. When
the newline character is read, that character is not placed into the character array. Instead, the newline
character is replaced with a null character (' \0') and placed into the array using index to determine where
to place the null. Therefore, the character array can now be treated as a string variable by the rest of the
program

136

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

Upon return from ReadLine(), the code calls the standard library routine atoi() (ASCII to integer) to
convert the contents of the string variable to an integer variable named year. The call to IsLeapYear() then
determines whether the year is a leap year or not.

Figure 6-2 shows what the Serial monitor looks like as the program runs. (You can activate the serial
monitor using the Tools » Serial Monitor menu sequence, or by using the Ctrl+Shift+M key sequence,
remember?)

Year: 2012 is a leap year
Year: 2015 is not a leap year

Figure 6-2. Using the serial monitor

To supply the year to be tested, place the cursor in the text box at the top of the serial monitor dialog box
and type in the year to test. Click the Send button (or press Enter) to transfer the data to the serial buffer on the
pc board. The call to IsLeapYear() then causes the appropriate message to be sent back to the PC, as shown in
Figure 6-2. (Make sure you see the Newline choice in the drop-down list box at the bottom of the monitor.)

There are a few things going on in the program that I will defer until the next chapter. However, it is
important that you understand the mechanism the function uses to pass data into and back from a function.

Passing Data into and Back from a Function

Understanding how data is passed back and forth between a function and the main program is important.
Up to this point, we have been using our backpack analogy to explain how data is passed to and returned
from a function. What follows is a simplified description of how things work when functions have arguments
being passed into them and values being passed back from them. While I've taken a few liberties, the
concepts are true.

Consider the following line from Listing 6-2.

if (IsLeapYear(year)) {

In this instance, the function call to IsLeapYear() becomes expressionl for the if statement. Let’s see how
this works.

137

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

Pass-by-Value

The first thing to notice is that the variable name year is passed to the IsLeapYear() function. This is an
example of what is known as pass-by-value. When data is passed to a function using the pass-by-value
mechanism, it is the rvalue of the variable that is sent to the function, not the variable itself. In other words,
a temporary copy of the value of year (i.e., its rvalue) is copied and used in the call to IsLeapYear(). For
purposes of discussion, let’s assume that year equals 2012.

The mechanism for getting the value 2012 to the code for the IsLeapYear() function is called the stack.
The stack is a small section of memory that is organized like a plate dispenser at a salad bar. If the stack is
empty, it looks like Figure 6-3, where TOS stands for Top Of Stack and BOS stands for Bottom Of Stack. If the
stack is empty, it’s like a salad bar with no salad plates and looks like Figure 6-3. (I've taken some liberties
with the ordering of stack arguments, but the concepts are viable.)

i

T0S BOS
}| (Empty) |‘

Figure 6-3. The program stack when empty

Note that the TOS and BOS are equal ... they have the same address in memory because the stack is
empty.

Now suppose we push a memory address onto the stack. Let’s further assume all memory addresses for
the pc board are 4-byte values. Suppose we push a memory address (40,000) onto the stack; the stack now
looks like Figure 6-4. Pushing the memory address onto the stack causes the BOS to sink downward by 4
bytes, as illustrated in Figure 6-4. That is, the BOS sinks down four places to make way for the 4-byte memory
address (40,000), while the TOS remains constant. Let’s further assume that the memory address 40,000
represents the memory address that holds the next program instruction that is to be executed after returning
from the IsLeapYear() function call. (The ATMega2560, for example, has 256,000 bytes of memory.)

TOS >

IS

[«

> d

< BOS

Figure 6-4. The program stack with a memory address on the stack

So, how do we get the copy of the value of year to the function? As you might guess, we push a copy of
year’s rvalue onto the stack. Because year is an int, the copy of that value (2012) requires two bytes of storage.
This changes our picture of the stack to that shown in Figure 6-5. (The dividing line is a little heavier to show
the delineation between the two data items.)

138

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

TOS >

20

—_
> g O-PIN

< BOS

Figure 6-5. The program stack after pushing on the value of year

When the stack reaches this state, the program transfers control to the IsLeapYear() function code. (The
compiler knows exactly where to jump in memory to start executing the function code. That is, IsLeapYear()
has an lvalue just like every other data object in the program.) You can think of the stack as the backpack that
shows up with data from the outside world.

The signature for IsLeapYear() tells the function code how the data from the outside world is packed
into the backpack. That is,

int IsLeapYear(int yr)

causes the code to first look for the int data that is stored on the stack. It knows an int is on the stack because
the parameter list (int yr) tells it what has been placed on the stack. Because each int requires 2 bytes of storage,
the function code goes to the memory address held at the TOS, grabs 2 bytes of data (i.e., 2012) and copies
itinto the rvalue for the temporary variable yr. After the assignment of 2012 into yr takes place, the TOS is
adjusted to reflect that two bytes that have been popped off the stack. Like the salad bar plates, the TOS pops up
to reflect that two plates that have been removed. This means the stack once again looks like Figure 6-4.

Now the function’s statement body code is executed. Because 2012 is a leap year, the outcome of the
if statement is that the function must return the value 1 to the caller. To do that, the code pops off the next
4 bytes from the stack, which is the return address where the program is to resume execution after the call
to IsLeapYear() is completed (i.e., memory address 40,000). That memory address is popped off into the
program instruction pointer. You can think of the program instruction pointer as a program director that
tells the program where to find the instruction for the next program statement. Once 40,000 is popped off
into the instruction pointer, the code places the 2-byte return value of 1 on the stack. Now the stack looks
like Figure 6-6.

T0S >

< BOS

Figure 6-6. The stack after the return value is pushed onto the stack

Because the year 2012 is a leap year, the value 1 is pushed onto the stack. The function’s type specifier
tells us that the return value is an int, so 2 bytes of stack space are required. In other words, the backpack
now holds the value 1 inside of it stored as an int.

139

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

Because the instruction pointer holds the memory location of where the next program instruction
resides, the program branches back to the statement:

if (IsLeapYear(year)) {

However, because the code is now executing the instruction after the call to IsLeapYear(), the statement
appears as though it is written as:

if (1) {

The reason the code appears this way is because the call to IsLeapYear() has been completed and
the return value (i.e., 1) has been determined by the function’s statement block code. The IsLeapYear()
function’s type specifier tells us that an int is sitting on the stack (i.e., is in the backpack). That is, the
contents of the backpack has been popped off the stack as an int and becomes expression1 for the if
statement. Because a non-zero value is interpreted as logic true, the program sends a message back to the
PC over the serial link and informs the user that 2012 is a leap year.

While all of this pushing and popping data onto and off the stack may seem like an H-bomb to kill an
ant, it is important that you understand how data is passed to and returned back from a function call. It is
also important to note that it is a copy of year’s rvalue in the loop() function that is sent to IsLeap Year(), not
its lvalue. This is what is meant by pass-by-value. Because IsLeapYear() has no clue where year is stored in
memory, there is no way that IsLeapYear() can change the rvalue of year itself. Pass-by-value means that only
the rvalue of an argument is sent to a function, not its lvalue. And as long as the lvalue remains unknown to
IsLeapYear(), there is no way that the function can accidentally change the value of year back in loop(). Pass-
by-value is a mechanism (i.e., encapsulation) that attempts to protect the original data from contamination
by outside agents.

Summary

This chapter discussed many different aspects of designing, writing, and using functions in your programs.
Functions are important because they are the building blocks of all C programs. By following the design and
construction techniques discussed in this chapter, subsequent program development should become easier
as you gain experience and reuse functions from previous projects. When it comes to writing functions in

C, investing a little design time now can pay huge benefits down the road. Again, take your time and let the
information in this chapter sink in well. Life gets easier if you do.

EXERCISES

1. What is a function?
Answer: A function is a piece of code that is designed to perform a single task.

2. If you had to guess, what is the most common mistake beginning programmers
make when writing a C function?

Answer: Beginning C programmers try to make the function a Swiss Army knife. That is,
they try to make the function do more than a single task. The result is a function that is far
too complex and one that is less likely to be reusable in other programs.

140

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © FUNCTIONS IN C

What is a function signature?

Answer: A function signature is everything from the function type specifier through the
closing parenthesis. Therefore, the function signature includes the function type specifier,
the function name, and its parameter list.

What does function overloading mean?

Answer: Function overloading occurs when two functions share the same name but have
different signatures. For example, Serial.write(name) displays the content of variable name
on the output device. Serial.write(name, 4), however, only displays the first four characters
of name. Both flavors share the same function name, but have different signatures. It is the
different signatures that allow the compiler to figure out which flavor of the function to use.

What is a function type specifier?

Answer: A function type specifier appears immediately in front of a function signature and
specifies the type of data that is returned from the function.

Can a function return more than one value?
Answer: No.
Name three things you should strive for when writing your own functions.

Answer: First, select a name that tells what the function does, not how you do it. A function
is a black box with front and back doors and no windows. The user has no reason to peek
inside and see how you are solving the task. Second, the function should be cohesive.

It should be designed to solve one task and do it well. No Swiss Army knives. Finally,
functions should stand alone. That is, as much as possible, they should not rely on the
results of some other function(s). The function should not be coupled to some other
function.

Explain cohesion and coupling as they apply to functions.

Answer: Cohesion refers to a clear statement of a function's task. The description of a
cohesive function should be possible in a sentence or two. Coupling refers the need of one
function to use the results of another function. If two function are coupled, that means the
results of one function depends upon another function. Ideally, there should be no coupling
between functions.

141

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Storage Classes and Scope

This chapter examines the various ways that data are made available to your programs by examining how
and where that data is stored. The concepts presented in this chapter are important because inadvertent
access to a program’s data is a frequent source of program bugs. As a general rule, you want to restrict the
access to a piece of data as much as possible. That way, inadvertent changes to the data are less likely,
resulting in programs that have fewer bugs.

Hiding Your Program Data

What's the big deal about hiding data in a program? After all, if you hide the data “completely,” nothing could
ever change the data and the state of the program would never change, rendering the program pretty much
useless. On the other hand, giving free access to the data by every element in the program makes it very
difficult to determine who changed what. As a result, when a bogus value for a variable shows up, you don’t
know where to start looking or who to blame for the bogus value. That is, debugging a program becomes
more difficult. Therefore, the issue becomes one of balance: you restrict access to the data as much as
possible while still letting those program elements that need access to the data have that access.

The process of restricting access to data is called encapsulation. Simply stated, encapsulation means
restricting the access to a data item. You encapsulate the data in your program for the same reason medieval
kings kept their daughters in the castle tower ... to keep people from messing around with them.

Given that encapsulation is desirable, what are your options for restricting access to the data?
Surprisingly, there are quite a few options available to you. Most of these options are based upon the concept
of scope. The scope of a data object refers to its visibility and lifetime in a program. The understanding of
scope becomes clear when discussed by example.

The Three Scope Levels

There are three levels of scope available in a C program. The first, and “loosest,” most generous scope level, is
global scope. A data item defined with global scope is accessible from the point of definition of the data item to
the end of the file in which it is defined. Data items with global scope are the least virtuous types of data since
anyone in the source code file can have his way with them.

The second type of scope is function block scope. A data item with function block scope has its scope
extend from the point of definition of the data item to the closing brace of the function block in which it is
defined. Because function block data hides itself from all other parts of the program, other than the function
where it lives, it is considered reasonably virtuous.

© Jack Purdum 2015 143
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_7

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

The third type of scope is statement block scope. A data item with statement block scope extends from
the point of definition of the data item to the closing brace of the statement block in which it is defined.
Because its scope is restricted to a single statement block, its virtuosity is considered to be two steps
short of sainthood.

Let’s consider each of these three scope levels in detail, starting with the most restrictive.

Statement Block Scope

The most restrictive (virtuous?) level of scope is the statement block scope level. Consider the following code
fragment:

if (x < MAXVAL) { // start of if statement block
int temp; // temp's scope starts after this line
temp = x * 100;

} // temp goes out of scope here

Note how the variable named temp is defined within the if statement block. From the program’s point
of view, temp comes into existence the instant it becomes defined. That is, femp begins its existence when
the semicolon of the int temp; statement is read. The next statement simply multiplies whatever x is by 100
and shoves its rvalue into temp. So far, nothing is done with the result stored in temp. When the closing
brace of the if statement block is reached, temp “goes out of scope”.. it dies and is no longer available to the
program.

Let’s write a complete program so we can see how statement block scope works. Consider Listing 7-1.

Listing 7-1. Statement Block Scope Program
/**
Program: Demonstrate the concept of statement block scope

Author: Dr. Purdum, Sept. 19, 2014
**/

#define MAXVAL 1000
int k = 0;
void setup()

int x = 5;
Serial.begin(9600);

if (x < MAXVAL) {
int temp;
temp = x * 100;

}

Serial.print("The value of temp is: ");
Serial.println(temp);
}

void loop()

{
}

144

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

If you try to compile and run this code, the compiler issues the following error message:

StatementBlockScopeProgram.ino: In function 'void setup()':
StatementBlockScopeProgram.ino:21: error: 'temp' was not
declared in this scope

So, what's the problem? There are two problems, actually. As the error message points out, line 21 is the
offending line, and refers to the statement:

Serial.print(temp);

The error message tells you that temp is “not declared in this scope.” Stated differently, temp is “out of
scope” What does that mean?

What Does Out of Scope Mean?

The problem is that you have defined femp to have statement block scope. Statement block scope means
that the data item exists from the point of its definition to the end of the statement block in which it is
defined. This means that temp “lives” or is “usable” from the point of its definition to the closing brace of the
if statement block. Once the closing brace of the if statement is reached, femp is removed from the symbol
table: femp is dead and no longer lives ... it is “out of scope.” Because it is out of scope, it no longer has an
lvalue in the symbol table, so you can no longer access or use it. Listing 7-2 shows what the statement block
scope for temp looks like.

Listing 7-2. Statement Block Scope for Temp

void setup()
int x = 5;
Serial.begin(9600);

if (x < MAXVAL) {

int temp; // Scope for temp starts here
temp = x * 100;

} // ...and temp scope ends here.
Serial.print("The value of temp is: ");
Serial.println(temp);

In Listing 7-2, the shaded area defines the statement block scope for variable temp and extends
from the end of the statement that defines temp to the closing brace of the if statement block. Variable
temp may be used anywhere within the shaded area because it is “in scope.” Anywhere outside that
shaded area, however, variable temp doesn’t even exist. Outside the shared area in Listing 7-2, variable
temp is no longer in the symbol table ... it is out of scope ... it is invisible ... it is dead. As such, trying to
use temp several lines after it has gone out of scope must draw an error message from the compiler ...
which it did.

145

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

The second problem with the error message is that it assumes that the terms define and declare
are synonymous. They are not! You will see more evidence that they are different terms later in this
chapter.

Why Use Statement Block Scope?

Given that variable temp is in scope for such a short time, why use it?

First, in a code example that is as trivial as this one, there is no reason to use statement block scope.
However, if the statement block is more complex, statement block scope does afford protection from
the programmer trying to use that variable outside of its statement block. That is, the programmer is
encapsulating and protecting the data at its most restrictive level.

Second, once a variable goes out of scope, it should free up any resources tied to that variable, hence
increasing the amount of available SRAM memory. Initially, the thought was that because variables
are stored in SRAM memory, which is a scarce commodity, limiting the scope of a variable would help
with managing that scarce memory. While this could be important given the limited amount of memory
most pc boards have, experiments done by the author suggests that the storage used by the variable is
not immediately reclaimed when the variable goes out of scope. In other words, statement block scope
variables do not appear to be more memory efficient than other scope levels. However, the concepts
associated with statement block scope still apply. Perhaps future compiler refinements will make better
use of memory reuse and garbage collection. Meanwhile, it doesn’t hurt to keep the scope of a variable as
limited as possible.

It appears, therefore, that the real reason for using statement block scope is to limit access to the
variable from other parts of the program. As a general observation, you probably won’t use statement block
scope as much as you will function block scope.

Function Block Scope

A variable that has function block scope has life and visibility from the point of its definition to the end of the
function in which it is defined. The shaded areas in Listing 7-3 illustrate local scope for variable x. (You may
hear function block scope called local scope, too.)

Listing 7-3. Listing Block Scope for Variable x

int k;
void setup()

int x = 5; // Scope for x starts here...
Serial.begin(9600);

if (x < MAXVAL) {
int temp; // Scope for temp starts here
temp = x * 100;
} // ...and temp scope ends here.
Serial.print("The value of temp is: ");
Serial.println(temp);

} // ...and x scope ends here.

146

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

A variable with local scope has visibility and life that extends from its point of definition to the
closing brace of the function in which it is defined. In Listing 7-3, variable x is in scope from its
definition to the closing brace of the setup() function. This means that any program statement within
the shaded area of Listing 7-3 has access to variable x. Anything outside the shaded area knows nothing
about x.

Function block scoped variables are quite common in C programs. Indeed, function block scope is
consistent with viewing a function as a black box. Nothing outside of the function has a clue about the data
defined within the black box. Function block scope offers a degree of encapsulation, but is not so restrictive
as to render the variable useless. (Statement block scope is so restrictive that it finds limited use. It would
likely be more popular if it truly always saves memory resources.) As you learned in Chapter 6, functions are
task-oriented pieces of code and function block scoped variables work in concert to solve a particular task.
When their work is done (i.e., the function block code has been executed), the variables within that function
cease to exist as far as the rest of the program is concerned.

What would happen if you moved the definition of x as shown in the following code fragment? (Note how
we have moved the definition of x to the bottom of the function.) When you try to compile this variation of
Listing 7-1,

void setup()
Serial.begin(9600);

if (x < MAXVAL) {

int temp;

temp = x * 100;

}

Serial.print("The value of temp is: ");
Serial.println(temp);

int x = 5; // New definition point...

}

the compiler issues the following error message:

StatementBlockScopeProgram.ino: In function 'void setup()':
StatementBlockScopeProgram.ino:15:7: error: 'x' was not declared in this scope

What went wrong? The problem is that variable x doesn’t come into scope until it is defined at the
bottom of the loop() function. However, the program code attempts to access x before its definition
takes place. This is one reason that most programmers place the data definitions used within a function
immediately after the opening brace for the function body.

Name Collisions and Scope

What happens if you define a variable named femp in setup() but also have another variable named temp

in setup(), but within the if statement block? Won't the two variables “collide” because they have the same
name? There is no name collision because the first temp is defined within the if statement block (statement
block scope) and the second temp is defined outside the if statement and has function block scope. In fact, if
you had the following code fragment in your program:

if (x < MAXVAL) {
int temp;

147

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

temp = x * 100;
}

int temp;

the second definition of femp does not generate a duplicate definition error because the temp defined within
the if statement block has died before the second definition of temp takes place.

To drive the idea home that function block scope is different than statement block scope, make the
following changes to Listing 7-1.

#define MAXVAL 1000
void setup()

int x = 5;

Serial.begin(9600);

if (x < MAXVAL) {
int temp;

temp = x * 100;

Serial.print("The lvalue for temp is: ");
Serial.println((long) &temp);
Serial.print("The rvalue for temp is: ");
Serial.println((long) temp);

}

int temp;
Serial.print("The lvalue for 2nd temp is: ");
Serial.println((long) &temp);
Serial.print("The rvalue for temp is: ");
Serial.println((long) temp);
The following statement:
Serial.println((long) &temp);
uses the “address of” operator (&), which causes the code to display the Ivalue of a variable, rather than its

rvalue. (You will learn more about the address of operator in Chapter 8.) If you run the program, the serial
monitor should look similar to Figure 7-1.

148

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_8
http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

lvalue for temp is: 2292
rvalue for temp is: 500
lvalue for 2nd temp is: 2292
rvalue for temp is: 500

Autoscroll

Figure 7-1. The lvalues for temp

The output in Figure 7-1 was very surprising to me! When I ran this code using Arduino 1.0.5 of the IDE,
the memory address for the temp defined with the if statement block scope was 2292, but the temp defined
with function block scope was stored at memory address 2294. Clearly, with that version of the compiler, the
two variables had different lvalues even though they shared the same name.

However, when I compiled the same code under IDE 1.5.8, the results shown in Figure 7-1 are
displayed. What this output means is that the compiler is smart enough now to optimize the second memory
allocation for femp away and just “reuse” the old allocation for femp. (Release 1.6 is also different than what's
shown in Figure 7-1.) Because ANSI does not require the compiler to initialize variables defined with either
function or block scope, the “new” temp retains the “old” temp’s value! Still, the fact that there are two

int temp;

definition statements in setup(), but they don’t produce a “duplicate definition” error, shows that they are

actually different variables from the compiler’s point of view. This is true because their scope levels are different.
If two variables share the same name at the same scope level, you will get an error message. For

example, if you modified the code to the following (read the program comments closely):

#define MAXVAL 1000
void setup()

int x = 5;
int temp; // definition of temp with function block scope

if (x < MAXVAL) {

int temp; // definition of temp statement block scope

149

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

temp = x * 100;
Serial.print("The lvalue for temp is: ");
Serial.println((long) &temp);

int temp; // oh-oh...definition of temp with function block // scope...again

Serial.print("The lvalue for 2nd temp is: ");
Serial.println((long) &temp);

The compiler issues the following error message:

StatementBlockScopeProgram.ino:12:6: error: 'int temp'
previously declared here
Error compiling.

Because you now have two definitions of femp at the same scope level (i.e., function block scope within
the same function), the compiler must issue an error message.

Global Scope

From time to time, you need a variable that is accessible by all functions within the entire program’s source
code file. If you have a piece of data that must be available everywhere in the program, that variable could be
defined with global scope. A variable has global scope if the data item is defined outside of a function block in
the current source code file. Look at Listing 7-1. Near the top of the listing you can see variable k defined as:

int k;

Note that k is defined outside of the setup() and loop() function blocks. In this case, the scope for
variable k extends from its point of definition to the end of the source code file. The global scope for k is the
shaded area in Listing 7-4. This means that any statement that appears after the definition of k has access to
k; k is “globally” accessible to all functions and statement blocks within the source file.

Listing 7-4. Global Scope for Variable k
/x*
Program: Demonstrate the concept of statement block scope

Author: Dr. Purdum, Dec. 18, 2014
**/

#define MAXVAL 1000

int k = 0; // Scope for k starts here...
void setup()

int x = 5;
Serial.begin(9600);
150

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

if (x < MAXVAL) {
int temp;
temp = x * 100;
}
Serial.print("The value of temp is: ");
Serial.println(temp);
}
void loop()

{
} // Scope for k ends here...

The good news is that you now have a variable that all of the functions in the file can access. This makes
it easy to use the value of k within each function in the source code file. The bad news is that you now have
avariable that all of the functions in the file can access. That is, we have thrown the idea of encapsulation
out the window because everything in the source file has access to k. This is kind of like locking the princess
in the castle keep and then handing out copies of her room key to every knight in the realm. Every element
(knight) in the program can mess around with k (Princess Kay). If something goes amiss with k; it's now
more difficult to determine the cause of the problem because access to k is no longer restricted.

Trade-offs

Obviously, there’s a trade-off here. Do you use more restrictive definitions (i.e., use statement or function
block scope) to protect your variables and pass the variable as a function argument, or do you use global
definitions to make it easier to share data between functions? The answer is: It depends. If you have a
variable named port defined in loop() and you've written a function named SetPort() that needs access to
port, your code needs to make port available to the SetPort() function. If you move the definition of port
outside of loop() and let it have global scope, SetPort() now has full access to port. However, giving port
global scope is not an ideal solution because you are no longer encapsulating and protecting the variable
from contamination by forces outside of loop(). Global scope means the data is exposed to any evildoers that
might exist in the program, and if they do something nasty to port, where do you start looking for the culprit?
However, alternatives do exist. The obvious alternative is to keep the definition of port inside loop(),
thus giving it function scope, but pass port as a function argument to SetPort(). Now SetPort(port) can use
the value of port, but still afford it an enhanced level of protection. If something strange now happens to
port, at least you have a reduced number of places where port went south to the function where it is defined.

Global Scope and Name Conflicts

Again using Listing 7-4 as a point of discussion, suppose you define a variable named k inside the loop() function.
Because the global scope of k includes loop() (see Listing 7-4), won't the two variables have a name collision?

Nope.

The reason is because the syntax rules for C state that the variable with the most restrictive scope level
prevails in situations where they are both in scope. In our example, because the k defined within loop() has
a more restrictive function block scope level than the k with global scope, the function block scope variable
prevails over the global scope k when execution is taking place within loop(). If you were silly enough
to define yet another k variable within the if statement block, that k would prevail when the program is
executing the if statement block, even though the other two k variables are in scope.

Of course, having two k variables defined in the same program—even at different scope levels—is
reason enough for you to be tarred and feathered. The rule for defining two different variables using the
same name in a program is simple: Don't.

151

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

Scope and Storage Classes

Arduino C recognizes four storage classes: auto, register, static, and extern. All four are keywords in Arduino C
and cannot be used as variable names. If you try to define variables named as follows:

int register; // Bad names...
int auto;

the compiler issues an error message stating:
error: declaration does not declare anything

Because these keywords are storage classes for variables, the compiler is expecting the name of the
variable to appear before it reads the semicolon. Clearly, the compiler recognizes both as keywords but will
not let you use them as a variable name.

Now, let’s see how these storage classes work in a program.

The auto Storage Class

The auto storage class is the default storage class for variables with function block scope. You can also define
auto variables with statement block scope, as in

auto int temp;
for (auto int k; k < MAXVAL; k++)

and the compiler accepts the syntax without error. The actual impact of using an auto storage class

in Arduino C appears to make no difference to the generated code, and, therefore, relegates itself to a
documentation feature. The author has not seen the auto keyword used in published code for years,
although there may be some examples. (No doubt someone will write an article now that uses the auto
keyword!) Personally, it doesn’t seem worth the effort to use the auto keyword.

The register Storage Class

The register storage class is used to inform the compiler that the data item should be stored in a pic register
rather than in memory. The idea is that such a data definition would optimize the generated code for speed
by keeping the variable in a register. The use of the keyword register is a suggestion to the compiler’s code
generator, not an edict. That is, the code generator makes the final decision about the fate of a variable
defined with the register storage class. The syntax is:

register int myVal;

The compiler is pretty smart anyway and makes heavy use of its register set, so it seems unlikely that
using the register storage class in a data definition is going to make much difference. (If you're really into
this kind of thing, look at the documentation for the avr-objdump.exe program in the Tools directory for
dumping object files and allowing you to inspect the generated code. Using that tool is beyond the scope of
this book.)

As a general rule, the compiler is pretty smart without our help, so there is probably little to be gained by
telling it that it should use a register for a particular variable.

152

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

The static Storage Class

As you know, variables with function or statement block scope die when you exit the function in which they are
defined. This means that each time the function is called, a new set of these variables is created. This also means
that any values for the variables in the function from the previous execution of the function’s code are lost.
There are, however, situations where it would be nice if you could preserve the value of a variable between
function calls. For example, you might like to maintain a count of the number of times a particular function is
executed. That goal is not possible with variables defined with the default (auto) storage class because they are
re-created each time the function is called. Obviously, one solution is to move the variable of interest out of the
function and define it with global scope. While this solves the lost-value problem, you are exposing the variable
to the room key issues of data privacy. The static storage class solves this problem in a more elegant way.
Consider the program in Listing 7-5.

Listing 7-5. Using the static Storage Class

void setup() {
Serial.begin(9600);

void loop() {
while (true) {
Serial.println(MyCounter());
}
}

int MyCounter()

int counter = 0;
// do some stuff...
return ++counter;

}

Study the code before reading on. What do you expect the Serial.printin(MyCounter()) statement
to print? If you said 0, you get a C. If you said 1, you get an A. Note that variable counter uses the default
(auto) storage class. Therefore, counter is set to 0 each time the while loop in the loop() function causes
the MyCounter() function to be called. Because we use the pre-increment operator on counter in the
MyCounter() function, its value is incremented to 1 before the value is returned to loop(). That’s why its
value is 1 instead of 0 on each pass through the loop. No matter what, the value seen in loop() remains 1
forever.

Now add the static keyword at the start of the definition of counter, like this:

static int counter = 0;

and recompile, upload, and run the program. What happens to the program output? (You're going to have to
type in the code and run it to find out. It's good practice.)

153

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

The Effect of the static Storage Class

Using the static storage class specifier causes the compiler to generate code that preserves the value of
counter between function calls to MyCounter(). First, the data definition of counter is not executed each
time the function is called. In fact, counter is not generated using the stack mechanism you studied in
Chapter 6. Rather, counter is created when the program first begins execution and is allocated in such a
way (i.e., in a piece of memory devoted to global-type data storage called the heap) that its current value
is maintained throughout the program’s execution. The compiler takes care of these details for you. The
end result, however, is that you have a variable that can maintain its value between function calls without
exposing it outside of the function in which it is defined using global scope. In other words, the static
storage class allows you to encapsulate a variable, but still allow it to retain its value between function calls.
It's a have-your-cake-and-eat-it-too kind of thing.

If you need to set the starting value of a static variable to something other than 0, the data
definition must specify that starting value. For example, if you need the starting value to be 10, the
definition must be:

static int counter = 10;

You can only set the initialized value for a static variable at its point of definition. By default,
static variables are initialized to 0. While that may seem to make the statement that initializes the
counter to 0 unnecessary, you should never assume compiler behavior if you don’t have to. It almost
never pays to be lazy. Explicitly initialize the variable yourself. If nothing else, it documents your
intention.

The extern Storage Class
Consider the short program presented in Listing 7-6.
Listing 7-6. Short Program with Error

void setup() {
// put your setup code here, to run once:
Serial.begin(9600);

}

void loop() {
number *= number;
Serial.println(number);

Type the code in and try to compile it. Obviously, the program won’t compile because there is no
definition for number in the source code.

Adding a Second Source Code File to a Project

If you look closely at Figure 1-5 in Chapter 1, on the upper-right edge of the screen just below the icon that
looks like a magnifying glass is a downward-pointing triangle. Click that triangle. You should see a small
menu similar to that shown in Figure 7-2. When you see that menu, click the New Tab option. Your display
will change to look like Figure 7-3.

154

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://dx.doi.org/10.1007/978-1-4842-0940-0_1#Fig5
http://dx.doi.org/10.1007/978-1-4842-0940-0_1
http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

New Tab Ctrl+Shift+N
Rename
Delete

Previous Tab Ctrl+Alt+Left
Next Tab Ctrl+Alt+Right

sketch_nov20a

Figure 7-2. The “triangle” menu

(5%) Exte : yde oll 5.8 X
EdernTestCode §

eXTern Int muaber:

id setwp() (
put your setw
Serial.begin(S€00):

1 loopi) (
mmber *= mmber;
Serial.printlin(number):

3L ()

Figure 7-3. Giving the new program tab a name

www.it-ebooks.info

155

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

Notice that near the bottom of the source code window there is a text box for entering a name for the
new program tab that’s about to be created. I named mine myExternPage. Now click OK; the IDE looks like
Figure 7-4. Notice how there is a new source code tab in the source code window named myExternPage. Also
notice that I have added the definition for number in this new source code tab.

(&5} Exte e AL : X

File Edt Sketch Tools Help

myExtemPage §

Figure 7-4. IDE with new source code tab

It's important to note that by creating a new source code tab in the IDE, you are also creating a new disk
file for the project that uses the same name as the tab name you gave it. This new source code file appears
under the sketch name for the project being developed. As you can see at the top of Figure 7-4, I've named
this sketch ExternTestCode. Because this also becomes the directory where the source code for the sketch
is located, the new myExternPage file also appears in that directory. Both source code files carry the “ino”
secondary file name.

156

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

Using the extern Keyword

Now click the first tab and add the following line at the very top of the file. (We are giving number
global scope.)

extern int number;

The keyword extern is a storage class modifier that tells the compiler that the variable is defined
in a different source code file (i.e., it’s defined in myExternPage.ino) but let me use it in this file (i.e.,
ExternTestCode.ino) as an int variable. Because the variable named number is defined in the second
source code file, it has an lvalue assigned when that code file is compiled. Therefore, the keyword
extern means the file is defined in another file, so its lvalue is not known in this file. Therefore, the
statement

extern int number;

is a data declaration, not a data definition. In Chapter 3 I said that data declarations form an attribute
list, but do not allocate memory for the variable. In terms of the symbol table, the extern declaration
statement tells us the variable’s ID, its data type, and its scope level. We do, therefore, have a
complete attribute list with enough detail to allow us to use it in this file even though it is defined in

a different file. The statement cannot, however, tell us its lvalue because the variable is defined in
another file.

You're probably thinking: “Wait a minute! We must know the lvalue of a variable to be able to use it, but
you're telling us we don’t know the lvalue. How can that work?”

I can explain with a simplified explanation of the compile process itself. When the compiler begins the
task of generating the code for the file with the extern keyword in it, any point where the compiler needs to
supply the lvalue for number, it instead leaves two question marks because it doesn’t know the lvalue for
number at this point in the compile process. (It doesn’t really do this, but it works for my explanation.) Now
the compiler opens the second source code file and finds the definition for number. It can now fill in the
Ivalue for number in the symbol table.

One of the last steps in creating an executable program (collectively all of this is called the build
process) is the linker pass. It is the linker’s responsibility to fill in any missing lvalues that may have been
created during the compile process. The linker is going to find the two question marks for the missing
Ivalue for number in the first source code file. However, a quick peek in the symbol table for number locates
the lvalue and the linker overwrites the two question marks with the lvalue for number. Now the code in the
first source code file knows where the variable defined in the second source code file lives, and all is right
with the world.

By the way, the linker does the same thing for all of the library files you might use (e.g., the code for the
Serial object). After all, there has to be lvalues for library functions, too. Think about it. (If you'd like more
information about the build process, see http://arduino.cc/en/Hacking/BuildProcess.)

Why a New Source Code File?

Sometimes a project gets to the point where it makes sense to split the source code into two or more source
code files. Sometimes you may want to split the file simply because it’s getting too long and you're tired of
scrolling from top to bottom in such a long file. Perhaps you split the files such that those functions that are
concerned with the Input Step are in one source file, while functions dealing with the Process Step are in
another source file. It may even make sense to have a third source code file for the Display Step. The extern
keyword, in many cases, makes it possible to split source files.

157

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_3
http://arduino.cc/en/Hacking/BuildProcess
http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

Function Prototypes

Suppose you have a statement in loop() that calls our IsLeapYear() function that we developed in Chapter 6.
Further suppose that we placed the actual code for the function in a second file in the project. This means
we want to use the function in file 1, but have defined it in file 2. How can you solve this problem?

If you place the following near the top of the first source file before setup():

int IsLeapYear(int yr); // This is a function prototype for IsLeapYear()

you are giving the compiler enough information to use IsLeapYear() in the program. This statement is called
a function prototype. A function prototype is a data declaration that tells the compiler the specifics it needs
to know in order to let you use the function in the current source file. More specifically, a function prototype
allows the compiler to create an attribute list for the data object and stuff it into the symbol table. However,
because the actual code for the data object IsLeapyear() is in another file, it cannot fill in the lvalue for the
object. This is why function prototypes are data declarations, not data definitions.

Back in Chapter 4, I pointed out that many programmers use the terms “define” and “declare” as
though they are synonyms. We could agree with them, but then we’d both be wrong. Each has a very specific
meaning. A data declaration is simply an attribute list for a variable ... memory is not allocated for a data
declaration. This means a data declaration has an empty lvalue column in the symbol table. What a function
prototype does is say: “Okay, compiler, I don’t know where this data object is going to end up in memory
(lvalue = ?), but here’s enough information for you to use the object in this source code file” When all of the
source files have been compiled and the pieces are all pulled together (this is the job of the linker), only then
does IsLeapYear() have a known lvalue.

Whenever you need to access a variable in one file but it is actually defined in a different file, use the
extern keyword. The extern keyword in front of what would otherwise be a data definition turns it into a data
declaration. The extern access specifier simply tells the compiler: “Hey! This variable is not defined in this
file. However, use this statement so you can create an attribute list for the variable so I can use it in this file”
In a real sense, therefore, the extern keyword serves the same purpose for variables as a function prototype
does for functions. That is, extern allows you to create a data declaration for a variable that is defined in some
other file.

#include Preprocessor Directive

As your gain experience using C, you will move to more complex programs. For example, you may want to
add a 16x2 LCD display to your project. If you do, you will likely need to access the Liquid Crystal Display
library that is available with the Arduino IDE. Once again, there are literally hundreds of libraries available
for the Arduino, and there is no reason for you to reinvent the wheel. Always search for a library before you
start writing one. Chances are pretty good that someone has already done a good chunk of the work for you.

If you were developing a program to use the LiquidCrystal library, the first place you would want to look
for help on using the library is in the

libraries\LiquidCrystal\Examples
directory off the Arduino main directory. The Examples subdirectory would give you several sample
sketches that use the library. This is a great way to learn how to use the library properly.

If you load one of these example sketch files, you will see that they begin with the line:

#include <LiquidCrystal.h>

158

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

This is an example of the #include preprocessor directive. This directive tells the C preprocessor to find
a file named LiquidCrystal.h, open it, and read its contents into the current source code file at this point in
the program. Files that end in “h” are called header files. Therefore, LiquidCrystal.h is the header file for the
LiquidCrystal library. (You can find this header file at 1ibraries\LiquidCrystal\src.)

Okay ... so what?

Well, if you open the header file, you will discover it is packed with all kinds of information that the
LiquidCrystal library needs to do its job. If you look about halfway down the file, you'll find the following lines:

void clear();
void home();

void noDisplay();

void display();

void noBlink();

void blink();

void noCursor();

void cursor();

void scrollDisplayleft();
void scrollDisplayRight();
void leftToRight();

void rightToleft();

void autoscroll();

void noAutoscroll();

void createChar(uint8 t, uint8 t[]);
void setCursor(uint8 t, uint8 t);

What do these lines look like to you? That'’s right! They are function prototypes for the functions that are
available to you in the LiquidCrystal library. (Actually, because these are written as part of the LiquidCrystal
C++ class, they are really class method prototypes, not function prototypes.) Note how setCursor() uses two
unsigned 8-bit ints as its function arguments. Could those be row-column coordinates?

A common #include Idiom
At the top of the LiquidCrystal.h header file are the lines:

#ifndef LiquidCrystal_h
#define LiquidCrystal_h

These two lines say: “If the symbolic constant LiquidCrystal_h (note the underscore) is not yet defined
in this sketch, #define it now.” However, if you look at the very last line in the file, it is this:

#endif

Think about what this means. If the symbolic constant LiquidCrystal_h is already defined at this
point, the entire contents of the head file is ignored. Why would you want to do that? Actually, a complete
explanation is given in Chapter 14. However, I can give a quick answer here: the reason is to avoid duplicate
definition errors. Header files may contain data definitions in them. If we didn’t have a mechanism to
detect that they have already been defined, the compiler would issue a bunch of duplicate definition errors.
By using the #ifndef preprocessor directive at the top of the header file, we avoid reading the file twice.

159

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_14
http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

Good coding practices say we should never read the same header file twice—but hiccups happen. This
technique simply prevents the hiccup from causing a problem.

Where Are the Header Files Stored?

Actually, there are two flavors for using the #include preprocessor directive. In the one presented earlier,
#include <LiquidCrystal.h>

note how the header file name is surrounded by angle brackets (<>). When angle brackets are used around
the header file name, the compiler looks in the default file include directory for the header file. In this case,
the compiler looks in the LiquidCrystal\src directory.

However, as you gain experience in writing code, you may well wish to write your own header files for a
sketch. In that case, you would use the following:

#include "MyHeaderFile.h"

The double quote marks tell the compiler to look for the header file in the current sketch directory
where you are writing the program. If the compiler cannot find the header file there, it would next look in the
default (angle brackets) header file directory. By using the appropriate characters surrounding the header
file name, you can tell the compiler where to find the necessary header file.

The volatile keyword

Although rarely used, I should mention the volatile keyword at this point. The volatile keyword is a variable
qualifier rather than a storage class or access specifier. The syntax for using it is:

volatile int lastTestValue;

volatile is a directive to the compiler that says this particular variable must be loaded from memory any
time the code references it. Often, when code is using a variable, that variable’s rvalue is already in an Atmel
temporary register so there is no need to reload it again from memory. This results in a small performance
boost because a trip to memory to reload the value is bypassed. Optimizing compilers do this kind of thing
all the time.

While this optimization is a good thing most of the time, there are times when the value stored in
memory can get out of sync with the value held in a register. This kind of problem is most likely to occur
when Interrupt Service Routines (ISRs) are being used in the program. (There is an example involving
interrupts in Chapter 13.) By using the volatile qualifier, you are telling the compiler to refetch the rvalue of
the variable (just in case it was cached) anytime the program uses that variable. This decreases the chance
that the rvalue for the variable is out of sync.

Summary

You've covered a lot of ground in this chapter. The concept of scope is more important than many
programmers realize because it has the potential for making your programs easier to read and debug. You
should also appreciate what function prototypes bring to the party, especially when you split source code
files. As you begin writing nontrivial programs, it makes sense to split the source code into different files.

If nothing else, it makes scrolling through a source file a little quicker than it might be otherwise. Hopefully,
this chapter also makes it clear that there is a very real difference between the terms define and declare.

160

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_13
http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

I encourage you to create a program of your own that has two (or more) source files and uses the extern
keyword to communicate data between the two files. The only way to learn this stuff is to jump in the mud
and start slogging around in it.

EXERCISES

1. What are the scope levels in C?
Answer: There are three scope levels in C: statement block, local (function), and global.
2. Why is it usually a good thing to avoid using the global storage class?

Answer: The global storage class means that the data item is exposed for use to every data
object in the file, from its point of definition to the end of the file. This is bad because it
makes it more difficult to determine where erroneous values creep in when the variable has
an improper test value. Global scope defeats the benefits of encapsulation.

3. What are the C storage classes?
Answer: The storage classes are: auto, register, static, and extern.

4. Suppose integer variable myDay is globally defined in one file, but you need to
access it in a different source file. What do you need to do to have access to
myDay?

Answer: You need to have a variable declaration for myDay in source files where it is not
defined. You do this by using the statement:

extern int myDay;

5. What is the default scope level for a function?
Answer: All functions in C have global scope.

6. What is the default storage class for a library function.
Answer: extern. Think about it.

7. What would happen to our /sLeapYear() function if some idiot passed it a
“negative year”?

Answer: Actually, the function still provides the correct answer. However, it might be a good
idea to filter out negative years before the calculation. How would you do this? (Hint: Check
out the abs() standard library function.)

8. Often external devices send messages to the Arduino over the Serial object or
some other communication link (e.g., Wi-Fi). Usually, these messages come in
as a sequence of characters, like 70.0,95,15:00. Perhaps this message conveys
the message: “The temperature is 70 degrees with 95 percent humidity at
3PM.” How would you extract this information and display it on the Serial
monitor? I'll give you a starting place and the answer doesn’t need to use the
loop() function. Hint: you will likely want to use the standard library function
atoi() to help you.

161

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

162

void setup() {

char message[] = "70.0,95,15:00";

int index;

int holdIndex = 0;
int temperature;
int humidity;

// You need to provide the Process Step

Serial.print("The temperature is = ");
Serial.print(temperature);
Serial.print(" with humidity = ");
Serial.print(humidity);
Serial.print("at ");
Serial.print(&message[holdIndex]);

}

Answer: This is not a trivial program. If you got yours working, you are really doing well!

void setup() {

char message[] = "70.0,95,15:00";
int index;

int holdIndex = 0;

int temperature;

int humidity;

Serial.begin(9600);

index = FindCharacter(message, ',"');

if (index > 0) { // Found a comma

message[index] = '\0'; // Make it a string

temperature = atoi(message);

holdIndex += index + 1; // Look past the null for next pass
}

index = FindCharacter(message + holdIndex, ','); // Really
passing message[5]
if (index > 0) { // Found a comma
message[index] = '\0'; // Make it a string
humidity = atoi(&message[holdIndex]);
holdIndex += index + 1;
}
Serial.print("The temperature is = ");
Serial.print(temperature);
Serial.print(" with humidity = ");
Serial.print(humidity);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE CLASSES AND SCOPE

Serial.print(" at ");
Serial.print(&message[holdIndex]);

}
void loop(){}

Vasioiuiot

This method looks for a specific character in a string

Parameter list:
char msg[] an array of characters, null terminated
char ¢ the char to find

return value:
int the position in the string where found or
0 if no match

*****/
int FindCharacter(char msg[], char c)
{

int 1 = 0;

while (msg) {
if (msg[i] == c) {
return i;
} else {
i++;
}
}

return 0O;

}

The key is the FindCharacter() function, which marches through the input string looking

for the comma character. When it finds one, it returns the index number of the position

in the string where the comma appears. This is assigned into index upon return from the
function. With the input string of “70.0,95,15:00”, index equals 4. The code then writes a
null character at that position, so the string now looks like: “70.0NULL95,15:00". The atoi()
function converts the substring “70.0” to an int value and assigns it into temperature.

Note how the next call to FindCharacter() uses message + holdindex as the string
argument. This is the same as passing in message[5], or “95,15:00” as the start of the
string because we added 1 to holdindex in the if statement block. You should convince
yourself that the after the second call to FindCharacter(), the Serial.printin() for the time
simply display the “tail” of the string.

There are more efficient ways of writing this program, but we can’t use those techniques
until after we understand something about C pointers.

163

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Introduction to Pointers

One of the most powerful features of the C programming language is pointers. While many of the features

of any programming language have the power for you to shoot yourself in the foot, pointers give you the
power to blow your entire leg off. Because of the raw power of pointers, many popular languages either don’t
support pointers at all (e.g., Java) or only let you use them in a very limited way (e.g., C#). Personally, most
people go wrong using pointers because they don’t really understand what pointers are or what they do.
Fortunately, you've been introduced to programming in a way that will make understanding pointers a snap.
With that understanding comes faster, more efficient C programs. Let’s jump right in!

Defining a Pointer

Because a pointer is a different type of data than anything you've studied thus far, the syntax necessary to
define a pointer must also be different. Figure 8-1 shows the syntax for a pointer definition.

type of data pointed to

Name of pointer

int *myPointer;

Asterisk indicates a pointer type

Figure 8-1. Pointer syntax

Figure 8-1 shows that there are three basic components to a pointer definition:
e The type of data that this pointer is associated with
e An asterisk to mark this variable as a pointer instead of a “regular” variable
e The name of the pointer

Let’s examine each of these three elements in detail and see what they mean. However, we will do that
examination in reverse order of importance. You'll understand why I chose this order shortly.

© Jack Purdum 2015 165
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_8

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

Pointer Name

Pointer variables have the same naming rules as do all other variables in C. In other words, you can give
them any valid C variable name you wish, but because pointers are different, it’s worthwhile giving them a
name that jogs your memory that they are a pointer. Clearly, myPointer would do this, but the more common
convention is to begin the pointer variable name with ptr. Some sample pointer names might be:

ptrMyQuizScores
ptrNameptrPuppy
ptrStateCapital
ptrSisters

Again, it's not imperative that you begin pointer variables with ptr, but it doesn’t hurt to let everyone
know that this is a pointer variable. You could, for example, store nitroglycerin in little celluloid spheres, but
then naming each one “ping pong ball” is probably not a good idea. Likewise, it is not a good idea to give
pointer variables a generic C variable name. Define your pointers in a way that tells the person reading the
code that they are looking at a pointer.

Asterisk (*)

The asterisk is used in the pointer definition to inform the compiler that this is a pointer variable rather than
aregular data type. After all, if you left the asterisk out of the pointer definition, it would look like any other
data definition. Placing the asterisk in the definition marks the variable as a pointer and allows the compiler
to treat the variable differently than it would otherwise. I will explain the difference later in this chapter.
Note that C doesn't really care about the precise position of the asterisk, as long as it appears after the
type specifier for the pointer and before the name of the pointer. Note the following asterisk placements:

int* ptrTemp; // Immediately after the type specifier
int * ptrHumidity; // Floating between type specifier and name
int *ptrDewPoint; // Immediately before the name

C doesn't really care which form you use. Personally, I kinda like the last version that ties the asterisk
and the pointer name closely together. There is no theoretical reason for my preference. It's how I learned
how to define pointers almost 40 years ago. It's an old-dog-new-trick thing with me.

When you get to the end of the chapter, write some sample sketches and get some experience
with pointers trying out the various definition styles. Then pick a style you like and use it from then on.

A consistent coding style really does make it easier to read and debug program source code.

Pointer Type Specifiers and Pointer Scalars

From an operational point of view, the data type specifier for the pointer is the most critical part of the
definition. In Figure 8-1, the int type specifier tells the compiler that this pointer will only be used with
int data types. While the syntax rules allow you to use an int pointer with a different type of data, doing so
usually results in a disaster. For example, all of the following are valid pointer definitions:

int *ptrSheepCount;
char *ptrFirstName;

long *ptrBigVal;
float *ptrYardsOfCloth;

166

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

In these examples, each pointer is defined to point to a different type of data. That is, the pointer’s type
specifier is dictated by the type of data with which the pointer will be used. The rule is simple:

The pointer’s type specifier dictates the type of data to be used with that pointer.

Pointing one type of pointer to a different type of data is a train wreck waiting to happen. To make things
even worse, it may appear that using a mismatched pointer is working in the program. Trust me ... using
pointers the wrong way will eventually result in a spectacular failure.

Okay, so pointer type specifiers are important. The real question is: Why are pointer-type specifiers
so important? The reason is because pointers use the pointer type specifier in order to read/write the data
correctly.

Pointer Scalars

Consider the following two pointer definitions:

char *ptrlLetter;
int *ptrNumber;

Both of these statements define a pointer variable, but the type specifiers for each pointer tell you
that they are to be used with different data types. When the compiler sees these two definitions, it places
the two definitions in the symbol table and allocates memory for each. If you look back at the simplified
symbol table shown in Chapter 3, Figure 3-4, the Data Type column for these pointer definitions would be
an asterisk. One of the columns I didn’t show in the table is labeled Scalar. When compiling definitions of
pointers, the compiler does fill in the Scalar column of the symbol table. For ptrLetter the scalar would be 1.
For ptrNumber the scalar would be 2.

So, what determines the scalar size? The scalar size is exactly the same as the Byte Length as seen in
Table 3-1. Whatever the storage requirements are for a given data type, that’s its scalar size. If a char requires
1 byte of memory to store it, that’s its scalar. If a float takes 4 bytes of memory to store it, its scalar is 4. Even
better, however, is that you can create your own custom data types and pointers can also be used with those
new data types. (I'll cover those concepts in Chapter 10.)

When the compiler finishes processing the preceding two pointer definitions, memory might look
something like Figure 8-2. If you look carefully at Figure 8-2, you can see that each pointer uses 2 bytes of storage.

2K

<— SRAM

—> 2292 2294 <€—— 1 ptr Number

ptr Letter

0k

Figure 8-2. Memory map after pointer definitions

167

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_3
http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Fig4
http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab1
http://dx.doi.org/10.1007/978-1-4842-0940-0_10
http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

That’s odd.

Whenever we defined data types before, a char data type used one byte and an int used two bytes.
Yet, the pointer definition shows that each pointer requires the same amount of storage; 2 bytes.

Why? The reason is because the rvalue of a valid pointer variable is always one of two things: a memory
address or null.

If a pointer variable has an rvalue that is equal to null, that means that the pointer is not safe to use.
That is, a null pointer points to garbage and should not be used. A useful, or valid, pointer variable always
has an rvalue that is a valid memory address. If your pc board has 2K of SRAM memory and you have a
Serial.print() statement that says its rvalue is 3000, stand back, cuz your program is about to go supernova!
I explain why a little later in this chapter.

Why All Arduino Pointers Use Two Bytes for Storage

As you know, the Arduino family of pc boards has three types of memory associated with them. The first is
program (or flash) memory and it is in this section of memory into which your programs are loaded. This
program memory is nonvolatile. That is, when power is removed from the board, your program memory
remains intact. The second type of memory is SRAM, or static random-access memory. The variables that
you use in your program are stored in SRAM memory. SRAM memory is volatile memory, which means
that once power is removed from the board, the content of this section of memory is lost. The last type of
memory is Electrically Erasable Programmable Read-Only Memory (EEPROM). EEPROM memory is also
nonvolatile, which means that it can also retain its values even when power is removed.

You learned in Chapter 7 that as your program runs, variables come into scope and go out of scope
depending upon what the code requires. These variables are stored in SRAM, which you can think of as
being organized like the stack we discussed in Chapter 7. Because the amount of SRAM is less than 65K
(i.e., 2, or the maximum value for a two-byte unsigned integer), it only takes two bytes to store a memory
address for the program’s data. Unlike a PC that may have gigabytes of memory and hence must use 4-byte
memory addresses, your pc board can use 2-byte pointers because of the relatively small amount of SRAM
available. (There are chips available that can address larger memory sizes and hence use 4-byte pointers.
Diligent’s chipKit Max32, for example, has 512K of flash and 128K of SRAM. Because these memory sizes
are greater than 65K, it uses 4-byte pointers.) In other words, pointer variables are always allocated enough
storage to hold a valid memory address. As mentioned earlier, all (properly initialized) pointers can have only
two types of rvalues:

e amemory address
o null

Okay, but where does this scalar thingy come in? Consider Figure 8-3; note how the char pointer is
designed with a scalar of 1 byte, enabling it to “see” a char data type. It is the pointer’s type specifier that permits
the pointer to work correctly with its designated data type. You know that an int data type requires two bytes
of storage. This means that the int pointer has a scalar of two bytes so it can “see” an int data type correctly. If
you define a pointer using the long type specifier, its scalar would be 4 bytes. If you look back at Table 3-1, the
middle column of that table (i.e., Byte Length) tells you the scalars for the different data types. You can conclude,
therefore, that the scalar value for a specific pointer is equal to the number of bytes required to store that data type
in memory. In all cases, however, the pointer still only requires two bytes for storage for an Arduino.

168

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_7
http://dx.doi.org/10.1007/978-1-4842-0940-0_7
http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab1
http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

Scalar of 1

<

T 1 byte; char

Y

1 4 2 byte; int

Figure 8-3. Pointer scalars

A valid question you might be asking yourself at this point is: What do pointers bring to the table to
make them worthwhile? Before we can answer that question completely, you need to understand how to
initialize a pointer.

Pointer Initialization

The instant after you define a pointer, you should think of it as being unusable. That is, after the compiler
processes the following statement

int *ptrNumber;

169

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

you have an int pointer that has a garbage rvalue. Suppose the compiler ends up placing the pointer at
memory address 2294 (see Figure 8-2). All you can count on is that ptrNumber has an lvalue of 2294 and its
rvalue is whatever pattern of bits just happened to exist for those 2 bytes beginning at memory location 2294.
That is, the rvalue of ptrNumber is garbage. If you're worried about the random junk the pointer contains,
you could define and initialize the pointer as part of its definition, as in:

int *ptrNumber = NULL;

This statement makes it clear that the pointer does not point to valid data and that it should not be used.
Quite honestly, while this may be a good coding practice, most C programmers don’t initialize their pointers
to null. If you wish to define a pointer and initialize it to null using the symbolic constant NULL, you need to
add the following statement at the top of the source code file:

#include <stdio.h>

This header file contains a definition of the symbolic constant NULL. The default header file directory
for the Arduino compiler is wherever you installed your Arduino IDE followed by the path name:

hardware\tools\avr\avr\include

If you look in the stdio.h header file (or any of the other header files stored in the include directory), you
are going to see some pretty cool, albeit intimidating, code. A complete understanding of all that you find
there is beyond the scope of this book. However, if you're really interested, simply copy the statement of
interest into the Google search engine and read what the sources have to say.

Now that you know how to define a pointer and what its scalar is used for, let’s actually try to use a
pointer. First, suppose you have the following three statements in a program:

int a;
int b = 5;
a=b;

The last statement actually does more work that you may think. Simplifying the compile process a
bit, the statement says: “Go to b’s Ivalue and make a copy the rvalue you find there (i.e., 5). Now go to the
symbol table and look up a’s lvalue. Go to a’s lvalue and copy the rvalue of b into the rvalue for a.” Simply
stated, most (non-pointer) assignment statements simply copy the rvalue of one variable into the rvalue of
another variable.

Not so for pointer assignments.

Using the Address-Of Operator

Recall that a pointer should only hold a valid memory address or null. This means that the rvalue of pointer
variables don’t hold “normal” rvalues. Any pointer that is useful must hold a memory address. So how do we
assign a memory address into a pointer. Simple! You use the address-of operator. The address-of operator (8)
says that you wish to use the lvalue of the variable, not its rvalue. Read that last sentence over about a dozen
times until it is etched in your brain.

Suppose you have the following code fragment in a program:

int number = 5;
int *ptrNumber;

170

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

Let's further assume that number has an Ivalue of 2292 and the lvalue for ptrNumber is 2294 (like in
Figure 8-2). You initialized number with an rvalue of 5, but you didn’t initialize ptrNumber, so it contains
garbage at this point in the program. Now, let’s add another statement:

int number = 5;
int *ptrNumber;

ptrNumber = &number;

The purpose of the address-of operator (&) is to tell the compiler: “Don’t do the standard rvalue-to-
rvalue assignment in this statement. Instead, take the address (Ivalue) of number (2292) and copy it into the
rvalue for ptrNumber!

As before, read the previous sentence about 10 times and think about what it is saying. It is saying that
the rvalue of ptrNumber is now the lvalue of number. Reread and think again....

First, ptrNumber now has an rvalue that holds the memory address (Ivalue) of number. This is exactly
what ptrNumber should hold: The memory address, or lvalue, of the int variable named number. This
relationship can be seen in Figure 8-4. Notice that after the pointer assignment takes place, the address-of
operator caused the lvalue of number to be copied into the rvalue of ptrNumber. That is, you have initialized
ptrNumber so it now “points to” number. Think about what this means. Because ptrNumber now knows the
memory address where number lives in memory, ptrNumber has full access to number’s data (i.e., its rvalue).
If ptrNumber has the right scalar value, which it does (ptrNumber is an int pointer and now points to the int
named number), you can use ptrNumber to change the rvalue of number!

ptrNumber number

AVA

2204 2292 2292 5

L points to—I

Figure 8-4. The rvalues and lvalues for ptrNumber and number

The Indirection Operator (*)

If you wish to use a pointer to change the rvalue of the variable it points to, you use the indirection operator,
which is the asterisk operator. Makes sense: we are going to use a pointer to indirectly change the value of
another variable.

Wait a minute! The indirection operator is the same character as the multiplication operator. Why
doesn’t the compiler throw a fit? The reason is because the compiler knows which operator to use based on
the context in which you are using it. The multiplication operator requires two operands to work properly
(e.g., operand1 * operand2). As you will see shortly, the indirection operator is a unary operator and only
requires one operand. Therefore, the compiler knows from the context in which the asterisk is used as to
which type of code to generate.

171

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

I have talked about syntax errors, which occur when you don’t obey the rules of the language.
I also mentioned earlier that semantic errors occur when you use the language in the wrong context.
(I used the example of an English sentence, where I said: “The dog meowed.” The sentence has a noun and a
verb as the rules of English require, but the context is wrong. This would be a semantic error.)

The syntax rule for the indirection operator is:

*variableID = expressioni;
For example:
*ptrNumber = 10;

The indirection operator is the asterisk. You can verbalize the preceding statement as: “Get the rvalue
of ptrNumber (2292), go to that memory address, and copy the value 10 into int bytes of memory at that
address.” Notice the importance of the pointer’s type specifier. It tells the compiler to convert the number
10 into scalar bytes (i.e., an int) of data (i.e., 2 bytes) and then copy those bytes into memory address 2292.
The result after the statement is finished is that number now equals 10. You have “indirectly” changed the
value of number using a pointer variable.

Imagine the kind of mischief that might result if you defined ptrNumber to be a char pointer rather than an
int pointer. In that case, the assignment statement using the indirection operator would convert the value 10 into a
1-byte value and assign it into memory address for number. The value for would now only be “half right” because
the second byte of number would contain whatever random junk just happened to be in memory at that address.

The lesson is simple: don’t mix apples and oranges. If you want to use indirection to change an int, you
must use a pointer that was defined with the int type specifier. Otherwise, all bets are off and you’re on your own
when it comes to debugging your program. (Actually, the Arduino compiler does a pretty good job of catching
this type of error and issues an error message telling you it cannot convert one type of pointer into another type
of pointer. It's even better, however, if you don’t get caught doing this kind of thing in the first place!)

Using Indirection
Let’s write a short program that shows the use of pointers. The source code appears in Listing 8-1.
Listing 8-1. A Simple Pointer Program

/*
Purpose: Simple program to demonstrate using a pointer

Dr. Purdum, Nov 22, 2014
*/
#include <stdio.h>
int counter = 0;

void setup() {
int number = 5;
int *ptrNumber;

Serial.begin(115200);

Serial.print("The lvalue for ptrNumber is: ");
Serial.print((long) &ptrNumber, DEC);
Serial.print(" and the rvalue is ");
Serial.println((long) ptrNumber, DEC);

172

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

//=== Put new statements here!

Serial.print("The lvalue for number is: ");
Serial.print((long) &number, DEC);
Serial.print(" and has an rvalue of ");
Serial.println((int) number, DEC);

}
void loop() {}

The code in Listing 8-1 simply displays information about ptrNumber and number on your PC using the
Serial object. The program output when I ran the program on my PC is shown in Figure 8-5. For my machine,
it shows that ptrNumber is stored at memory address 8690 has an rvalue of 168. The rvalue of 168 is the result
of the random bits that happen to be stored in the two bytes starting at memory address 8690. If you had
defined ptrNumber using the syntax

int *ptrNumber = NULL;

the rvalue of ptrNumber would be displayed as 0. For my computer, the lvalue for variable number was 8692
with an rvalue of 5. You may have different values for everything except the rvalue of number should still be 5
on your machine.

Now let’s add two new statements to the program shown in Listing 8-1 and rerun it. The statements are:

ptrNumber = &number;
*ptrNumber = 10;

You should place these statements in Listing 8-1 where you find the comment:
//=== Put new statements here!
Now recompile, upload, and run the new version of the program. Notice that the rvalue of number now
displays as 10 rather than 5. The reason is because the first of the two new statements initializes ptrNumber

to point to number using the address-of operator. Next, you used the indirection operator to assign the value
of 10 into number.

Using the Indirection Operator in an Assignment

You can also use a pointer variable in an assignment. For example, add a new data definition for variable
k near the top of the setup() function:

int k;
Now add the following new lines of code immediately after the last two lines you just added, so it looks like this
ptrNumber = &number;
*ptrNumber = 10;
k = *ptrNumber;

and add some code so you can see the value of k after the new statements:

Serial.print("The lvalue for k: ");
Serial.print((long) 8k, DEC);

173

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

Serial.print(" and has an rvalue of ");
Serial.println(k, DEC);

When you run this version of the program, the output looks like that shown in Figure 8-5. Notice that the
code uses indirection to assign the value 10 into variable k. As before, the indirection operator (*) instructs
the code to go to the address pointed to by ptrNumber (the lvalue of number), fetch int bytes of data
(i-e., 2 bytes holding the value 10), and copy those 2 bytes into the rvalue of k. As a result, the rvalue for both
number and k are the same.

The lvalue for ptrNumber is: 8690 and the rvalue is 168
The lvalue for number is: 8692 and has an rvalue of 10
The lvalue for k: 8688 and has an rvalue of 10

—

v | [115200baud v |

Figure 8-5. Using the indirection operator in an assignment statement

Surely you were paying close enough attention to Figure 8-5 to notice that the lvalues for ptrNumber,
number, and k are different than shown in Figure 8-4. What happened? While you were nodding off, I switch
Arduino boards from an UNO with 2K of SRAM to an Arduino 2560 with 8K of SRAM ... just to see if you're
paying attention. As a result, the stack addresses are much larger than on the UNO with its smaller SRAM.

If you add another Serial. println() statement after ptrNumber has been initialized to point to number, however,
you would still find that its (garbage) lvalue changes from the 168 shown in Figure 8-5 to the lvalue of number
(i.e., 8692). It’s still quite likely that your actual numbers will be different, depending on the board you are using.

While we're here, look at the Ivalues for the variables. Now look at the order in which they are defined
in Listing 8-1: number is first to be defined (8692), ptrNumber is next (8690), and k is last (8988). Could it be
that the compiler uses the stack mechanism discussed in Chapter 7 to allocate memory for these variables?
Think about it.

Summary of Pointer Rules

Let’s take a moment and review the various rules you need to follow when using pointers. A pointer variable
must be defined using an asterisk in the definition, such as

int *ptr;

174

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_7
http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

which defines a pointer that will be used with an int variable. The scalar of the pointer is determined at the
time the pointer variable is defined. The pointer’s type specifier determines the scalar. The scalar is used to
determine how many bytes are to be manipulated by the pointer.

e A pointer never points to anything useful until it is initialized. The address-of
operator is used to initialize a pointer with the Ivalue of what is being pointed to:

ptr = &myVariable;

e The address-of operator (&) causes the Ivalue of the variable (myVariable) to be
fetched, and that value is then assigned to the rvalue of the pointer variable (ptr).

e After a pointer is initialized, you can use indirection to change the rvalue of the
variable being pointed to. Therefore, the statements

int myVariable;

int *ptr;
ptr = &myVariable;
*ptr = 10;

have the effect of assigning the value 10 into myVariable using the indirection operator (*)
and ptr.

You can also read the value being pointed to using the indirection operator, as in the statement:
Serial.print(*ptr);

This statement would print the value 10 on the serial display device.

Why Are Pointers Useful?

In Chapter 6 you saw that functions cannot change the value of an argument passed to it because, by default,
function arguments are pass-by-value data items. That is, temporary copies of the arguments are passed

to the function, not the arguments themselves. This also means that the function knows nothing about the
Ivalues of the actual variables being used; only their rvalues. Because the arguments are copies, the Ivalue

of the original variable is not available, which means a function cannot change the value of the original
variable being passed to it in your backpack.

However, what if you need the function to change the value of the argument? This is often the case
when you need to change two or more values in the function code. True, you can return one value from the
function, but you want the function to change more than one value. No problem, use a pointer.

For example, suppose you have a temperature sensor that reads the temperature every hour and
records the value in an array named femps/]. At the end of the day, you want to read the 24 values and record
the minimum and maximum temperatures for the day. Something like the following code fragment would
do the job. The source code is found in Listing 8-2.

Listing 8-2. Minimum and Maximum Temperature Program

/*
Purpose: find the minimum and maximum values of an array of
data values

Dr. Purdum, Nov. 22, 2014
*/

175

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

#include <stdio.h>

#define READINGSPERDAY 24
#define VERYHIGHTEMPERATURE 200
#define VERYLOWTEMPERATURE -200

int todaysReadings[] = {62, 64, 65, 68, 70, 70, 71, 72, 74, 75, 76, 78,
79, 79, 78, 73, 70, 70, 69, 68, 64, 63, 61, 59};

void setup() {
int lowTemp;
int hiTemp;
int retval;

Serial.begin(115200);

Serial.println("=== Before function call:");
Serial.print("The lvalue for lowTemp is: ");
Serial.print((long) &lowTemp, DEC);
Serial.print(" and the rvalue is ");
Serial.println((long) lowTemp, DEC);
Serial.print("The lvalue for hiTemp is: ");
Serial.print((long) &hiTemp, DEC);
Serial.print(" and the rvalue is ");
Serial.println((long) hiTemp, DEC);

retVal = CalculateMinMax(todaysReadings, &lowTemp, &hiTemp);

Serial.println("=== After the function call:");
Serial.print("The lvalue for lowTemp is: ");
Serial.print((long) &lowTemp, DEC);
Serial.print(" and the rvalue is ");
Serial.println((long) lowTemp, DEC);
Serial.print("The lvalue for hiTemp is: ");
Serial.print((long) &hiTemp, DEC);
Serial.print(" and the rvalue is ");
Serial.println((long) hiTemp, DEC);
Serial.println("\n");

}
void loop() {}

JRRRkk

Purpose: Get the daily temperature reading (READINGSPERDAY) and set the minimum
and maximum temperatures for the day.

Parameter list:

int temps[] the array of temperatures
int *minTemppointer to the minimum temperature value
int *maxTemppointer to the maximum temperature value

Return value:

int the number of readings processed
*okokokok /

176

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

int CalculateMinMax(int temps[], int *minTemp, int *maxTemp)
{
int j;
*minTemp = VERYHIGHTEMPERATURE ; // Make the min temp ridiculously high
*maxTemp = VERYLOWTEMPERATURE; // Make the max temp ridiculously low
for (j = 0; j < READINGSPERDAY; j++) {
if (temps[j] >= *maxTemp) {
*maxTemp = temps[j];

}

if (temps[j] <= *minTemp) {
*minTemp = temps[j];

}

}

return j;

The CalculateMinMax() function has three parameters: An int array of temperature readings and two
int pointers that store the minimum and maximum temperatures for the data passed to the function.
Now note how the function is called from within the setup() function:

retVal = CalculateMinMax(temps, &lowTemp, 8hiTemp);

The first argument is the femps/] array that holds the 24 temperature readings. It is important to note
that when you use an array name “by itself” (femps, no array brackets after it), you are referencing the
lvalue of the array. This is because arrays are reference types rather than value types. In fact, you can write
the function declaration for CalculateMinMax() as either the way it is shown in Listing 8-2 (note the use of
brackets for temps in the first instance, but not the second as shown by the shaded areas):

int CalculateMinMax(int temps[], int *minTemp, int *maxTemp)
oras
int CalculateMinMax(int *temps, int *minTemp, int *maxTemp)

The interpretation of femps in either signature is the same to the compiler ... it’s an lvalue. The reason is
because the call to CalculateMinMax() uses the name of the array by itself without brackets, which evaluates
to the lvalue of the array....

Going back to the function call to CalculateMinMax() in setup(), notice that the next two arguments
after temps[] are the int variables minTemp and maxTemp. Because you want the function to permanently
change these values within the function, the function needs to know where these variables live in memory.
This means you must send the lvalue for both variables to the CalculateMinMax() function. Passing the
lvalue instead of the rvalue changes the default argument behavior for a variable from pass-by-value to pass-
by-reference. Placing the address-of operator (&) before the variable names switches the two variables from
pass-by-value to pass-by-reference.

If you think about it, the call in setup()

retVal = CalculateMinMax(temps, &lowTemp, 8hiTemp);
has the effect of making the function signature to behave as though it were written as:

int CalculateMinMax(int temps[], int *minTemp = &lowTemp, int *maxTemp = 8hiTemp)

177

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * INTRODUCTION TO POINTERS

Breaking out the last two parameters from the signature should look familiar:

int *minTemp
int *maxTemp

&lowTemp;
&hiTemp;

These two statements are the syntax you would use to initialize two pointers to the lowTemp and
hiTemp variables back in setup(). In other words, pass-by-reference using the address-of operator (&) back in
setup() has exactly the same effect as initializing the two parameters in CalculateMinMax() as pointers to int
variables. A sample run of the code in Listing 8-2 is shown in Figure 8-6.

=== Before function call:

The 1lvalue for lowIemp is: 8682 and the rvalue is -8192
The lvalue for hiTemp is: 8680 and the rvalue is 0

=== After the function call:

The 1lvalue for lowTemp is: 8682 and the rvalue is 59
The 1lvalue for hiTemp is: 8680 and the rvalue is 79

Autoscroll

Figure 8-6. Sample run of the MinMaxTemperature program

In Figure 8-6, you can see that the lvalue for lowTemp is 8682 and hiTemp is 8680. (Why are the lvalues
two bytes apart? Answer: Because ints use two bytes of storage.) You can also see that the rvalues for the two
variables are different because they reflect whatever random bit pattern existed at those memory addresses
when the program began execution. After the call to CalculateMinMax(), you can see their lvalues are still
the same, but the temperatures have been assigned to the proper values by the function. Clearly, this means
you were able to change the variables back in setup() using pointer indirection even though both variables
are out of scope within CalculateMinMax(). This would not be possible without using pointers. Take a little
time to study Listing 8-2 to be sure you understand how pointers allow you to change rvalues for variables
that are out of scope.

The program shows another advantage of pointers. Recall that using an array name by itself as a
function argument is the same as passing the lvalue for that array to the function. Suppose the array of
temperatures was for ten days instead of one day. If the compiler could not simply pass the array name, it
would have to use the stack mechanism discussed in Chapter 7 and push 240 int values onto the stack, thus

178

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_7
http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

consuming 480 bytes of stack space. Also, those same 480 bytes would have to be popped back off the stack
by the code in the function. These pushing and popping instructions take time to say nothing about chewing
up a huge chunk of SRAM in the process. By using call-by-reference, you can use arrays as if they were
pointers and save both time and memory in the process.

Modified Blink Program

Let’s take the Blink program that is distributed with the IDE and modify it to use a pointer. This is a contrived
example, but it may help you to see what'’s going on when you use a pointer. The code is presented in Listing 8-3.

Listing 8-3. Modified Blink Program

/*
Blink by Scott Fitzgerald

Modified by:
Dr. Purdum, 12/19/2014
*/

#define LED 13

// the setup function runs once when you press reset or power the board
void setup() {

// initialize digital pin 13 as an output.

pinMode(LED, OUTPUT);
}

Vadkiats
Purpose: To blink the onboard LED using a pointer

Parameter List:

int pinthe pin attached to the LED

int *whichStatea pointer to the state variable back in loop()
Return value:

n/a
*****/
void BlinkLED(int pin, int *whichState)
{
digitalWrite(pin, *whichState); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
*whichState = !(*whichState); // Change state
}

void loop() {
static int state = HIGH; // State of LED
BlinkLED(LED, &state); // Call function

}

Most of the code should look pretty familiar to you. In loop(), we define state with the int type specifier,
but also use the static storage specifier. This means that the first line of code in loop() is only evaluated once.
It is not processed on each pass through loop(). The code then calls BlinkLED(), which is a simple function
to perform a digitalWrite() of the LED pin. However, note that we are sending the Ivalue of state to the

179

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

function, not a copy of state’s value. This means we are using pass-by-reference, not pass-by-value. As such,
we define the second parameter to BlinkLED() as a pointer, since we have an Ivalue, not an rvalue. Anytime
we need state’s rvalue in BlinkLED(), we'll need to use the indirection operator (*). Because we initialized
state to HIGH when we defined it, the first call to BlinkLED() turns the LED on.

In the function call to BlinkLED(), the code turns on the LED and then executes the statement:

*whichState = !(*whichState); // Change state

What? Anytime you see a “busy” statement like this used in an assignment, just break it down to its
simplest form. Because the expression on the right side of the assignment statement must be resolved first,
and parentheses force us to evaluate whatever is contain within them first because parentheses have the
highest precedence of all operators, we evaluate *whichState first. We know the state is HIGH because this
is our first pass through loop(). Therefore, *whichState causes us to use indirection to fetch variable state,
which is currently HIGH. Next we evaluate the NOT operator, which means the right-hand expression
becomes NOT HIGH. The expression NOT HIGH evaluates to LOW. This means that the value LOW is
assigned into *whichState using indirection. However, since whichState is a pointer to state back in loop(), it
is the value of state that actually gets changed by the assignment statement in BlinkLED().

Why did we have to use the parentheses in the pointer assignment in the BlinkLED() function? Actually,
we don’t. If you look at the Precedence Table in Chapter 4, you will find that the NOT and indirection
operators have the same precedence level. Whenever there are ties in precedence, most of the operators
are left-associative, which means the tie is evaluated in the expression by reading the operators from left to
right. In our statement, the result is the same. So, why did I use the parentheses if they are not required? The
reason is because it better documents what my intention is for the statement. Once again, it makes it easier
to understand what the expression does and that’s a good thing.

T urge you to type this short program in and study the code until you are sure you understand what'’s
going on. It will pay benefits down the road.

Pointers and Arrays

As you may have guessed, there is an intimate relationship between pointers and arrays. Listing 8-4 shows a
simple program that displays the content of a character array.

Listing 8-4. Display Character Array
/ *

Purpose: Display a character array using array indexes

Dr. Purdum, Nov 22, 2014
*/

void setup() {
char greet[6];

int i;

Serial.begin(9600);

greet[0] = 'H'; // Initialize the array with some characters
greet[1] = 'e'; // the slow way...
greet[2] = '1";
greet[3] = '1";
greet[4] = 'o';
greet[5] = '\0'; // null termination character
180

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

for (i =0; i< 5; i++) {
Serial.print(greet[i]); // Change this statement
}
}
void loop() {}

When you run this program, the output is simply “Hello” To do that, you used the array indexes to
march through the character string. Now change the statement in the for loop of Listing 8-4 to

Serial.print(*(greet + i));
and compile, upload, and run the program. What happens to the output? Absolutely nothing. The program
still displays “Hello”.
Now try changing the same statement to:
Serial.print(*(greet + i * sizeof(char)));
Does the output change? Nope, it’s still the same. The reason is because each variation makes use of the

fact that using an array name by itself is the same as using the lvalue of the array.
Consider Figure 8-7.

2201 2203 2205

H e | | 0 \0’

2200 2202 2204

Figure 8-7. The greet[] array in memory

Assume that the greet array is stored starting with memory address 2200 (i.e., its Ivalue is 2200). Now
look at the statement:

Serial.print(*(greet + i));

On the first pass through the loop, because i is 0, the statement resolves to:
Serial.print(*(greet + 0));
Serial.print(*(2200 + 0));

Serial.print(*(2200));

The indirection operator simply says to go to memory address 2200 and fetch the character found there.
This is the letter H. On the second pass through the for loop, the statement resolves to

Serial.print(*(greet + 1));
Serial.print(*(2200 + 1));
Serial.print(*(2201));

and the indirection operator fetches the letter e. The process repeats until the loop ends, at which time the
word Hello is on the display.

181

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

The second variation of the statement is:
Serial.print(*(greet + i * sizeof(char)));

The sizeof{) operator returns the number of bytes required to store the data type enclosed by its
parentheses. From Table 3-1 you know that a char requires 1 byte for storage in memory. Therefore, the
statement resolves to

Serial.print(*(greet + i * 1));
Serial.print(*(greet + 0 * 1));
Serial.print(*(2200 + 0));
Serial.print(*(2200));

and the H is displayed. For the second pass, the statement resolves to:

Serial.print(*(greet + i * 1));
Serial.print(*(greet + 1 * 1));
Serial.print(*(2200 + 1));
Serial.print(*(2201));

and the e is displayed. You should be able to figure out the rest of the sequence.

This exercise should convince you that using the array name greet is the same as the lvalue of the greet/[]
array. Now add the following pointer definition to setup() and change the for statement, as shown in the
following code fragment:

void setup() {
char greet[6];
char *ptr;
int i;

Serial.begin(9600);

greet[0] = 'H';

greet[1] = 'e';

greet[2] = '1";

greet[3] = '1";

greet[4] = '0';

greet[5] = '\o0';

ptr = greet; // Initialize the pointer

for (i =0; i< 5; i++) {
Serial.print(*ptr++); // Change this statement...

}
}

Once again, the program behaves exactly as before. The statement
ptr = greet;
takes the lvalue of greet and places it into the rvalue of ptr. To the compiler, because the name of an array

is the same as the Ivalue of the array, you don’t need to use the address-of operator (&) as you did with the
temperature variables in Listing 8-2. (In fact, if you did try to use the address-of operator, the compiler issues

182

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab1
http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

an error message.) The statement essentially does exactly the same thing as shown in Figure 8-4. It initializes
ptr to point to the greet[] array. In the for loop, the statement

Serial.print(*ptr++); // Change this line in 8.5 in for loop

uses the indirection operator (*) to fetch the content of ptr and display it. Since ptr equals 2200, the letter
H is displayed. Because you used a post-increment operator on ptr, on the next pass through the loop, the
indirection is performed on memory address 2201 and the letter e is displayed. As you can see, all three
variations of the program produce the same results.

Let’s make another modification:

while (*ptr) { // This replaces the for loop
Serial.print(*ptr++); // Change this line in 8.5 in for loop

}

Now what happens? In this case, the while expression fetches what ptr points to (H), and if it is non-
zero, it executes the Serial. print() call. This continues until the ptr points to the null at the end of the array.
Because this evaluates to logic false, the loop ends. In other words, it works exactly at before.

What would happen if you completely got rid of the for loop and just used the statement:

Serial.print(greet);

Once again, the program works exactly the same as before. The reason is because now we are treating
the character array as a string data type. (Do not confuse “string” with “String” The uppercase S refers to
the String class while a lowercase s refers to a string built up from a character array.) By terminating the
sequence of characters with the null termination character (' \0') as you did when the string was initialized,
you can treat the character array as a string. That is, the serial.print() function gets the lvalue of the greet/]
array, but can process it as though it is a string because of the null termination character. If you forget to
add the null character to the greet[], no problem. The Serial.print() function will just keep spinning through
memory displaying whatever junk it finds until it reads a byte with the value 0. Comment out the last
initialization byte and give it a try. My program only displayed about three bytes of junk before it stopped
printing. Your results may be different.

Note the number of different ways that C allows you to accomplish the same task; in this case, printing
out a short message. So, which is the “best” way to work with a string? As it turns out, the compiler is smart
enough to generate virtually the same code whether you use pointer notation (*ptr) or array notation
(greet[]). If you are interviewing for a job or pontificating at a cocktail party, you'd probably use pointer
notation. If you're writing code for a programmer who is still has his training wheels strapped on, use the
array notation. Some shops have standards about such things and you may not have a choice. If you do have
a choice, use whatever makes the most sense to you.

The Importance of Scalars

Let’s make some minor changes to the program shown in Listing 8-5. However, notice that greet/] is now an
int array, not a char array, and it initialized with numbers rather than characters.

Listing 8-5. Using an int Array

/*
Purpose: Display an int array using array indexes

Dr. Purdum, Mar. 11, 2015
*/

183

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

void setup() {
Serial.begin(9600);

int greet[6]; // Notice this is an int now

int *ptr; // ...as is this
int i;

greet[0] = 0; // Numbers now...
greet[1] = 1;

greet[2] = 2;

greet[3] = 3;

greet[4] = 4;

greet[5] = 5;

Serial.print("Using 'Serial.print(greet[i]);' ");
for (i = 0; i < 5; i++) {
Serial.print(greet[i]); // Flavor #1

Serial.println();
Serial.print("Using 'Serial.print(*(greet + 1));' ");

for (i = 0; i < 5; i++) {
Serial.print(*(greet + i)); // Flavor #2

}
Serial.println();
Serial.print("Using 'Serial.print(*ptr++);' ");
ptr = greet;
for (i = 0; i < 5; i++) {
Serial.print(*ptr++); // Flavor #3
}

}
void loop() {}
If you run the program, it displays 01234. (Expression2 of the for loop prevents the last element from

being displayed.) If we look at the memory map for the integer version of greet, it has changed to that shown
in Figure 8-8.

2202 2206 2210

2200 2204 2208

Figure 8-8. The greet|] array in memory when stored as an int

Notice how the offset from the greet lvalue (2200) is always fwo bytes now rather than one. Obviously,
this is because an int takes twice as much storage as a char. However, how does the math work out for the
statement within the for loop:

Serial.print(greet[i]);

184

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

This seems like it should resolve as

Serial.print(greet[i]);
Serial.print(greet + i);
Serial.print(2200 + 0);
Serial.print(2200);

which does align with the first number in the array. But, what happens on the next pass when i =1?
Serial.print(greet[i]);
Serial.print(greet + 1);
Serial.print(2200 + 1);
Serial.print(2201); // Uh-oh?

This is not the Ivalue for the second value in the array. What went wrong?

Actually, nothing went wrong, because that’s not how the compiler does the offset math. Any time the
compiler calculates an offset from an array’s base lvalue, it scales the offset by the scalar for the data type. To

prove this, try the second variation you tried, but for an int.

Serial.print(*(greet + i)); // New line for Listing 8-5
which acts like it is written:
Serial.print(*(greet + i * scaler);
Serial.print(*(greet + i * sizeof(int)));
Serial.print(*(greet + i * 2);
Serial.print(*(2200 + 1 * 2);
Serial.print(*(2202)); // Taa-daa! The lvalue when i = 1

This works just fine, since 2202 is the Ivalue for the second element of the array.
If you try the pointer version using the statement

Serial.print(*ptr++);

it also works just fine because all pointer math is also scaled to fit the underlying data type. In this case, any

increment increases the offset by 2 because the scalar is 2 (each int requires two bytes of memory). You can

alter the data type use in the program and you'll find the compiler adjusts the scalar for you automatically.

Pass-by-Value vs. Pass-by-Reference
We want to prove that there is a difference between pass-by-value and pass-by-reference. Consider the
program in Listing 8-6.
Listing 8-6. Pass-by-Value
void setup() {
// put your setup code here, to run once:

Serial.begin(9600);
int number = 10;

Serial.print("lvalue for number is ");

Serial.print((int) &number);
Serial.print(" rvalue for number is ");

www.it-ebooks.info

185

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

Serial.println(number);

SquareIt(number);

Serial.print("After call: rvalue for number is ");
Serial.println(number);

}
void loop() {}

void SquareIt(int temp)

{
Serial.print("In SquareIt(), lvalue for temp is ");
Serial.print((int) &temp);
Serial.print(" zrvalue for temp is ");
Serial.println(temp);
temp *= temp;
Serial.print("The new rvalue for temp is ");
Serial.println(temp);

When you run this program, the output is as shown in Figure 8-9. Note that the lvalue of number in
setup() is 8694 and its rvalue is 10. (We have to cast &number to an int because the Serial.print() method
doesn’t know how to print a memory address.)

lvalue for number is 8694 rvalue for number is 10

In SquarelIt(), lvalue for temp is 8687 rvalue for temp is 10
The new rvalue for temp is 100

After call: rvalue for number is 10

v

V] Autoscrol v| [115200baud v |

Figure 8-9. Sample run of pass-by-value

186

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * INTRODUCTION TO POINTERS

The code then calls the Squarelt() function, passing number to the function using the stack mechanism
(i.e., backpack) discussed in Chapter 6. Inside the Squarelt() function, we display the lvalue of temp, the
variable that received the copy of number from setup(). Clearly, because the Ivalue of temp is 8687 while the
lvalue of number back in setup() is 8694, they are two totally different variables. We know this because their
lvalues are different even though their rvalues are the same ... they live in different parts of memory. The code
then squares femp and shows its value is 100. Upon return from Squarelt(), we display the rvalue of number
again to show that it is still 10, not 100. Clearly, we are passing a value to the function, not the variable itself.

Now, let’s make a few changes to Listing 8-5 to make it pass-by-reference. Change the following
statement in setup() from:

SquareIt(number);
to
SquareIt(8number);

Note how we have changed it to pass the Ivalue of number by using the address-of (&) operator instead
of the rvalue of number. We changed the Squarelt() function enough; I'll just present it here.

void SquareIt(int *temp)

{
Serial.print("In SquareIt(), lvalue for temp is ");
Serial.print((int) &temp);
Serial.print(" rvalue for temp is ");
Serial.println((int) temp);
*temp = *temp * *temp;
Serial.print("The new rvalue for temp is ");
Serial.println(*temp);

After you make the changes to the source code, recompile, upload, and run the program. The output is
shown in Figure 8-8. Note that the Ivalue of number in setup() is still 8694 and its rvalue is 10.

The code then uses the address-of operator (&) before the argument number when it calls the Squarelt()
function. This means we are sending the lvalue of number to the function, not a copy of its rvalue. In other
words, even though number’s scope is limited to the setup() function, Squarelt() now knows where number
lives in memory. Think about what this means. We have “hidden” number within setup() but have made
it “indirectly” available to Squarelt() because we can use that Ivalue as a pointer. We have encapsulated
number in setup(), but made number available to Squarelt() by using pass-by-reference. Reread this
paragraph until it makes sense.

We can prove all of this just by looking at Figure 8-8. Inside Squarelt(), we can see that temp lives at
memory address 8687. The rvalue for temp is 8694.

Wait a minute! On my system, the lvalue of number is 8694 and the rvalue for temp is 8694. This is similar
to what you saw in Figure 8-4! Just substitute temp for ptrNumber and change the lvalue/rvalue pairs and you
have a picture of how things are now in Squarelt(). To get number’s rvalue, we have to use the indirection
operator (*) on temp to get the value of number (10) as it appears in setup(). Then we execute the statement:

*temp = *temp * *temp;

What the ... ?? This makes sense if we break it down like the compiler would:

*temp
*temp

*temp * *temp;
(*temp) * (*temp);

187

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

*temp = 10 * 10;
*temp = 100;

What does this mean? Because femp is a pointer to an int, the statement sends control to the memory
address stored in femp’s rvalue (8694), makes a two-byte int with a value of 100, and shoves that new value
into the two bytes starting at address 8694. This means we have changed the rvalue of number that “lives”
(i.e., has scope) back in setup(). The final call to Serial.print() back in setup() proves that number has been
permanently changed by the call to Squarelt(). Study the output shown in Figure 8-10 and then think about
it. How cool is that!

lvalue for number is 8694 rvalue for number is 10

In SquarelIt(), lvalue for temp is 8687 rvalue for temp is 8694
The new rvalue for temp is 100

After call: rvalue for number is 100

Autoscroll

Figure 8-10. Program illustrating pass-by-reference

Your Turn

Now it’s your turn to provide a solution to a programming problem. Here’s the problem.

Using the two-LED circuit from Chapter 4, Figure 4-1, write a program that calls a function named
GetInput() to acquire a single-digit number from the user via the Serial monitor. The numeric value from the
user has the following interpretation:

no LEDs 1lit

LED1 1it

LED2 1lit

both LED1 and LED2 1lit

w N B O
n

Any other entry by the user (i.e., “bad input”) should keep the LEDs in whatever their current state is.
GetInput() has a function type specifier of int and the only two values to be returned are 0 on “bad input” or

188

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Fig1
http://www.it-ebooks.info/

CHAPTER 8 * INTRODUCTION TO POINTERS

1 on “good input” Another function named LightLEDs() is used to turn the two LEDs on /off according to the
value entered by the user. Other than setup() and loop(), you can only use the two new functions mentioned
earlier. You are free to use any of the standard library functions.

At this point, I really hope you would sit down and try to draw up a program design of your own. If you
do, you will learn much more than if you just read what follows. Give it a shot.

One Approach

Of course, the place to start is with Step 1 of the Five Program Steps. Step 1 is the Initialization Step, so what
needs to be initialized? Well, since we are collecting input from the Serial monitor, we need to initialize the
Serial object. Because there are two LEDs that are going to be used as indicators, we need to use pinMode()
to set their state to be OUTPUT.

Step 2 is the Input Step, and we know that we will be using the Serial monitor to get input from the
user in a function that is to be named GetInput(). Simple enough. However, what is not simple is how to
get the information from the GetInput() function back to the caller. It’s a problem because the only thing
that can be returned from the function is a 0 or 1 to indicate that a “good” or a “bad” value was entered
by the user. That doesn’t leave us a means to return what the user entered (0 through 3 on “good” input)
for subsequent steps.

Wait a minute! What if I pass a pointer to the GetInput() function as a function argument and let the
user input set the value of the pointer in the function? That should work.

Step 3 is the Process Step, which in this case is to get the input from the user and determine which LEDs
should be turned on (or off). Once we have determined the state the LEDs should have, Step 4, the Display
Step, uses the LightLEDs() to display the LEDs.

We will assume that there is no Step 5, Termination Step, but rather the program will repeat itself to
allow the user to enter another input value. Therefore, this will be our first program that actually uses the
loop() function. At this point I hope you try to write your own solution before reading this one.

One Solution

First, consider the Initialization Step, as shown in the following code fragment:

#define LED1 11 // Which I/0 pins are we using
#define LED2 10

void setup() {
Serial.begin(9600);// Serial object set with "No Line Ending"

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
}

We define two symbolic constants for the LEDs and the pins associated with each. Why not use pins
0 and 1 instead of 10 and 11? The reason is because pins 0 and 1 are used to transmit and receive data
by the USB connection. While you still could use pins 0 and 1 with artful programming that avoid RX/TX
issues with the USB, why bother? We have plenty of unused pins, so it’s easier to use other pins. (We also
avoid using pins 2 and 3, since they are the only external interrupt pins many of the Arduino boards make
available.) Once the pins are chosen, we use them for the necessary initialization code to setup(). The three
statements simply activate the Serial object and perform the two pinMode() function calls to set the LEDs
for OUTPUT.

189

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

Next, let’s look at the loop() function. As you know, the loop() function creates an infinite loop that
never ends, unless power is removed, the board is reset, or there is a component failure. The following code
fragment presents our loop() function code:

void loop() {
int goodBadFlag; // Was the input good or bad?
int LEDValue;

Serial.println();

goodBadFlag = GetInput(&LEDValue);
Serial.print("flag = ");
Serial.print(goodBadFlag);
Serial.print(" LEDValue = ");
Serial.print(LEDValue);
LightLEDs(LEDValue);

The function body begins with the definition of two working variables. There are several calls to Serial.
print() that serve as debug code to help you see what'’s going on. Using the Serial object is a common means
for debugging (correcting) the program code. When you have the program fully debugged, removing the
Serial object calls will decrease the code size.

Ignoring the Serial function calls, the first call is to GetInput(), which is used to retrieve input from the
user. The function code is as follows:

[k

This function is used to get a numeric value from the user via the
Serial monitor. Valid input are the values 0 - 3.

Argument list:
int *whichthe value entered by the user

Return value:
int 0 if the value is bad, 1 if good
*****/
int GetInput(int *which)
{
char c;
int temp = -1;
*which = temp;
while (true) {
if (Serial.available() > 0) {
¢ = Serial.read();
if (isdigit(c)) { // If they entered a digit character
temp = c - '0"; // Subtract ASCII zero from the digit character
if (temp >= 0 && temp < 4) { // Is the value within range?
*which = temp;
return 1;// Yep, it's good
}
}

190

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * INTRODUCTION TO POINTERS

return 0; // If we get here, it's bad input
}
}
}

The function has a single argument, which is an inf pointer named which. The code defines several
working variables, setting temp equal to -1. The code then uses pointer indirection to also set which to -1.
The code then creates an infinite while loop that waits for the user to supply some input from the Serial
monitor. The statement

if (Serial.available() > 0) {

continually monitors the Serial input stream to see if the user has supplied any input. Suppose the user
presses the 2 key and clicks the Send button on the Serial monitor. The call to Serial.read() immediately
moves the digit character 2 into the char variable named c. The call to isdigit() using c as its argument is a
standard library function that checks to see if the argument is a digit character. If c is not a digit character,
zero is returned. If c is a digit character, non-zero is returned. Because we entered a “2” digit character, non-
zero is returned and the iftest is logic true.

Recall that when you touch a key on the keyboard, its corresponding ASCII code is sent to the computer.
For the “2” digit character, the ASCII code is 50. The ASCII code for 0 (zero) is 48. Therefore, the statement

temp = ¢ - '0';// Subtract ASCII zero from the digit character
actually resolves to:

temp = 50 - 48;
temp = 2;

The statement, therefore, is a quick and easy way to convert the ASCII code for a digit character into
a “real” integer number that is assigned into femp. We then check temp to see if the value falls within our
acceptable range of values (0 through 3, inclusive). If it is a valid number within our range, we use pointer
indirection to assign temp into which. Because it is an acceptable value, we return the value of 1 from the
function call to GetInput(). You should convince yourself that non-valid values or letters entered by the user
end up returning 0 to the caller. Either way, program control returns to loop().

Back in loop(), goodBadFlag is assigned the return value from the call to GetInput(). However, note that
LEDValue has been changed by pointer indirection in GetInput() and now holds the value entered by the
user is the number entered was valid. After the function call, there are a bunch of debug statements that use
the Serial object to help you see what’s going on.

The last statement in loop() is the call to LightLEDs() using LEDValue as its argument. The code
fragment follows:

JRRKRK

This function is used to illuminate the correct combinations of LED
according to the value of which

Argument list:
int combo key for lighting LEDs: O=none, 1=LED1, 2=LED2, 3=both

Return value:
void
*****/

191

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © INTRODUCTION TO POINTERS

void LightLEDs(int combo)

switch(combo) {

case 0: // both off
digitalWrite(LED1, LOW);
digitalWrite(LED2, LOW);
break;

case 1: // 1 on, 2 off
digitalWrite(LED1, HIGH);
digitalWrite(LED2, LOW);
break;

case 2: // 1 off, 2 on
digitalWrite(LED1, LOW);
digitalWrite(LED2, HIGH);
break;

case 3: // both on
digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH);
break;

default:
Serial.println("Control should never get here");
break;
}

}

You should be able to convince yourself that, with the value of 2 entered by the user, LED]I is turned off
and LED2 is turned on. The default case is simply a catchall if the user entered a non-valid number. You could,
of course, use a series of nested if statements instead of the switch, but I think the switch is easier to read.

Debug Statements Using the Serial Object

Once you are convinced that the code is performing as wanted, you should remove the Serial.print() calls
because they eat up memory that you may need for other uses. Perhaps the easiest way to do this is just to
erase the statements from the code. While this works, what happens if you later unearth a bug and you need
to put the debug statements back into the code? Well, you can always retype them back into the source code,
but there’s an easier way.

Suppose at the very top of the source code file I add a new line:

#define DEBUG
and I change the code in loop() to:
void loop() {

int goodBadFlag; // Was the input good or bad?
int LEDValue;

#ifdef DEBUG // NOTE
Serial.println(" ");
#endif // ...end

goodBadFlag = GetInput(&LEDValue);

192

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * INTRODUCTION TO POINTERS

#ifdef DEBUG // NOTE
Serial.print("flag = ");
Serial.print(goodBadFlag);
Serial.print(" LEDValue = ");
Serial.print(LEDValue);

#endif // ...end

LightLEDs(LEDValue);
}

Note the #ifdef DEBUG preprocessor directives. What these tell the compiler is that, if DEBUG is defined
in this file, include all the statements up to the #endif directive. If DEBUG is not defined in this file, do not
compile any of the statements between the two directives into the program. You can add the same set to the
Serial.begin() call in setup(). If you recompile the program, because we #defined DEBUG at the top of the file,
all of the Serial.print() calls get compiled into the program.

Now, comment out the #define DEBUG directive at the top of the file, but leave the other preprocessor
directives untouched and recompile the program. What happens? Because DEBUG is no longer defined in the
file, none of the Serial.print() calls get compiled into the program. On my machine, the code size dropped from
2946 bytes to 2218 bytes by not including the debug code. If I need to reinstate the debug code later on, I just
need to uncomment the #define DEBUG directive back in at the top of the source file. Kinda cool! You may hear
this kind of debug code referred to as scaffolding code because it is used to surround the debug statements that
serve as a safety net during the debug process, much like a scaffold protects the workers while building.

Summary

In this chapter you learned the hardest topic C can throw at you: pointers. You learned what pointers are

and how to use the address-of and indirection operators to manipulate pointer data. You also learned

how pointers are useful in overcoming local scope limitations when you want the function to permanently
change a function argument. You also saw how pointers support the idea behind encapsulation because you
can make local scope variables available to other non-local elements of the program. You also learned that
pointers have a close relationship to the array data types. The sample programs in this chapter demonstrated
that there are various ways to use pointers, but they are functionally equivalent.

There are a lot of new concepts in this chapter and you must master them before reading the next
chapter. The next chapter adds more details about pointers and has a little more complexity. As such, it
makes sense for you to spend enough time in this chapter before progressing to the next chapter. If you can
do the exercises without error, you're ready to move on.

EXERCISES

1. What is a pointer?

Answer: A pointer is a variable that, once initialized, has its rvalue initialized with the Ivalue
of another variable. Both the pointer and the matching variable must have the same data
type specifier.

2. What does a pointer enable the programmer to do that might not be possible
otherwise?

Answer: Pointers allow functions to have direct access to data that would otherwise be
out of scope. That is, pointers allow arguments to be passed by reference, thus giving a

193

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

194

INTRODUCTION TO POINTERS

function the ability to permanently alter the rvalue of a variable that is not in scope. Pointers
also allows arrays to be passed to functions in a more memory-efficient manner than pass-
by-value would permit.

What does the address-of operator do and give an example?
Answer: The address-of operator (&) gives the code access to the Ivalue of a data item. It is
normally used to initialize a pointer. A typical use might be:

int val;
int *ptr;

ptr = &val;
Variable ptr now holds the Ivalue of val and can change it through the process of

indirection.

What is the indirection operator (*) and what’s its purpose? Give an example of
how it might be used.

Answer: The indirection operator is used by a pointer variable to access the rvalue of
a different variable. To be used properly, the pointer must be initialized to point to the
variable. For example:

int val;
int *ptr;
ptr = &val;
*ptr = 10;

This code fragment uses indirection via ptrto change valto 10.

What is a pointer scalar and why is it important?

Answer: A pointer scalar refers to the byte magnitude that pointer operations are scaled.
For example, if a pointer to char is incremented, the offset from the Ivalue is increased by 1
because that is the size of a pointer scalar for a char data type. However, if a pointer to /ong
is incremented, the offset is adjusted by 4 because each /ong uses 4 bytes of storage.

Suppose you needed to pass the value of the fifth element of an int array
named values to a function named func(). How would you write the code?

Answer:;
func(values[4]);
The offset is 4 because of the N — 1 Rule for arrays. Bear in mind that this

syntax is pass-by-value. That is, you are sending a copy of the value of the
values(] array element to the function.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * INTRODUCTION TO POINTERS

6. The Getinput() function listed earlier has a small hiccup in it. What happens if
the user enters —2 for input. You can guard against negative numbers as input
by only using the absolute value of the number entered by the user. Correct the
Getinput() function so it doesn’t accept negative numbers.

Answer: You need to do this one by yourself. However, | will tell you that the standard library
provides a function named abs().

7. Take the code in Listing 8-4 and compile the program using the various pointer
methods discussed in the text. Write down the one that uses the least amount
of memory and try to explain why you think it uses the least memory.

Answer: Interestingly, all have the same code size (1868 bytes) except for the version
that uses the while loop (1852 bytes). This suggests that the compiler optimizes all the
other forms to the same code. The while loop version does away with variable /and its
manipulation in the program, which accounts for the difference.

195

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Using Pointers Effectively

This chapter is a continuation of Chapter 8. In that chapter, you learned what a pointer is and how to
manipulate them in expressions. In this chapter, you will learn

e Valid pointer operations

e Pointer arithmetic

e Using pointers to functions

e The Right-Left Rule for deciphering complex data definitions
e Why using pointers can lead to more efficient code

When you have finished this chapter, you should be quite comfortable using pointers in your code.

Relational Operations and Test for Equality Using Pointers

Some C expressions make sense with almost any data type ... except pointers. A partial reason this is true is
because a pointer can only have two types of rvalues: a memory address or NULL. Any other type of data is
going to result in an error of some form. Because the rvalue for pointers is thus constrained, some operators
simply don’t make sense with pointers. Relational tests (e.g., >=, <=, >, and <) on pointers are acceptable only
when both operands are pointers, and point to the same data. Therefore,

if (ptr1 < ptr2) {
}

is acceptable only if both pointers ptrI and ptr2 point to the same object, but
if (ptr1 > 10) {
}

is not. This second form is unacceptable because the relational test is against a constant, not a pointer.
You can use a cast to dispel the error message you get when using constants in pointer relational tests, but
that’s almost never a good idea. The reason it is not a good idea is because it is unlikely that testing against
a specific numerical memory address almost never makes sense because an lvalue is not known until

run time.

© Jack Purdum 2015 197
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_9

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_8
http://www.it-ebooks.info/

CHAPTER 9 ' USING POINTERS EFFECTIVELY

Pointer Comparisons Must Be Between Pointers to the Same Data

You should not perform relational operations on two pointers if they do not point to the same data object. If
you think about it, such comparisons simply don’t make sense. (An exception is checking a pointer to see if it
is null.) The problem, however, is that the Arduino C compiler does not catch this type of error. Consider the
following code fragment:

char *ptri1;
char *ptr2;
char array[50];
char name[10];

ptrl = array;

ptr2 = name;

if (ptr1 > ptr2) { // Some RDC...
//...

}

The iftest on the pointers is nonsense and should be flagged as an error because you are comparing two
pointers that point to different data objects. There is no way that two arrays occupy the same memory space.
The Arduino C compiler, however, lets this code slide by. This can make debugging a pointer problem more
difficult than it should be.

Pointer Arithmetic

Some forms of pointer arithmetic are allowed, others are not. Confusing them is simply begging the train to leave
the rails. You performed pointer arithmetic in Chapter 8, but probably didn’t think much about it. Now, let’s dig
in and look closely at what happens when you use pointers in your code. Consider the code in Listing 9-1.

Listing 9-1. Using Pointers

/*
Purpose: Illustrate pointer arithmetic

Dr. Purdum, Nov. 24, 2014
*/
#include <string.h>
void setup() {
Serial.begin(9600);

char buffer[50];
char *ptr;
int i;

int length;

strcpy(buffer, "When in the course of human events");

198

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_8
http://www.it-ebooks.info/

CHAPTER 9 " USING POINTERS EFFECTIVELY

ptr = buffer;
length = strlen(buffer); // How many chars in quote?
Serial.print("The lvalue for ptr is: ");
Serial.print((unsigned int)8ptr);
Serial.print(" and the rvalue is ");
Serial.println((unsigned int)ptr);
while (*ptr) {
Serial.print(*ptr++);

}
}
void loop() { }

The first thing to notice is that we are including a header file named string.h. (Actually, you could leave this
preprocessor directive out and the compiler still compiles the program without error.) If you read string.h
with a text editor, you will find all kinds of functions designed to manipulate both strings and memory. (You
should have looked at this header file as part of your reading of Chapter 6.) Most of the function declarations
you find in that header file are part of the System V Standard C Library that’s been around for decades. If you
are interested in learning more about any given library function (e.g., memcmp), just Google the function
name, and you will get more than enough information about the function.
(A memcmp() search turned up over 300,000 hits!) As stated before, search the libraries before writing your
own functions. There’s a good chance that what you need has already been written.

One of the function declarations you will find in the string.h header file is

extern char *strcpy(char *, const char *);

which copies the characters pointed to by the constant character pointer that is the second parameter into the
character array pointed to by the first parameter. (When used in this context, const means that the function should
not alter the data pointed to by the second parameter. Because strcpy() knows the lvalue of the second parameter,
it could alter its contents. The const qualifier tells the compiler not to let that happen.) Therefore, the statement

strcpy(buffer, "When in the course of human events");

simply copies the quotation into buffer.
The statement

ptr = buffer;

simply initializes ptr to point to buffer. That is, it copies the lvalue of buffer into the rvalue of ptr. Remember
that an array name by itself is the lvalue of the array (i.e., buffer is the same as &buffer[0]). Think about what’s
been said thus far until you're sure you understand what the last two sentences mean.

When you compile, upload, and run the program, your output for Listing 9-1 should look similar to that
shown in Figure 9-1.

199

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://www.it-ebooks.info/

CHAPTER 9 = USING POINTERS EFFECTIVELY

The 1lvalue for ptr is: 2242 and the rvalue is 2244
When in the course of human events

[¥] Autoscroll

Figure 9-1. Output from pointer arithmetic program

You can tell from Figure 9-1 that ptr is stored at memory address 2242 and that buffer has an lvalue of 2244.
The second line confirms that ptr does point to buffer. The code then enters a while loop to display the contents
of buffer, using ptr to reference it. This is pretty much the same type of program you used in Chapter 8.

Now, add the following lines of code to the program in Listing 9-1, just before the closing brace of setup():

for (i = 0; i < length; i++) {
Serial.print(*(ptr + i));
}

Now run the program. The output when I ran the program is shown in Figure 9-2.

200

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_8
http://www.it-ebooks.info/

CHAPTER 9 " USING POINTERS EFFECTIVELY

|[Lsend]

br ptr is: 2240 and the rvalue is 2242 -
course of human events <” =1 <h B BA U h [When i

Autoscroll

Figure 9-2. Output from pointer arithmetic program with for loop added

What? What's all of the garbage in Figure 9-2 that follows the word “events” all about? In other words,
what is the following statement printing?

Serial.print(*(ptr + 1));

This variation of the program using pointer arithmetic worked in the last chapter, but isn’t working here. Why?
To figure out the problem, look at the statement in Listing 9-1:

Serial.print(*ptr++);

This is controlled by the while loop. Now ask yourself: Why did the while loop terminate? The reason the
whileloop terminated is because ptr had been incremented so that it pointed to the null termination character
for the quotation as stored in buffer. From the information in Listing 9-1 you know that buffer holds 34 characters
plus one for the null character. When the while loop terminates, the rvalue for pfr must be 2277 (i.e., 2242 + 35)
because you incremented ptr 35 times in the while loop. As a result, ptr no longer points to the start of the quote,
but to its null termination character because you have been incrementing the rvalue of pointer in the while loop.
After the whileloop, the program code then falls into the new for loop that you just added, and the statement

Serial.print(*(ptr + i));

resolves to

Serial.print(*(2277 + 0));

which attempts to display whatever junk is stored in memory after the quotation has been stored in the

buffer array! This is going to be whatever garbage happens to be in SRAM at the memory location, starting
with 2277. Trust me, this is a Flat Forehead Mistake every C programmer has made at one time or another.

201

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 = USING POINTERS EFFECTIVELY

So, what's the fix? Very simple: reset the pointer any time you need to reuse it. In our case, add these
lines before the new for loop code and run it again:

ptr = buffer; // Reset the pointer back to buffer[o]...
Serial.println(""); // So the output prints on a new line

Now the output (as shown in Figure 9-3) is as expected.

COMD o —— (o]|

| |[Lsend]

The 1lvalue for ptr is: 2240 and the rvalue is 2242
When in the course of human events
When in the course of human events

[¥] Autoscrol ‘Newiine v | [9600baud |

Figure 9-3. Program output after resetting ptr

Always remember: When you increment a pointer, it doesn’t automatically reset itself.
The statement controlled by the new for loop

Serial.print(*(ptr + 1));

shows how addition is one form of pointer arithmetic that is allowed. You learned in Chapter 8 that all
pointer arithmetic is scaled to fit the data being pointed to. In this example, the scalar for a char data type is 1
byte, so each pass through the loop adds 1 to the rvalue of p#r and the code marches through the quotation.
If ptr were pointing to int data, the expression

(ptr + 1)

in the Serial.print() statement would add 2 to ptr on each pass because the scalar for an int is 2 bytes.

Therefore, the arithmetic operation of pointer addition is permissible and is automatically scaled for the
type of data being used.

202

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_8
http://www.it-ebooks.info/

CHAPTER 9 " USING POINTERS EFFECTIVELY

Constant lvalues

You saw statements in Listing 9-1 that manipulated the pointer, as in
ptr = buffer;

and also the subexpression

ptr + i;

and both are perfectly acceptable expressions. The first statement simply initializes the pointer to point to
the buffer, whereas the second statement increments (adds one scalar unit) to the pointer.

Now, using the variable named buyffer from Listing 9-1, what happens when you try compiling the
following statement?

buffer = buffer + 1;

The compiler gets a tad cranky and issues an error message. Why? Think about it.

You know that when an array name appears in a program statement by itself, it resolves to the lvalue
of the array. Recall that it is the Ivalue in the symbol table that allows the compiler to find where a data item
resides in memory. The preceding statement, however, is attempting to change the Ivalue by adding one
to it. If the compiler allowed you to change the lvalue, there would be no way to find where that variable is
stored in memory. Therefore, the compiler must issue an error message when any statement attempts to
change the lvalue of a variable. You can add an offset to an lvalue to access the elements of an array, but you
cannot directly change its Ivalue. If you do try to change the lvalue of an array, you will get some form of
error message telling you not to change “a constant Ivalue.” Pointers can change rvalues, not lvalues.

Two-Dimensional Arrays

Two-dimensional arrays are often used in programming to present tabular data. You might, for example, have
a fire alarm system with 10 sensors per floor in a three-story building. You could organize those sensors as

int myFireSensors[3][10];

which could be used to store the current state of each sensor on all three floors. Obviously, you could also
write the array as:

int myFireSensors[10][3];

Most programmers think of the organization for two-dimensional arrays in a row-column format, so
this latter definition is “ten rows of sensors by three columns of floors” Which of the two forms is better?
Doesn’t matter. Pick one that makes sense to you and use it.

Let’s write a short program that uses a two-dimensional array of characters. Although you could write
the program as a simple array of Strings, we organize the data as char’s instead. The code is presented in
Listing 9-2.

203

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' USING POINTERS EFFECTIVELY

Listing 9-2. Using a Two-Dimensional Array of chars

/*
Purpose: To illustrate the relationship between two-dimensional
arrays and pointers.

Dr. Purdum, December 20, 2014

*/
#define DAYSINWEEK 7
#define CHARSINDAY 10

static char days[DAYSINWEEK][CHARSINDAY] =

{"Sunday"”, "Monday", "Tuesday","Wednesday",
"Thursday", "Friday", "Saturday"};

void setup() {

int i, j;

Serial.begin(9600); // Serial link to PC

for (i = 0; i < DAYSINWEEK; i++) {
Serial.print((int) 8days[i][0]); // Show the lvalue
Serial.print(" ");
for (j = 0; days[i][]]; j++) {

Serial.print(days[i][j]); // Show each char

}
Serial.println();

}

}
void loop() {}
The character array is initialized by the statement:

static char days[DAYSINWEEK][CHARSINDAY] =

{"Sunday", "Monday", "Tuesday","Wednesday",
"Thursday", "Friday", "Saturday"};

The reason CHARSINDAY is set to 10 is because Wednesday is the longest day name, having nine characters.
If you wish to view them as strings, you would need to define Wednesday with ten characters, or nine characters
plus the null termination character. The result is a table with seven rows and ten columns of characters.

Why use the static storage modifier? Actually, the way the code is presented in Listing 9-2, the static
modifier doesn’t play much of a role in the way the data are handled by the compiler. The biggest difference
is that the data are not allocated on the stack. (The static modifier changes where it gets allocated in SRAM
memory.) If you run the program, the output should look similar to that shown in Figure 9-4. (I will have
more to say about the static storage modifier in Chapter 14.)

204

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_14
http://www.it-ebooks.info/

CHAPTER 9 " USING POINTERS EFFECTIVELY

258 Sunday
268 Monday
278 Tuesday
288 Wednesday
298 Thursday
308 Friday
318 Saturday

V] Autoscroll Newline v | |9600baud
@]

Figure 9-4. Two-dimensional program run

Another thing to keep in mind about data defined with the static storage modifier is that only a single
instance of that data is ever defined, and it is defined at load time. For example, if you defined a static
variable in a function that is called a thousand times, the static variable is only created once and that’s
when the program first starts. All thousand calls to the function share the same variable. That’s why static
data retain their values between function calls. Unlike variables that use the local storage class and are
reallocated each time the function is called, static data hang around as long as the program is running.

In Listing 9-2, nested for loops are used to display the contents of the array. The first Serial. print() call in
the code

Serial.print((int) 8days[i][0]); // Show the lvalue

uses the address of operator to display where this particular element of the days/[][] array is stored in
memory. The second Serial. print() call simply prints a blank space. The jloop code

for (j = 0; days[i][j]; j++) {
Serial.print(days[i][j]); // Show one char

Serial.println();
}

205

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' USING POINTERS EFFECTIVELY

then displays each element of the array by using the i and j indexes. Note how expression2 of the for loop
is written. Why does expression2 eventually cause the j for loop to terminate? (Hint: think about the null
termination character.)

If you look closely at Figure 9-4, you will notice that the lvalue for each row is exactly 10 bytes more
than the previous element. Obviously, the rows are stored “back-to-back” in memory. In my own mind,

I visualize such arrays simply as a long sequence of bytes. In this example, I visualize it as a sequence of 70
byte-sized blocks laid end to end. The second array dimension tells me how long each element is, or 10 bytes
in this example. The first array dimension, 7, tells me where to “break” the blocks. Therefore, I mentally
stack 7 chunks of memory one on top of the other, where each chunk is 10 bytes long. This forms a 7-row by
10-column table of characters.

Also notice that the Ivalues have relatively low memory addresses compared to the lvalues in Figure 9-3.
Why? The reason is because the variables in Figure 9-3 were allocated off the stack, while the lvalues for the
days[][] array has the static storage class and is not allocated off the stack. Instead, a chunk of memory referred
to as the heap is where static and global variables are allocated in SRAM. While I'm bending the facts a little,
it’s not too far off base to think of the stack as growing downward from the top of SRAM as local variables
come into scope and variables allocated in the heap are found in low SRAM. If the two collide, you're out of
memory.

A Small Improvement

Although the code in Listing 9-2 works as designed, you can make a minor change and get slightly better
code. The improvement involves moving the days[][] array from its current global access location outside
of any function to inside the setup() function. This move changes the access from global to local access,
which affords the data an improved degree of privacy because nothing outside of sefup() now has access
to the array.

You might be thinking: “Wait a minute! In Chapter 7 you stated that local variables are allocated on the
stack in SRAM. Doesn’t this “improvement” increase the risk of running out of SRAM while the program
runs?” To answer this question, move the definition of days/[][] into the setup() function and recompile and
run the program. What do you see?

Moving the days[][] array has no affect on the output of the program. Especially note that the lvalues do
not change, which means the array hasn’t moved. How’s that possible now that days/][] is a local variable?
The reason was just explained a few paragraphs ago. There is no change because data defined with the static
storage specifier are always defined in the heap section of SRAM. Still, this second version of the program
is better because you have restricted the access to the array by outside agents, yet haven’t chewed up any
more of the limited SRAM space. It is also important to know that, unlike local variables, static data are never
reallocated once loaded. The static specifier assures you that the allocation only occurs once at load time.

How Many Dimensions?

Our sample program uses a two-dimensional array. Each dimension is called a rank, so Listing 9-2 uses a
rank 2 array. So, how many ranks does Arduino C allow you to use? Well ... how many do you need? You might
use arank 3 array if you are doing 3D graphics, storing the coordinates for x, y, and z. If you're writing a game
where those graphics change in relation to time, you might use a rank 4 array. I've tried to think of a rank 5

206

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_7
http://www.it-ebooks.info/

CHAPTER 9 " USING POINTERS EFFECTIVELY

example and all I get is a headache. While I thought the old ANSI X3J11 spec stated a maximum rank of 256, I
cannot find that limitation in print. I do know that the Arduino can compile a rank 5 array. I read where some
theoretical physicists now believe there are 11 dimensions. If that makes sense to you, you probably don’t need
this book. I can’t think of any reason to go beyond rank 4. If you need more, write the code and try to compile it.

If it compiles, you should then send me a copy of the code ... Ineed a good example of a rank N program.

Two-Dimensional Arrays and Pointers

Can you rewrite the code in Listing 9-2 to use pointers? Sure, but it takes a little more thought. The modified

code appears in Listing 9-3.

Listing 9-3. Modified Two-Dimensional Array Program to Use Pointers

/*
Purpose: To illustrate the relationship between two-dimensional
arrays and pointers.

Dr. Purdum, December 21, 2014
*/
#define DAYSINWEEK 7
#define CHARSINDAY 10

void setup() {
Serial.begin(9600);
}

void loop() {
static char days[DAYSINWEEK][CHARSINDAY] =

{"Sunday", "Monday", "Tuesday","Wednesday",
"Thursday", "Friday", "Saturday"};

int i, j; // Note the dual definitions in one statement
char *ptr, *base; // Some programmers hate these. Your choice.

base = days[0]; // Different for N-rank arrays where N > 1

for (i = 0; i < DAYSINWEEK; i++) {
ptr = base + (i * CHARSINDAY);
Serial.print((int) ptr); // Show the lvalue
Serial.print(" ");
for (j = 0; *ptr; j++) {
Serial.print(*ptr++); // Show one char

Serial.println();

}
Serial.flush();

exit(0);

}

www.it-ebooks.info

207

http://www.it-ebooks.info/

CHAPTER 9 ' USING POINTERS EFFECTIVELY

The first thing to notice is that there are two char pointer variables now, ptr and base. In the code, ptr
is used to march through the character array, while base is used to keep track of where the array begins in
memory. Recall from the previous program that when you ran the program back-to-back without resetting
the pointer, random garbage ended up being displayed. The base pointer is used in Listing 9-3 to prevent the
same problem.

The next difference is how the base character pointer is initialized to point to the array. The statement

base = days[0];

is necessary because this is a rank 2 array. A one dimensional array resolves to a pointer to char, so the name
of the array is the lvalue for the array. However, with two-dimensional arrays, what you have is a pointer to
an array, not a pointer to a pointer. For that reason, you need to show “rank - 1” array brackets. That is, if you
have a rank 3 array, you would need to use array[0][0] in the pointer initialization. You could force the syntax
using a cast, but that seems to be an artificial way to do it.

Inside the for loop controlled by variable i, the statement

ptr = base + (i * CHARSINDAY);

initializes ptr to point to the element of the array that you wish to display next. Looking at Figure 9-4, the
days[][] array starts at memory address 258. Because you initialized base to point to the starting address
of the first element of the array, base equals 258. So, on the first pass through the iloop, the expression
resolves to

ptr = base + (i * CHARSINDAY);

ptr = 258 + (0 * 10);
ptr = 258 + 0;
ptr = 258;

which is exactly what we want. On the second pass through the i loop, ptr resolves to

ptr = base + (i * CHARSINDAY);

ptr = 258 + (1 * 10);
ptr = 258 + 10;
ptr = 268;

which agrees with the value displayed in Figure 9-4. You should be able to convince yourself that each pass
through the iloop results in an Ivalue for ptr that is 10 bytes larger than the previous value ... exactly as
expected. Note that the base pointer is never changed. That’s because all of the calculations are indexed
from the beginning of the array.

Inside the for loop controlled by variable j, the statement

Serial.print(*ptr++); // Show one char

simply causes the code to march through the array, displaying each character until the null termination
character is read. When ptr has been incremented to the null termination character, expression2 of the for
loop terminates (the loop code interprets the null as a logic false condition), and the jloop ends. An end-
of-line character is displayed, so the next display line appears on a new line. The program then increments
variable i and the next pass through the i loop is made. The call to Serial.flush() makes sure that the Serial
buffer is cleared and the call to exit(0) causes the program to end. These two statements are not used very
often in Arduino programs, but does show how to terminate a program from within loop().

208

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " USING POINTERS EFFECTIVELY

Treating the Two-Dimensional Array of chars As a String

If you just want to print the contents of the array as strings, you can simplify the program even more. Remove
the two forloops and replace them with the following single loop:

for (i = 0; i < DAYSINWEEK; i++) {
Serial.println(days[i]);
}

If you compile and run this modified version of the program, the days of the week are displayed. How
does that work? The operation of the program becomes clear when you realize (using the lvalues from
Figure 9-4) where the starting bytes are located. That is, days[0][0] marks the “S” in “Sunday”:

days[0][0] = "Sunday"; // lvalue = 258
days[1][0] = "Monday" // lvalue = 268
days[2][0] = "Tuesday"; // lvalue = 278

// more elements...

Therefore, each time variable i is incremented by 1, the compiler adds an offset to the base index of the
array name (258) that is equal to the size of the second element size for the array (i.e., 10) times its scalar
size. For a character array, the scalar is 1, so the offset is always 10. This is why the lvalue that is used to
display the string is always 10 larger than the previous address.

What if the array is defined as the following?

float myData[5][10];
What is the scalar for each increment of i in?

for (i =0; 1< 5; i++) {
Serial.println(myData[i]);

}
Because the scalar for a float is 4, each increment on i advances the Ivalue address by 40:
40 = sizeof(float) * second element size
40 = 4 * 10
40 = 40

As an exercise, you could change the code in Listing 9-3 to work with the float data type and display the
lvalues to verify this conclusion is correct.

Pointers to Functions

You can call a function via a pointer in C. As you will see, this can be very useful when a set of known
tasks must be performed based upon specific values. But first, let’s see how to use a pointer to a function.
Listing 9-4 shows the code for using a pointer to a function.

209

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' USING POINTERS EFFECTIVELY

Listing 9-4. Using a Pointer to Function

/*
Purpose: Show how to use a pointer to function

Dr. Purdum, December 21, 2014
*/

void setup() {
Serial.begin(9600);
}

void loop() {
int number = 50;
int (*funcPtr)(int n); // This defines a pointer to function

funcPtr = DisplayValue; // This copies the lvalue of DisplayValue
number = (*funcPtr)(number);
Serial.print("After return from function, number = ");
Serial.println(number);
Serial.flush();
exit(0);

}

int DisplayValue(int val)
Serial.print("In function, val = ");

Serial.println(val);
return val * val;

}

Parts of Listing 9-4 look a little strange at first, but they do make sense. The first strange statement is:
int (*funcPtr)(int n); // This defines a pointer to function

In the section titled “The Right-Left Rule” later in this chapter, you will learn a shortcut for deciphering
complex data definitions. For now, however, this line simple states: “funcPtr is a pointer to a function that
has a single int argument (n) and returns an int data type.” If the function did not have an argument, the
definition would change to:
int (*funcPtr)(); // This defines a pointer to function with no arguments

If the function takes two float arguments but doesn’t return a value, the definition becomes:
void (*funcPtr)(float argi, float arg2); // Pointer to void function

Asyou can see, the type specifier for the function pointer is dictated by what the function’s return value
is. The name of the pointer, funcPtr, is preceded by the indirection operator so the compiler knows that a

pointer is being defined. The surrounding parentheses mark the pointer as a pointer to function. The second
set of parentheses groups the argument list for the function that will be pointed to.

210

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " USING POINTERS EFFECTIVELY

You've probably already figured out the next statement:
funcPtr = DisplayValue; // This copies the lvalue of DisplayValue

This statement copies the lvalue of the function into funcPtr. Just as a variable has a memory address
where it resides in memory (i.e., its Ivalue), so, too, does a function.
The next statement

number = (*funcPtr)(number)

calls the DisplayValue() function by using funcPtr, passing the value of number to the function. The function
itself does little else than display the current value of the value passed to it. The function does, however,
square number and send it back to the caller as the return value for the function call. The return value is
then displayed to show that the number was, in fact, squared by the function. A sample run of the program
is shown in Figure 9-5. As you can see in the figure, the number is squared during the function call and that
value is returned to the caller. Again, we use the Serial.flush() and exit(0) calls to terminate the loop after one
pass. You could, of course, just move the code into sefup() and leave these two function calls out.

In function, val = 50
After return from function, number = 2500

Autoscroll

Figure 9-5. Sample run of pointer to function program

Arrays of Pointers to Functions

Arrays of pointers to function may sound complicated, but it really isn’t. Indeed, arrays of function
pointers is a very useful and efficient way to perform certain tasks. For example, suppose you have three
processes that might be used depending upon the value returned from some other function call. Perhaps
the function reads the temperature of a vat of candy. If the return value indicates the temperature is too

211

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' USING POINTERS EFFECTIVELY

low, a function to continue heating the candy is called. If the return value is too high, another function
turns off the heat, but continues to stir the candy so it will cool. When the temperature is “just right,”

a third function is called that routes the candy to a series of molds. Listing 9-5 shows how you might
simulate this process.

enum Data Type

Near the top of Listing 9-5 is a new data structure called an enum (i.e., enumerated) data type. The enum
syntax is:

enum NameOfEnum {enumMember List};

The NameOfEnum is the name (or tag) you wish to use for the enumeration and it follows the normal
variable naming rules. The enumMemberList is a comma-separated list of the enumerated values that you wish to
use. By default, the list is assigned values starting with 0 and is incremented by 1 for each member. For example,

enum days {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY};

would associate 0 with SUNDAY, 1 for MONDAY, and 6 for SATURDAY. You can override the default enum
numbering by using explicit assignments, such as:

enum speeds {RESIDENTIAL = 35, STATEROAD = 55, FEDERALHIGHWAY = 70};

The member list names do not have to be in caps, but it is often done this way to reflect that the values
are treated as constants in the program.

It is important to note that the preceding statements are enum data declarations, not enum definitions.
To define an enumerated variable, you may use either of the following syntax forms:

enum days myDay;
enum SPEEDS {RESIDENTIAL = 35, STATEROAD = 55, FEDERALHIGHWAY = 70} mySpeed;
enum SPEEDS stateMax = STATEROAD;

The first statement assumes that an enum for days already has been declared in the code and defines an
enum variable named myDay. The second form combines the declaration of the enum with the definition of
a SPEEDS enum named mySpeed. Use whichever style you wish, but use it consistently. The last statement
shows how to use the enum value in an assignment.

If you have this nagging sensation that enum’s seem to be the same as using a #define, you're almost
right, but not quite. A #define is a textual substitution done during the preprocessor pass by the compiler. If
you could look at the source code after the preprocessor pass, the tag associated with the #define is no longer
present in the source code, only its associated value is present. As a result, there is no evidence of the #define
in the symbol table, either. That is, there is no traceable lvalue.

The enum is different in that it does create a variable that you can track in the program. This can make
debugging easier using enum’s than if #define’s are used. Also, some people are more comfortable with
enum’s because it uses a more familiar syntax that ends with a semicolon statement termination character.

In Listing 9-5, an enum is used in conjunction with the candy vat temperatures. That is, whichAction
can only assume the enumerated values of 0 (TOOCOLD), 1 (TOOHOT), or 2 (JUSTRIGHT). The code uses
whichAction to index into the array of function pointers. The program is long enough that you might find it
useful to load it into the IDE and scroll through the code as you read the narrative about the program.

212

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " USING POINTERS EFFECTIVELY

Listing 9-5. Program Using an Array of Pointers to Functions

/*
Purpose: illustrate how you can use an array of pointers to
functions.

Dr. Purdum, December 21, 2014
*/

enum temperatures {TOOCOLD, TOOHOT, JUSTRIGHT};
enum temperatures whichAction;

const int COLD = 235;
const int HOT = 260;

void setup() {
Serial.begin(9600); // Serial link to PC
randomSeed(analogRead(0)); // Seed random number generator

}

void loop() {
static void (*funcPtr[])() = {TurnUpTemp, TurnDownTemp, PourCandy};
static int iterations = 0;
int temp;

temp = ReadVatTemp();
whichAction = (enum temperatures) WhichOperation(temp);
(*funcPtr[whichAction])();

if (iterations++ > 10) {

Serial. print]_n(":::::::::::::::::::");
Serial.flush();
exit(0);
}
}
/*****
Purpose: return a value that determines whether to turn up heat, turn down heat, or if
vat is ready. Pourable candy is between 235 and 260.
Parameter list:
int temp the current vat temperature
Return value:
int 0 = temp too cold, 1 = temp too high, 2 = just right
KAk

int WhichOperation(int temp)
{

Serial.print("temp is ");
Serial.print(temp);

213

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' USING POINTERS EFFECTIVELY

if (temp < COLD) {
return TOOCOLD;
} else {
if (temp > HOT) {
return TOOHOT;
} else
return JUSTRIGHT;
}

}

JRRRkk

Purpose: simulate reading a vat's temperature. Values are
constrained between 100 and 325 degrees

Parameter list:
void

Return value:

int the temperature
*****/
int ReadVatTemp()
{
return random(100, 325);
}

void TurnUpTemp()

Serial.println(" in TurnUpTemp()");
}

void TurnDownTemp()

{
}

Serial.println(" in TurnDownTemp()");

void PourCandy()
{

}

Serial.println(" in PourCandy()");

The setup() function establishes a serial link to the PC and the random number generator is seeded.
Inside the loop() function, the statement

static void (*funcPtr[])() = {TurnUpTemp, TurnDownTemp, PourCandy};

is the heart of the program. This statement creates and initializes an array named funcPtr that is an array of
pointers to functions.

As stated eatrlier, just like any other variable that is defined in a program, each function has an Ivalue
that marks where that function resides in memory. If something causes program control to branch to that
memory location for the next program instruction, it is exactly the same as calling that function.

In this particular example, funcPtr[0] holds the lvalue for the TurnUpTemp() function, funcPtr[1]holds the

214

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " USING POINTERS EFFECTIVELY

lvalue for the TurnDownTemp() function, and funcPtr[2] holds the lvalue for the PourCandy() function.
Asyou can see in Listing 9-5, each of these functions simply displays a message saying that particular
function was executed. This allows you to see which functions are visited as the program executes. Such
“empty” functions are called stubs and are a commonly-used technique during the program development
process. Figure 9-6 shows a sample run of the program. (Because the value for the temperature is generated
randomly, it may take a while to see all three states appear on the Serial monitor.)

TurnUpTemp ()
TurnDownTemp ()
PourCandy ()
TurnUpTemp ()
PourCandy ()
PourCandy ()
TurnUpTemp ()
PourCandy ()
TurnUpTemp ()
TurnUpTemp ()
TurnDownTemp ()
TurnUpTemp ()

Autoscroll

Figure 9-6. Sample run of the array of pointers to functions program

The heart of the program centers on the following three statements:

temp = ReadVatTemp();
whichAction = (enum temperatures) WhichOperation(temp);
(*funcPtr[whichAction])();

The first statement calls the ReadVatTemp() function. We've coded the function to return a random
number between 100 and 350 degrees. (Actually, almost any candy that has a temperature of 350 degrees
is pretty much a block of carbon by then.) The random number is then returned from the function call and
assigned into temp.

The second statement takes the value of temp and passes it to WhichOperation() to determine if the
temperature is too low, too high, or just right for pouring the candy into molds. The return value is then cast
into the enum variable whichAction to determine which function should be called.

The third statement then calls the appropriate function by using whichAction as an index into the
funcPtr[] array. Program control is then transferred to that function, which, in turn, displays its associated
message. The dashed line is used to separate sets of runs should you press the pc board’s reset button.

215

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' USING POINTERS EFFECTIVELY

Arrays of pointers to functions takes a little getting used to, but offers an elegant solution to many
programming problems that involve calling specific functions depending upon a certain value. Years ago
I'saw a C implementation of the game Monopoly, where each square on the board was associated with
a particular function. Those functions were organized as an array of pointers to functions, which greatly
simplified the coding for the game. Pointers to function are particularly useful with automated process
control situations. Keep the pointer-to-function concept tucked away in the back of your mind. Often it is the
perfect solution to a given programming task.

The Right-Left Rule

What went through your mind when you first saw the following statement?
static void (*funcPtr[])() = {TurnUpTemp, TurnDownTemp, PourCandy};

Statements like this are called complex data definitions because they involve more than a simple data
type specifier and a variable name. Let’s take this definition, remove the storage specifier (the initializer code
that appears between the brackets), and just concentrate on what's left:

void (*funcPtr[3]) ();

(Tused 3 for the array size because that’s the number of functions that we wanted to use in Listing 9-5.)
The question is: What does this definition do? Alternatively, how can you verbalize this definition? Actually,
it’s pretty simple when you use The Right-Left Rule that I developed over 30 years ago.

The Right-Left Rule says: locate the identifier in the definition (e.g., funcPtr) and then you spiral your
way out of the definition in a right-to-left fashion. Figure 9-7 shows the steps to follow to verbalize the
definition. Step 1 says to find the name of the data item. In Figure 9-7, you can see the name is funcPtr. Thus
far, you can say: funcPtris a...

O
void (* func ptr[3])();

Figure 9-7. Using the Right-Left Rule

Now, look to the immediate right of the identifier. What you see is [3] in the data definition. Because
you know that a bracket ([) introduces an array of some sort and that any number specifies the size of the
array, you can now say: “funcPtr is an array of three ... "

To find out what the array type is, you have to look to the left of the identifier to find out what the
array is. As shown in Figure 9-7, step 2 moves you to the left, where you find an asterisk. Because an
asterisk in a data definition is used with pointers, you can now say: “ funcPtr is an array of three
pointersto ... "

216

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " USING POINTERS EFFECTIVELY

To determine what the pointers point to, you need to move to the right again to see what the next
attribute in the data definition is. What you actually see is the closing parenthesis. However, that is simply
used to group the attributes surrounding the identifier. Since everything within the parentheses is already
“used up,” you must move to the right to find the next attribute. As shown in step 3 in Figure 9-7, you see a set
of parentheses. In data definitions, parentheses are used to mark the argument list of a function. Therefore,
you can now say: “ funcPtr is an array of three pointers to functions.... "

However, all function definitions must have a type specifier that tells what the function returns. To
determine what the functions return, we need to move to the left in the data definition, as shown in step 4 of
Figure 9-7. You can now say: “funcPtr is an array of three pointers to functions returning void.”

If you look back to the right in the data definition after step 4, you see that there are no other attributes
left for this data definition. Therefore, you can tell your friends that “funcPtr is an array of three pointers to
functions that return void.” You're done. Although people at cocktail parties won’t seem too impressed by
this skill, it will serve you well when you're trying to read some else’s complex code.

Summary

Pointers are one of the most powerful features in the C language. Alas, pointers are also one of the most
difficult concepts for beginning programmers to understand. Still, pointers offer you so much flexibility
that they are well worth the effort it takes to master them. You should spend whatever time it takes to feel
comfortable with the concepts presented in this chapter. The effort will pay back huge dividends in your
programming endeavors.

EXERCISES

1. InListing 9-1 if I changed ptr from a character pointer to an int pointer, and in
the initialization statement | wrote,

ptr = (int *) buffer;

and then ran the program, what would you expect the output to look like and why?
Answer: The output becomes

We ntecus fhmneet

plus a bunch of garbage. (Actually, casting to an int pointer would just show numeric
values, not characters.) The reason is because the scalar for an int is twice as big as the
scalar for a char, so every other letter in the quotation is printed. However, the while loop
“skips over” the null termination character and displays junk until a null (zero) is finally
read.

2. Why are pointer scalars important?

Answer: Any pointer manipulation needs to know the type of data to which it points so

the compiler can adjust the operation to fit the data. Incrementing a pointer, for example,
must advance the pointer value by the scalar size of the object being pointed to, or disaster
results.

217

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' USING POINTERS EFFECTIVELY

3. When can you use two pointers in an arithmetic expression?
Answer: Pointer arithmetic only makes sense when the pointers point to the same object.

4. If you define a pointer to a function, what is the rvalue of a properly initialized
pointer to function?

Answer: Just like any other pointer variable, it must hold an Ivalue. In this case, it is the
Ivalue of where the function resides in memory.

5. What is the purpose of The Right-Left Rule?

Answer: The purpose of The Right-Left Rule is to allow you to decipher complex data
definitions.

6. Unwind and verbalize the following data definitions:

int *ptri[10];

int (*ptr2)[10];

int (*(*ptr3())[10])();
int (*ptra(int))();

Answers:
e ptr1is an array of 10 pointers to int.
e ptr2is a pointer to an array of 10 infs.

e ptr3is a function returning a pointer to an array of 10 pointers to functions that
return ints.

e ptr4 is a function that takes an intargument and returns a pointer to a function
that returns an int.

7. Whatis an enum and how is it different than a #define?

Answer: An enum is a named constant, but persists after the preprocessor pass. Also, an
enum is accessed using the dot operator.

218

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Structures, Unions, and Data
Storage

This chapter takes a little deeper look at some of your options for storing data and in serial input/output
(I/0) operations. You will also learn some new data structures that are available to you and how they can be
used to advantage in your programs. More specifically, in this chapter you learn about

e The struct keyword

e The union keyword

e How to use EEPROM memory in your programs
e Other data storage options

As you saw in Table 1-1, puc boards have limited amounts of memory available to you. I've talked about
flash and SRAM memory in previous chapters, but I haven’t had too much to say about EEPROM memory.
In this chapter, you will learn how to use EEPROM memory in your programs. However, before we dive
into that topic, you need to take a little detour and learn about the struct keyword. After that, you will use a
structure as an organizational object for storing data in EEPROM.

Structures

Not too long ago I was involved in a project that required storing information about people/companies
who performed services for homes. The project was in Florida and it was mainly for people who lived in
Florida on a part time basis. The project required storing a service company’s ID number, name, password,
and phone number. (Actually, more data was required, but this is good enough for our purposes.) From a
data point of view, such disparate data poses a number of problems, not the least of which is how you “tie
together” such differing data elements. You could define the data something like this:

int servicelD;

char serviceName[20];
char servicePW[10];
long servicePhone;

In this case, you try to link the data together by using the word “service” in the names of the data.
Although better than nothing, such an approach doesn’t really “tie” the data together and allow us to
manipulate it as an integrated unit of information.

© Jack Purdum 2015 219
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_10

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_1#Tab1
http://www.it-ebooks.info/

CHAPTER 10 = STRUCTURES, UNIONS, AND DATA STORAGE

The problem of grouping dissimilar data items together is solved in C by using a structure. A structure
organizes different data items so they may be referenced by a single name. A structure normally holds two or
more data items, usually of differing data types.

Declaring a Structure

An example will help you to see how a structure is declared in C. Sticking with our service people example,
you might declare the associated structure as follows:

struct servicePeople {
int ID;
char Name[20];
char PW[10];
long Phone;

};

Note that the preceding statements form a data declaration for a structure named servicePeople, but
does not define a structure variable. A structure declaration is like a cake recipe: it tells you how to build a
cake and what the cake should look like, but there’s no cake to eat ... yet. The general syntax for a structure
declaration is:

struct structureTag {
// StructureMemberlList

};

This syntax can be seen in Figure 10-1.

Type Specifier structure TAG

\ v

struct servicePeople {
int ID;
char Name[20];
char PW[10];
long Phone;

>

Figure 10-1. The syntax for a structure declaration

The declaration begins with the keyword struct as the data type specifier followed by the name, or
structure tag, of the structure. A structure tag identifies the structure that is being declared. Structure tags
follow the same naming rules as any other C variable. The structure tag is followed by an opening brace,
followed by one or more variable definitions. Collectively, these variable definitions are called the structure
members. After the list of structure members, there is a closing brace and then a semicolon. In our service
example, the structure tag is servicePeople and it has four members. Therefore, the information stored in ID,
Name, PW, and Phone are “tied together” under an umbrella structure tag named servicePeople.

220

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

It is imperative that you understand that the structure named servicePeople is a template, or cookie cutter,
from which you can create a servicePeople data object. In other words, at this point, servicePeople is a data
declaration ... no memory has been allocated yet for a single servicePeople variable. The structure declaration is
like a set of blue prints for a house: It tells you the specifics about a house, but is not a house itself.

Defining a Structure

Obviously, you need to define a variable using this type of structure definition for the structure to be useful
in a program. The syntax is:

struct structureTag structureVariableName;
To define a structure variable using our example, you would use:
struct servicePeople myServicePeople;
Figure 10-2 shows the structure definition. You now have defined a structure variable named

myServicePeople that you can use in your program. The structure variable named myServicePeople now has
an Ivalue in the symbol table because memory has been allocated for it.

struct servicePeople myServicePeople ;
VARIABLE is structure VARIABLE NAME
A struct type is is
servicePeople myServicePeople

Figure 10-2. Defining a structure variable named myServicePeople using the servicePeople structure tag

An alternative way to define a structure is:

struct servicePeople {
int ID;
char Name[20];
char PW[10];
long Phone;

} myServicePeople;

In this case, the structure declaration and definition are combined into a single statement. That is, the
definition of myServicePeople immediately follows the structure declaration, but is in a single statement.
You can, however, also define a structure variable without a structure tag, as in:

struct {
int ID;
char Name[20];
char PW[10];
long Phone;
} myServicePeople, yourServicePeople;

221

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 = STRUCTURES, UNIONS, AND DATA STORAGE

Notice that the structure tag (servicePeople) is missing. This is not a problem for the compiler because
the data declaration and the data definition are combined into a single statement using the braces
before the semicolon that ends the statement. In this example, the code defines two structure variables
(myServicePeople and yourServicePeople) separated from each other by a comma. However, this latter form
is less used because you may need to define another structure at some other point in the program and you
would not have a structure tag available for the definition.

If you have 15 different companies performing services at your home, you can create an array of
structures, as in:

struct servicePeople myServicePeople[15];

As you know, arrays are groupings of data that share the exact same data attribute. However, structures
allow you to have arrays that may contain many different types of data in their member lists, thus creating
amore complex data structure. This has led one of my colleagues (Kim Brand) to say that structures allow
you to create “arrays for adults” Indeed, structures are similar to the object-oriented programming concept
known as a class. The major difference, however, is that a class can also have functions (also called methods)
defined within the class. Still, you will find that structures do provide a convenient way to organize dissimilar
groups of data.

Accessing Structure Members

Now that you have all of your structure members tucked neatly away inside a structure, how do you access
their data? Suppose you wish to retrieve the ID of a service person. If the data are stored in a structure
variable named myServicePeople, the statement to fetch the ID is:

clientID = myServicePeople.ID; // Retrieving structure data

In this example, the ID associated with the service person is copied into clientID. Obviously, it’s a two-
way street, so you could store a person’s identification number in the structure, as in:

myServicePeople.ID = clientID; // Setting structure data

Either form is a simple rvalue-to-rvalue assignment statement.

The Dot Operator

Notice that a period separates the structure name from the member’s variable name. The period is called
the dot operator and is used to denote accessing a member of the structure. You've studied the dot operator
before when we talked about using the Serial object to print something in the Serial monitor using Serial.
print().

It may be useful for you to visualize a structure as a black box with a name on it. The name on the black
box is the structure variable’s name, like myServicePeople. Hidden inside the black box are the members
of that structure. You cannot “see” those members because they are hidden from view by the black box
structure itself. (Visually, think of the braces as creating a black box that surrounds the structure members.)
However, there is a door in the black box. Think of the dot operator as the key that opens the door into the
black box. Once you use the key (i.e., the dot operator), you have access to the members in the black box.
Once inside the structure, all you need to do is specify the member you wish to use.

As shown earlier, if you are using the dot operator on the right side of the assignment operator, as in

clientID = myServicePeople.ID; // Retrieving structure data

222

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

you are using the dot operator to fetch the data (i.e., its rvalue) of a particular member of the structure

(i-e., ID) and then copy that data into the variable on the left side of the assignment operator (i.e., clientID).

This also means that the state of the myServicePeople structure is unchanged after the statement is executed.
However, if the dot operator appears on the left side of the assignment operator, as in

myServicePeople.ID = clientID; // Setting structure data

then the rvalue of clientID is copied into member ID’s rvalue of myServicePeople structure. Therefore, the
state of myServicePeople is changed by the assignment statement because the rvalue of the ID member of the
structure is changed.

Let’s write a short program that uses structures and the dot operator. The code is shown in Listing 10-1.

Listing 10-1. Using the Dot Operator

/*
Purpose: To show the use of the dot operator

Dr. Purdum, December 21, 2014
*/

struct servicePeople {
int ID;
char Name[20];
char PW[10];
long Phone;
} myServicePeople, yourServicePeople;

void setup() {
Serial.begin(9600);
Serial.print("myServicePeople lvalue: ");
Serial.print((int) &myServicePeople);
Serial.print(" yourServicePeople lvalue: ");
Serial.println((int) &yourServicePeople);

yourServicePeople.ID = 205; // An assignment ...

Serial.print("myServicePeople.ID rvalue: ");
Serial.print(myServicePeople.ID);

Serial.print(" yourServicePeople.ID rvalue: ");
Serial.println(yourServicePeople.ID);

myServicePeople = yourServicePeople; // Copy entire structure

Serial.println("\nAfter assignment:\n");
Serial.print("myServicePeople.ID rvalue: ");
Serial.print(myServicePeople.ID);
Serial.print(" yourServicePeople.ID rvalue: ");
Serial.println(yourServicePeople.ID);
Serial.print("A servicePerson structure takes ");
Serial.print(sizeof(servicePeople));
Serial.println(" bytes of storage.");

}

void loop(){}

223

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © STRUCTURES, UNIONS, AND DATA STORAGE

The code doesn’t do much other than define two servicePeople structure variables named
myServicePeople and yourServicePeople. The program uses several Serial. print() function calls to present
information about the structure variables.

,
|

myServicePeople lvalue: 456 yourServicePeople lvalue: 492
myServicePeople.ID rvalue: 0 yourServicePeople.ID rvalue: 205
After assignment:

myServicePeople.ID rvalue: 205 yourServicePeople.ID rvalue: 205
A servicePerson structure takes 36 bytes of storage.

7] Autoscrol ‘Newline v [96(baud v:lj

Figure 10-3. Program output from Listing 10-1

Escape Sequences

Note the statement in Listing 10-1:
Serial.println("\nAfter assignment:\n");

We haven'’t used this technique before, but it’s worth knowing. The ‘\n’is called the newline character

and causes the display device to advance to the next line. You could just add a couple of empty
Serial.printin() calls and do the same thing, but the use of the newline character is a little more efficient.
If you look at the program output in Figure 10-3, you can see that we have an empty line before and after the
string constant “After assignment:” The reason is because of the newline character. The reason for the backslash
character (\) before the n is to inform the compiler that this is a special character and not the plain-old
character n. If you leave the slash out, the string would look like “nAfter assignment:” This behavior applies
to all of the sequences presented in Table 10-1.

Table 10-1 presents several escape sequences you may find useful.

224

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

Table 10-1. ASCII Escape Sequences

Escape Sequence ASCII Value Description

\a 7 Alarm, bell, buzzer
\b 8 Backspace

\f 12 Form feed

\n 10 Newline, line feed
\r 13 Carriage return

\t 9 Horizontal tab

\v 11 Vertical tab

\\ 92 Backslash

\' 39 Single quote mark
\" 34 Double quote mark

Some escape sequences are rarely used on an Arduino (e.g., \v), but are presented for the sake of
completeness. [urge you to write a simple program with a single string in it, try some of these escape
sequences within the string, and see what they do on your Serial monitor.

Memory Requirements for a Structure

If you look closely at Figure 10-3, you can see that myServicePeople is stored at memory address 494 and
yourServicePeople has an lvalue of 458. Hmm ... 2 bytes for ID, 20 bytes for Name, 10 bytes for PW, and 4
bytes for Phone equals 36 (= 2 + 20 + 10 + 4). You can verify this by looking at the last line in Figure 10-3.
Clearly, the lvalue for myServicePeople plus the structure storage requirement of 36 bytes equals the Ivalue
for yourServicePeople (494 = 458 + 36). Therefore, we know these two structure variables are stored back-to-
back in flash memory. (This is an interesting fact, but I wouldn’t always bet the farm on the compiler doing
back-to-back memory allocations.)

The second line in Figure 10-3 shows that myServicePeople.ID has a value of 0, whereas
myServicePeople.ID has the value of 205. This is exactly as it should be since the value 205 was assigned into
the ID member of yourServicePeople.

The statement

myServicePeople = yourServicePeople; // Copy the entire structure

copies the entire contents of the yourServicePeople structure variable into myServicePeople. By leaving out
the dot operator that would pick a single member, this assignment copies the entire structure in a single
statement. Because the compiler knows that each servicePeople variable uses 36 bytes of memory for storage,
the compiler simply copies 36 bytes of data starting at memory address 458 (the lvalue of yourServicePeople)
to memory address 494 (the lvalue of myServicePeople). As a result, the two structure variables now have the
same rvalues for each of the structure members. The program displays the rvalues for the ID members for
both variables on the next line of output. The last line in Figure 10-3 confirms that each structure variable
requires 36 bytes of storage.

The code shows that although you could perform an assignment statement for each member of the two
structures using the dot operator, it is much easier to simply copy the entire structure with an assignment
statement.

225

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 = STRUCTURES, UNIONS, AND DATA STORAGE

Returning a Structure from a Function Call

Suppose you need to return a structure from a function call. How is that done? Listing 10-2 is almost
identical to Listing 10-1 except for the lines marked with comments:

Listing 10-2. Modified Dot Operator Example

/*
Purpose: To show the use of the dot operator

Dr. Purdum, December 21, 2014
*/

struct servicePeople {
int ID;
char Name[20];
char PW[10];
long Phone;
} myServicePeople, yourServicePeople;

struct servicePeople SetPhoneNumber(struct servicePeople temp); // New

void setup() {
Serial.begin(9600);
Serial.print("myServicePeople lvalue: ");
Serial.print((int) 8myServicePeople);
Serial.print(" yourServicePeople lvalue: ");
Serial.println((int) &yourServicePeople);
yourServicePeople.ID = 205;
Serial.print("myServicePeople.ID rvalue: ");
Serial.print(myServicePeople.ID);
Serial.print(" yourServicePeople.ID rvalue: ");
Serial.println(yourServicePeople.ID);
myServicePeople = SetPhoneNumber (yourServicePeople); // Changed
Serial.println("\nAfter assignment:\n");
Serial.print("myServicePeople.ID rvalue: ");
Serial.print(myServicePeople.ID);
Serial.print(" yourServicePeople.ID rvalue: ");
Serial.println(yourServicePeople.ID);
Serial.print("A servicePerson structure takes ");
Serial.print(sizeof(servicePeople));
Serial.println(" bytes of storage.");
Serial.print("myServicePeople.Phone rvalue: "); // New
Serial.print(myServicePeople.Phone); // New

}
void loop(){
}

// All lines below are new
struct servicePeople SetPhoneNumber(struct servicePeople temp)

{
temp.Phone = 2345678;
return temp;

}
226

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

The first new line is a function declaration at the top of the program. This is necessary for the compiler
to know what SetPhoneNumber() takes for parameters and what its return value is. That is, the statement is
a function prototype declaration that can be used for type checking. The next new line appears toward the
middle of the listing and it is marked by the comment “Changed”. In the following statement, the structure
variable yourServicePeople is passed to the function:

myServicePeople = SetPhoneNumber (yourServicePeople); // Changed

Asyou can see in Listing 10-2, the code for the new function sets the phone number for temp to
2345678. The code returns temp to the caller, which assigns the value of the structure into myServicePeople.
The two new statements at the bottom of the setup() loop display the new phone number that has been
copied into myServicePeople.Phone. Indeed, every member of the myServicePeople variable is the same as
the myServicePeople variable ... sort of.

After the call to SetPhoneNumber(), you can see from the print statements that myServicePeople. Phone
has been changed. But what about yourServicePeople. Phone? If you add a few more print statements, you
will discover that yourServicePeople.Phone is 0. Why is that?

(@ come F e | L= | E
|

myServicePeople lvalue: 520 yourServicePeople lvalue: 556
myServicePeople.ID rvalue: 0 yourServicePeople.ID rvalue: 205
After assignment:

myServicePeople.ID rvalue: 0 yourServicePeople.ID rvalue: 205 1
A servicePerson structure takes 36& bytes of storage.
myServicePecple.FPhone rvalue: 2345678
yourServicePeople.Phone rvalue: 0

[¥] Autoscrol Newiine v | 9600

Figure 10-4. Returning a structure program output

Remember from our pointer discussions that, unless told to do otherwise, any value type that is
passed to a function is a copy of that variable sent to the function, not the lvalue of the variable. Because a
copy is sent, there is no way for the function to permanently alter the rvalue of the variable being passed.
This conclusion holds for structures, too. The conclusion is always the same: functions cannot change the
variables passed to it unless they have the variable’s lvalue.

Structures can also be used to simplify passing arguments to functions. For example, perhaps a function
needs to use the data stored in four sensors to decide whether to add a chemical to a vat. The signature for
the function might be:

int AddChemical(int sensori, int sensor2, int sensor3, int sensor4);

227

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 = STRUCTURES, UNIONS, AND DATA STORAGE

Instead, you could define a structure

struct sensors {
int sensori;
int sensor2;
int sensor3;
int sensor4
} vatSensors;

and then call the function using:
AddChemical(vatSensors);

This makes the function call a little less wordy. Also, if you later discover that some additional
parameter needs to be added to the function call, it’s pretty easy to change the structure declaration to add
the new parameter. All of the calls to the function that use that structure could remain unchanged.

What if you need the function to permanently alter the value of yourServicePeople.Phone? That'’s the
subject of the next section.

Using Structure Pointers

The old K&R (Kernighan and Ritchie, co-authors of the original book on C) version of C did not allow you

to pass a structure to a function like you did in the last example. K&R C forced you to use a pointer to the
structure when passing structures to functions. That limitation was removed with the adoption of the ANSI

C standard (X3J11). When you passed the structure to the SetPhoneNumber() function in Listing 10-2, you
used 38 bytes of stack space (36 for the structure and 2 for the return address) to do it. If you used a pointer,
you could perform the same operation using only 4 bytes of stack space (2 for the pointer and 2 for the return
address) and you could remove the assignment statement upon return from the function. Listing 10-3 is the
same as Listing 10-2, except structure pointers are used.

Listing 10-3. Using a Pointer to Structure

/*
Purpose: To show the use of pointers to structures

Dr. Purdum, December 21, 2014
*/

struct servicePeople {
int ID;
char Name[20];
char PW[10];
long Phone;
} myServicePeople, yourServicePeople;

void SetPhoneNumber(struct servicePeople *temp); // New signature declaration
void setup() {
Serial.begin(9600);

Serial.print("myServicePeople lvalue: ");
Serial.print((int) 8myServicePeople);

228

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

Serial.print(" yourServicePeople lvalue: ");
Serial.println((int) &yourServicePeople);
yourServicePeople.ID = 205;
Serial.print("myServicePeople.ID rvalue: ");
Serial.print(myServicePeople.ID);

Serial.print(" yourServicePeople.ID rvalue: ");
Serial.println(yourServicePeople.ID);

SetPhoneNumber (& myServicePeople); // Pass the lvalue

Serial.println("After assignment:");
Serial.print("myServicePeople.ID rvalue: ");
Serial.print(myServicePeople.ID);

Serial.print(" yourServicePeople.ID rvalue: ");
Serial.println(yourServicePeople.ID);

Serial.print("A servicePerson structure takes ");
Serial.print(sizeof(servicePeople));

Serial.println(" bytes of storage.");
Serial.print("myServicePeople.Phone rvalue: "); // New
Serial.println(myServicePeople.Phone); // New
Serial.print("yourServicePeople.Phone rvalue: ");
Serial.println(yourServicePeople.Phone);

}
void loop(){
}

// Lines below are changed

void SetPhoneNumber(struct servicePeople *temp) // Note pointer now used

(*temp).Phone = 2345678;

Figure 10-5 shows a sample run of the program.

—
COM22 (Arduino Uno)

myServicePeople lvalue: 556 yourServicePeople lvalue: 520
myServicePeople.ID rvalue: 0 yourServicePeople.ID rvalue: 205
After assignment:

myServicePeople.ID rvalue: 0 yourServicePeople.ID rvalue: 205
R szervicePerson structure takez 36 bytes of storage.
myServicePeople.Phone rvalue: 2345678

yourServicePeople.Phone rvalue: 0

Figure 10-5. Using pointer to structure

www.it-ebooks.info

m

229

http://www.it-ebooks.info/

CHAPTER 10 = STRUCTURES, UNIONS, AND DATA STORAGE

There are a few minor changes between Listing 10-2 and 10-3. First, near the top of the listing the
declaration for the SetPhoneNumber() is changed to reflect that the function now returns nothing (void) and
that a pointer to structure is the parameter. Second, about midway in the listing you can see the call to the
function has been changed to:

SetPhoneNumber (&myServicePeople); // Pass the lvalue

In the previous version, the return from the SetPhoneNumber() function call assigned the structure into
myServicePeople. The code is now using a pointer to a structure as the argument, so you use the address-of
operator (&) to pass the lvalue of myServicePeople to the function instead. Because the function now has
direct access to myServicePeople, there is no need to return a structure from the function call and make the
assignment into myServicePeople as there was in Listing 10-2.

The parameter passed to SetPhoneNumber() has been changed to a pointer

void SetPhoneNumber(struct servicePeople *temp)

which means that temp is a pointer to the myServicePeople structure.
The statement

(*temp).Phone = 2345678;

looks a little strange and needs some explanation. Because the dot operator has a higher precedence level
than the indirection operator, you need to surround the indirection operator on temp with parentheses. The
parentheses cause the compiler to fetch the lvalue of the Phone member of the structure and assign 2345678
into that address. This means that the statement changes the rvalue of Phone to 2345678. This is exactly what
you want to do.

If you didn’t use the parentheses to surround temp

*temp.Phone = 2345678; // Wrong!
would instruct the compiler to fetch the rvalue of Phone and use it as an lvalue. Because the rvalue of Phone
is 0, this would try to write 2345678 at memory address 0. This is another train wreck waiting to happen
because Listing 10-5 tells you that the myServicePeople structure resides at memory address 558. A little
quick math suggests that the Phone member of the structure can be found at memory address 590, not 0.
Using an rvalue as an lvalue and writing data to an unknown memory address is almost never a good idea.
Fortunately, the compiler catches this error if you tried to misuse the temp pointer.

The syntax used to access a structure member via a pointer is so common in C, a special operator was
developed to simplify the statement from:
(*temp).Phone = 2345678;
to use the dereference operator () instead:

temp—Phone = 2345678;

The result is the same as the earlier version that used the parentheses and asterisk to change the phone
number. You will likely see this shorter version more often.

230

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

Initializing a Structure

If you wish, you can initialize a structure variable at its point of definition, as in:

servicePeople myServicePeople = {

101, // ID number

"Kack's Lawn Service", // Company name

"Clowder", // Password

2345678, // Phone number
b

The initialize value for each member is separated from the next by the comma operator. The preceding
statements would cause the myServicePeople to be initialized with the values shown. Note that this form
of initialization requires that the values align with the member definitions. This initialization obviously
assumes that you have defined the servicePeople structure before the initialization statement block occurs in
the code.

Note By the way, while | was writing this section, | cut and paste the preceding definition from my word
processing program into the Arduino IDE editor and compiled the program. | got an error message stating:
“error: stray '\' in program”. I'd be embarrassed to tell you how long it took me to overcome this forest-for-
the-trees problem. As it turns out, if you paste quote marks from a text editor into the Arduino IDE source
code window, it keeps the “left-leaning” and “right-leaning” double quote marks. However, if you erase those
quotation marks and redo them inside the Arduino editor, the double quote marks are replaced with “vertical”
quote marks and the quoted string changes color from black to light blue. The program then compiled without
error. It was one of those old-dog-new-tricks thingies that ultimately led to a flat forehead moment....

Arrays of Structures

As you might guess, real life likely would have more than one service company tending to a home. It’s not
uncommon to have a pool company, a lawn company, a landscape company, and an “indoor” service
company pay visits to a home. Clearly, an array of structures would be useful, since each element of the array
could hold one service company.

Assuming the code has already declared the servicePeople structure, you could define an array of
servicePeople as:

struct servicePeople myCompanies[10];

This would define an array named myCompanies[] that is capable of storing the necessary data for 10
servicePeople companies. If you want to assign the ID number 222 to the fifth company in the array, the
statement is

myCompanies[4].ID = 222;

would change the rvalue of ID for the fifth person in the myCompanies[] array. (Arrays are zero-based,
right?)

231

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 = STRUCTURES, UNIONS, AND DATA STORAGE

After the array is defined, you can use regular assignment statements to set the values for the different
elements of the array. However, if you wanted to initialize part of the array when it is defined, you might use:

struct servicePeople myCompanies[10] = {

{1, "This is a dummy","admin", 5555555},
{101, "Kacks Lawn Service", "Clowder", 2345678}

s

This code would initialize the first two elements of the array. (Strictly speaking, the struct keyword is not
required in the preceding statement since the structure tag servicePeople identifies the structure provided
you have declared the structure earlier in the program. However, the keyword does document that the code
is using a structure.) The remainder of the array would have zero or null values stored for the rvalues of their
members.

By the way, the data in this structure is likely not to change very often. Because the data are fairly stable,
you could store the structure data in EEPROM memory, thus saving a few precious bytes of SRAM. More on
this later in the chapter.

Unions

A union is a small chunk of memory that is set aside to hold differing data types. A union acts like a small
buffer that is capable of holding a predefined type of data. For example, suppose you have a program that
reads data from a series of different sensors. Some sensors return a char, others an int, whereas some return
a float data type. Clearly, you could define temporary working variables, such as

char tempChar; // 1 bytes
int templInt; // 2 bytes
float tempFloat; // 4 bytes

and then assign the sensor readings into the appropriate variable. This approach uses 7 bytes of memory.
You could also use the following union:

union {
char tempChar;
int tempInt;
float tempFloat;
} sensorReading;

You can also use a union tag in much the same manner that you did with structures. You could use

union sensorSystem {
char tempChar;
int tempInt;
float tempFloat;
};

sensorSystem sensorReading;
which uses the union tag name sensorSystem to define the union type variable named sensorReading.
The union defined as sensorReading is big enough to hold any one of the three sensor types, but only one

at a time. In other words, you can place a float into the union and then read it back, or you can place a char
into the union and then read it back, or you can place an int into the union and then read it back, BUT not

232

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

all three at once! So, how much memory does sensorReading use? It uses 4 bytes rather than 7 like a structure
would. Now, put the book down, leave the room, find a friend, and explain to them why this union only uses
4 bytes of memory. If you can do that, you already understand how a union works. If not, read on....

So, how do you use a union? For example, to place a float into the union and then read it back, you
might use:

float currentFloatSensorReading = 51.25;

sensorReading.tempFloat = currentFloatSensorReading; // move float into union
// some more code ...

currentFloatSensorReading = sensorReading.tempFloat; // fetch int from union

Note how the dot operator is used to reference the appropriate union member. The dot operator works
much the same as it did for structures. If you wish to read an inf from the union, the statement might be:

currentIntSensorReading = sensorReading.tempInt;

The union, however, works differently that a structure. With a structure, the dot operator was followed
by the structure member you wish to extract from the structure. With a union, the dot operator separates you
Jfrom the union member that tells you how many bytes to extract from the union. This means you can do some
really stupid stuff with a union. For example, consider:

float currentFloatSensorReading = 51.25;

sensorReading.tempFloat = currentFloatSensorReading; // float into union
// some more code ...

currentFloatSensorReading = sensorReading.tempInt ; // int from union

In this example, you put in a float value, but later extract the contents of the union as though it were
an int. You are literally taking out “half a float” and thinking it’s going to work as an int. Best case is that this
causes a spectacular failure, making it easy to debug. Worst case is the value extracted from the union might
be formed such that the value seems reasonable. The lesson is simple:

Whatever you put into the union should match what you take out of the union. It’s your responsibility to
keep track of things.

The advantage of a union is that you can move different types of data into and out of a single union
variable. Also, the union only uses 4 bytes of memory whereas the discrete variables of a struct would use
7 bytes of memory. (A union is always allocated just enough memory to hold the largest data item that is a
member of the union. Drawing on our Bucket Analogy, the compiler looks at all of the buckets associated
with the union, grabs the biggest one, and that becomes the union’s bucket for all its members.) That's the
good news. As mentioned earlier, the bad news is that the compiler assumes you are keeping track of what
is currently in the union. Just remember, apples in, oranges out, almost always leads to unwanted surprises
when you are using unions.

EEPROM Memory

In the previous sections of this chapter, you've discussed how to organize service company data into a struct.
You then learned how to store that data in an array of structures. However, it doesn’t do a whole lot of good
if the company data disappears each time the power is removed from the pic board, either on purpose or by
accident. In this section, you will learn one way to persist such data even if power is lost.

Asyou learned from Table 1-1, each Atmel-compatible pic board has a specific amount of flash, SRAM,
and EEPROM memory available. Both the flash and EEPROM memory are nonvolatile, which means those
types of memory do not lose their data when power is removed. You have also learned that data with global

233

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_1#Tab1
http://www.it-ebooks.info/

CHAPTER 10 = STRUCTURES, UNIONS, AND DATA STORAGE

scope are allocated in SRAM memory with any initialized values copied from flash memory to SRAM.
However, temporary data, like that we see passed as function arguments, are also chewing up SRAM space.

More bad news is that global data can be contaminated more easily than data with a more restrictive
scope level (e.g., function scope). Because every element in the program has access to global data, it can be
difficult to isolate the section of code that is contaminating the data. If you move the data inside a function
body, scope is now limited, but the data are now allocated on the stack. Because there is less SRAM than
flash memory and because SRAM is volatile memory, the array is not persisted when power is lost. One way
to address this problem is to start using EEPROM memory.

Up to this point, our sample programs have not used EEPROM memory. It’s not that we’ve avoided
the stash of EEPROM memory. Rather, our programs have been so simple that we’ve never impinged on
the memory limits so there was no need to use it. Also, we have kind of avoided using it because EEPROM
memory is relatively slow.

Usually, EEPROM memory is used to store configuration data. The configuration data could be anything
from terminal baud rates for I/O communications to data that is required to initialize program sensors. As
I pointed out before, EEPROM has a finite number of erase/write cycles in which the EEPROM can reliably
erase and write data. Although a million such cycles may be possible, most developers assume EEPROM
develops a mind of its own after approximately 100,000 cycles. While that may sound like a lot of cycles, if
you update a variable that is stored in EEPROM once every second, the program runs the chance of getting
flaky in less than two days. Still, if the data is rarely changed, as is likely the case with our servicePerson array,
EEPROM memory may be a viable alternative.

Using EEPROM

The Arduino IDE comes with an EEPROM library, which you can find in the Libraries directory where you
installed your Arduino software. You should spend a little time reading up on the EEPROM library and its
example code.

Data Logging

In the following discussion, our comments are directed to the “on board” EEPROM, and not any external
EEPROM that may be sitting on a shield or other external device. EEPROM memory is not an optimal choice
for data logging for several reasons. First, because EEPROM is fairly slow, it may not be able to keep up

with whatever device is feeding it data. Second, data logging is usually a sequential process. This means
maintaining a pointer to where the next byte of logged data it to be written. If this pointer is maintained in
the EEPROM memory space, it can become unreliable because it may need to be updated (i.e., an erase/
write cycle) fairly frequently. Also, the amount of EEPROM data is usually quite limited and there just may
not be enough storage to be useful. Finally, EEPROM memory behaves like a ring buffer. That is, if your
board has 512 bytes of EEPROM and you try to write to address 512 in EEPROM memory, it simply “wraps
around” to EEPROM address 0 and writes the data. (The valid EEPROM addresses are 0 through 511, right?)
Clearly, if you need whatever was stored at address 0, you have a problem. Because of these limitations, data
logging programs frequently use an external device for storage of logging data.

For the moment, however, assume you have a very limited data set to preserve and you think EEPROM
might be a good place to store it for now. Let’s see how that might work. Instead of presenting a single long
code listing, we are going to break it down so we can keep the relevant code visible while discussing that
code. Also, the example is contrived because we start out with the data stored in SRAM memory and then
move it to EEPROM memory. Clearly, this doesn’t help solve a memory limitation problem. However, the
example does show you a number of things you need to address when you use EEPROM memory.

Our design is to save the information on ten service companies that I mentioned earlier in this chapter.
We want to keep information in the servicePeople structure, but store it in EEPROM. Listing 10-4 shows the
global data definitions and declarations, the setup() loop code.

234

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

The first statement in Listing 10-4 is a #include preprocessor directive to read in the EEPROM.h header
file. This file contains information the compiler needs to properly work with the EEPROM library. The
#define DEBUG preprocessor directive is used to toggle debug print statements into and out of the code. You
can see examples of this in the sefup() loop. For example, the statements

#ifdef DEBUG
Serial.print("EepromMax = ");
Serial.println(eepromMax);

#endif

cause the Serial. print() statements to appear in the program only if DEBUG is defined for the program. (We
have already covered the use of DEBUG.) Because the code does have a #define DEBUG 1 preprocessor
directive at the top of Listing 10-4, the print statements are compiled into the program. Recall that, if you
comment out the #define DEBUG 1 directive, DEBUG is no longer defined and the Serial.print() statements
are omitted from the program. Such code is commonly called scaffold code, because it is “toggled out” of the
program after debugging is completed, much like scaffolding is removed once a building is finished.

Listing 10-4. The setup() Loop Code
/*
Purpose: To write data to EEPROM memory.

Dr. Purdum, December 22, 2014

*/
#include <EEPROM.h>
#define DEBUG 1 // We want to see debug print statements

// Comment out to avoid seeing print statements

const int MAXPEOPLE = 10;
struct servicePeople { // Structure definition for servicePeople
int ID;
char Name[20];
char PW[10];
long Phone;

};

union servicePeopleUnion { // A union definition for myUnion
byte temp[sizeof(int)];
int testID;
struct servicePeople testServicePeople;

} myUnion;

servicePeople myPeople[MAXPEOPLE] = { // company data for testing
{0, "This is a dummy","admin",5555555},
{101, "Kack Lawn Service","Clowder",2345678},
{222,"Jane's Plants","Noah",4202513},
{333, "Terrys Pool Service","Billings",4301016}
};
// function declarations:
void DataDump(struct servicePeople temp);
int FindEepromTop();
int ReadIntFlag();

235

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 = STRUCTURES, UNIONS, AND DATA STORAGE

void ReadOneRecord(int index);
void WriteFirstRecord();
void WriteOneRecord(int index);

int loopCounter = 0; // Number of passes to make through loop
int initFlag = 0; // Has the EEPROM been initialized?
struct servicePeople temp; // A temporary structure

void setup()

int eepromMax;
int i;

Serial.begin(9600);
eepromMax = FindEepromTop(); // How much EEPROM?
#ifdef DEBUG
Serial.print("EepromMax = ");
Serial.println(eepromMax);
#endif
initFlag = ReadIntFlag(); // Initialized?
if (initFlag == 0) {
for (i = 0; i < MAXPEOPLE; i++) {
WriteOneRecord(i);
}

}
initFlag = 1; // Either way, EEPROM is initialized by now

}

Note When you first get your Arduino board, the EEPROM is in a “fresh from the factory” condition. What this
usually means is that all of the EEPROM memory bytes are initialized to OxFF. Reading two of these bytes back to
back gives OxFFFF, which is —1 when those 2 bytes are read as an int. However, this is some RDC on my part, as
| assumed that everyone was using an Arduino board that had never done anything with the EEPROM memory. To
fix this, | added one line to sefup(), immediately after the call to ReadIntFlag(). The code looks like this:

initFlag = ReadIntFlag();
// initFlag = -1; // Remove comment at beginning of this
// line first time you run program.
if (initFlag < 0) {
// Rest of code unchanged

By setting initFlag to —1, you force the code to initialize the EEPROM memory with the test values in the
program. Once you have run the program, you can “recomment” the line back to the way it was.

Next, the code defines a const integer named MAXPEOPLE that is used to set the limit for the number
of companies you will allow. You could use a #define instead, but this gives you an actual variable to work
with if you wish. That is followed by a structure declaration for servicePeople and a union with a union tag of
servicePeopleUnion. Although we don’t really make much use of this union, it will at least let you see how a
union is used.

236

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

The code then defines a myPeople[] array of servicePeople and initializes the array with four records. The
first record is bogus. The sole purpose of this element of the array is to determine whether or not the array
has been copied into EEPROM memory. If the ID member is 0, that means the array has not yet been copied
into EEPROM memory. Actually, it is a good idea to copy the array into EEPROM regardless, since the code
is within the setup() loop and hence actually part of the Initialization Step anyway. In fact, you could use the
other three members of this element of the array for other purposes, as long as you are consistent with the
data type of the member.

After the array is initialized, several function declarations are presented followed by definitions for
several global variables. The code then finds the setup() loop. The first thing done is find the maximum
amount of EEPROM memory that is available for the board. True, you know what this is for your board, but
what if you change boards later? The code for the FindEepromTop() is presented in Listing 10-5. The code
takes advantage of the fact that the amount of available EEPROM memory is held in an Arduino symbolic
constant named E2END, and represents the largest valid address in EEPROM memory for the board being
used. Adding 1 to that value returns the amount of EEPROM available.

Listing 10-5. Source Code for FindEepromTop()

/*****
Purpose: Find out how much EEPROM this board has. I

Parameter list:
void

Return value:
int the EEPROM size
*****/
int FindEepromTop()
{

return E2END + 1;

}

If you try to write to an EEPROM address that is higher than the EEPROM that’s available, the address
pointer to the EEPROM wraps back to address 0. This can be a tricky bug to track if you don’t realize what’s
happening. The reason is because, if you only have 512 bytes of EEPROM, the valid addresses are 0 through
511. Trying to write to address 512 “wraps around” back to the first memory address. There is no obvious
indication that something went wrong. The EEPROM memory space, therefore, behaves as though it is a ring
buffer.

Next, the code reads the first bytes of memory to see if the array has been copied to EEPROM. The code
for the ReadIntFlag() is presented in Listing 10-6.

Listing 10-6. Source Code for ReadIntFlag()

[k

Purpose: This function reads the int-sized bytes of EEPROM and
returns the integer found there.

Parameter list:
void

Return value:

int 0 if no records in EEPROM, 1 if there are
*****/

237

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 = STRUCTURES, UNIONS, AND DATA STORAGE

int ReadIntFlag()
{

int i;

for (i = 0; i < sizeof(int); i++) {
myUnion.temp[i] = EEPROM.read(i);

return myUnion.testID;

}

The ReadIntFlag() shows how simple it is to read EEPROM memory. The EEPROM library
that is distributed with the Arduino IDE only has two EEPROM functions: read() and write(), although
the examples for the library also show how to clear EEPROM memory. (Coupled with the
FindEepromTop() function presented in Listing 10-5, a ClearEprom() function could easily be added to the
library.)

The ReadIntFlag() function is written so it works with differently sized int data types. The Diligent
chipMax CPU, for example, uses a 4-byte int, whereas most Arduino boards are currently 2-byte ints. By
using sizeof{int) to control the for loop, the code reads the necessary number of bytes to form an int into the
union’s temp|] array for the board being used. (Note that we defined the myUnion.temp[] array using the
same type of sizeof{int) expression.) Therefore, the ReadIntFlag() reads the proper number of bytes into the
array regardless of the board you are using. When the for loop ends, the temp[] array union member holds
the data needed to form an int. But here’s the cool part: because myUnion can also hold an int, we use the
statement

return myUnion.testID;

to return the int to the caller. This works because of the way a union works, as explained earlier. Treating
those individual bytes simply as array elements rather than a specific data type allows us to abstract from
the LittleEndian/BigEndian problem, which is a can of worms we don’t need to discuss here. (If you wish
to explore this issue further, simply Google endian problem.) Suffice it to say this approach is a good way to
extract an int from EEPROM.

If ReadIntFlag() returns 0, you know that the myPeople[] structure array has not been read into EEPROM
memory. As you can see in Listing 10-4, the code does return a value from the ReadIntFlag() function call.
The iftest avoids copying the data into EEPROM memory (perhaps for a second time). The code in
Listing 10-4 simply copies the array to EEPROM via the call to WriteOneRecord(). The code for that
function appears in Listing 10-7.

Listing 10-7. Source Code for WriteOneRecord()

/*****

Purpose: This function writes one record from the myPeople[] array
to EEPROM

Parameter list:
int index The element of the myPeople[] array to write

Return value:
void
*okokokok /

238

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

void WriteOneRecord(int index)
{
byte *b;
int i;
int offset = index * sizeof(servicePeople);

b = (byte *) 8myPeople[index]; // Going to write this record
for (i = 0; 1 < sizeof(servicePeople); i++) {
EEPROM.write(i + offset, *b++);
}
}

The WriteOneRecord() shows how to use the EEPROM write() function. The function accepts an index
into the myPeople[] array as the only parameter to the function. The byte pointer, b, is initialized to point
to the lvalue where this element of the myPeople[] array exists in SRAM memory. It does this by using the
address-of operator. The variable offset is necessary to calculate the lvalue of where this particular element
into which the myPeople[] array should be copied in EEPROM memory. The call to EEPROM.write() then
writes each byte of the array element to EEPROM memory. The expression2 of the for loop dictates how
many bytes are written. The sizeof{servicePeople) expression, therefore, ensures that only 36 bytes are written
to EEPROM memory. The call to WriteOneRecord() is called MAXPEOPLE times (i.e., 10) even though only
the first four elements contain any useful data. Notice how offset makes sure the new data are copied to the
correct lvalue in the EEPROM memory space. If this isn’t clear, keep studying the code until it is. Take time to
calculate the value for offset and it should make sense to you.

After the for loop finishes copying the data to the EEPROM memory space, the program falls into the
loop() function for further processing. The code for the loop() function is shown in Listing 10-8. The first
statement in the function defines and sets the eepromindex variable to 1. This is done because you know the
first record contains no useful information. Therefore, you are only interested in what follows the first record
in the myPeople[] array.

Listing 10-8. Source Code for the loop() Function

void loo3p()
static int eepromIndex = 1; // Assume there are records

loopCounter++;
if (initFlag > 0) { // There are records to read
ReadOneRecord(eepromIndex++);
if (myUnion.testServicePeople.ID != 0) { // Read some real data
DataDump(myUnion.testServicePeople);

}
} else {
eepromIndex++; // Make sure loop can end with no records.
}
#ifdef DEBUG
Serial.println("==========");
#endif
if (eepromIndex == MAXPEOPLE) {
while(1); // Just spin around here forever...
}

}

239

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 = STRUCTURES, UNIONS, AND DATA STORAGE

There’s not a whole lot going on in the loop() function. The variable initFlag tests to see if the
data have been copied to the EEPROM memory space. Because this is the case, the program calls
ReadOneRecord (eepromlIndex) to read a record from EEPROM. The code for ReadOneRecord() is
presented in Listing 10-9.

Listing 10-9. Source Code for ReadOneRecord()

Vasioiuio

Purpose: This function reads one servicePerson record from
EEPROM

Parameter list:
int index The element of the myPerson[] array to read

from EEPROM

Return value:

void
*****/
void ReadOneRecord(int index)
{
byte *bPtr;
int i;
int offset;
offset = index * sizeof(servicePeople); // must offset from 0 in EEPROM
bPtr = (byte *) &myUnion.testServicePeople; // where to put the data read
for (i = 0; 1 < sizeof(temp); i++) { // Loop through the bytes...
*pPtr = EEPROM.read(offset + i);
bPtr++;
}
}

The code is very similar to Listing 10-7, only this time you are reading rather than writing, the data.
Variable offset is necessary to place the byte pointer, bPtr, at the correct Ivalue in the EEPROM memory
space. Once bPtr is properly set, the code reads sizeof{servicePerson) bytes of data (36 bytes) from EEPROM
into the union myUnion. Obviously, we want this data to be copied into the servicePeople structure of the
union, which is why bPtr is set to the address of myUnion.testServicePeople. Notice how offset is used so the
proper data are read.

Upon return from the call to ReadOneRecord(), the code checks to see if the myUnion.testServicePeople.
ID is non-zero. If that is true, then the DataDump() function is called and...

Whoa! Back up the boat....

Why are there two dot operators in the statement?

if (myUnion.testServicePeople.ID != 0) { // Read some real data

Why not? This statement is a little like one of those Russian box-within-a-box-within-a-box thingies.
As you know, a union is a data structure that is like a black box that needs a key (i.e., a dot operator) to

240

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

“get inside” the union data structure. So, you pull that key out and open the union door and walk in.
What do you see? First you see the temp/] array defined. Next, you see an int named testID, but then you
see another black box named testServicePeople. You also know you need a different key (another dot
operator) to get inside the testServicePeople structure. Therefore, to do anything useful with the contents
of the testServicePeople structure means you need two sets of keys (dot operators) to get to the data that
is obscured by two black boxes. This is why there are two dot operators ... you need one key to get inside
the myUnion and a second key to examine the festServicePeople data structure to look at the structure
member named ID.

There is no practical limit as to how many “boxes-within-boxes” levels can be used in a statement.
Many years ago [worked with a (poorly designed) database structure that required 13 dot operations to
get to the data I needed. Although this is an extreme (RDC) case, you should not go into cardiac arrest
when you see a bunch of dot operators in a statement. Simply keep the black box concept in mind and pay
attention to what data type you are entering with each key (dot operator) and you should have no difficulty
figuring things out.

Eventually, the DataDump() function is called to display the data that was just read. The code is
presented in Listing 10-10.

Listing 10-10. Source Code for DataDump()

Vasioiuio

Purpose: Sends the data stored in parameter to the serial monitor

Parameter list:
struct servicePeople temp // The data to be displayed

Return value:
void
*Akokok /

void DataDump(struct servicePeople temp)

{

Serial.println();
Serial.print("ID = ");
Serial.print(temp.ID);
Serial.print(" Name = ");
Serial.println(temp.Name);
Serial.print(" PW = ");
Serial.print(temp.PW);
Serial.print(" Phone = ");
Serial.println(temp.Phone);

As you can seg, all the DataDump() function does is display the contents of the myUnion.
testServicePeople structure that was just read from EEPROM memory. In a real application, the myPeople/[]
data would be used for some form of additional processing rather than just dumping to the serial device.
Still, the program does show how to use EEPROM memory to store data that needs nonvolatile storage. A
sample run of the program can be seen in Figure 10-6.

241

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 = STRUCTURES, UNIONS, AND DATA STORAGE

= T T
& COM22 (Arduino Uno) [P=REENS)
| send |
EepromMax = 1024 -
flag = 3
ID = 100 Name = Kack Lawn Service
PW = Clowder Phone = 2345678
ID = 109 Name = Jane's Planta
PW = Noah Phone = 4202513
ID = 120 Name = Terrys Pool Service
PW = Billings Phone = 4301832
[¥] Autoscroll Newline v |9600baud
LS -

Figure 10-6. EEPROM program sample run

While EEPROM offers one way to persist data when the power is removed, the limited amount of
EEPROM memory that is one your board simply may not be enough to meet your needs. If that’s the case,
what other options exist?

Other Storage Alternatives

There are a number of ways that you can increase the amount of data storage available for an Arduino-
compatible board. Data logging, for example, is a common use for pic but an Arduino is likely going to need
some help if large amounts of data are to be stored.

Shields

One inexpensive alternative is to add an EEPROM shield to your pc board. A shield is an additional board
that can be attached to the pc board either directly plugging the shield into the Arduino board or an Arduino
module connected through cabling. Several companies offer EEPROM shields that use the 12C Wire library
to communicate with the main pc board. A 256K EEPROM shield can be found for less than $10. A quick
search on the Internet should turn up several alternatives for you.

Another alternative is to use an SD (Secure Digital) card. Figure 10-7 shows an example. Figure 10-8
shows the same SD card inserted into the shield and the shield “stacked” onto an Arduino pc board.

242

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

———

Figure 10-7. An SD card and shield

Figure 10-8. Stacked SD shield and board. (Shield and yc board courtesy of Seeed Studio.)

243

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ' STRUCTURES, UNIONS, AND DATA STORAGE

The stacking is made easy by vendors supplying Arduino-compatible boards where the pins align
properly with the pc board. Note the header pins on the SD shield. This is done so you can stack yet another
shield on top of the SD shield. These “Arduino Sandwiches” can go on as high as you want, provided you
don’t exceed the current limits of the Arduino. Figure 10-9 shows the pins for the SD shield shown in
Figure 10-8, but from the underside of the shield. These are the pins that plug into the headers on the
Arduino board.

Figure 10-9. Pins for SD shield. (Photo courtesy of Seeed Studio.)

Note that the pins on the SD shield pass through the board to the headers directly above the pins. This
is what allows another shield to be stacked onto this shield. This makes increasing the functionality of a nc
board quite easy.

The use of an SD shield increases the amount of storage available to the system significantly—into
the gigabyte range. The board shown in Figures 10-8 and 10-9 supports both SD and micro SD cards and
has UART, 12C, and SPI interfaces for increased flexibility. The vendor also has a format program (FAT16
or FAT32) and sample code that can be downloaded. Despite this feature set, the shield sells for less than
$5. Because the SD storage medium is easily removed, subsequent processing of the data can be done on a
regular PC if needed.

Whereas an SD library is shipped with the Arduino IDE, some SD vendors have boards that make use of
more advanced features. Read the documentation for the SD library carefully as certain pins must be used
for the library to work properly. Make sure you buy a card that is compatible with the Arduino SD library or
that the vendor gives you a source for their library.

244

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

Other Uses for SD Storage

There are probably hundreds of projects you can think of that would benefit from additional storage. While
additional EEPROM is one way to go, the addition of an SD shield offers the flexibility of removable storage.
Figure 10-10 shows a GPS shield installed on a pc board. The wire with a “caramel” attached to it is the GPS
antenna.

£ POMER

’

Figure 10-10. A GPS shield. (GPS shield courtesy of Libelium.)

It is possible to piggyback an SD shield and the GPS shield, add a 9V battery and then record the GPS
data as you drive around town. Figure 10-11 shows the output using the Libelium software.

245

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ' STRUCTURES, UNIONS, AND DATA STORAGE

sentence: $GPRMC,6121812.000,A,3948.034¢6,N,08618.0835,W,0.10,199.52,29%0812,,,A
sentence: $GPGGA,121814.000,3948.0347,N,08618.0836,W,1,09,0.9,255.1,M,-33.7,M,,0000
sentence: $GPRMC,121813.000,A,3948.034¢,N,08618.083€,W,0.18,259.10,29%90812,, .,
sentence: $GPGGA,121815.000,3948.0347,4,08€618.0836,W,1,09,0.9,255.1,M,-33.7,M,,0000
sentence: $GPRMC,121814.000,R,63948.0347,N,08€618.083€,W,0.30,223.02,290812,,.,R
sentence: $GPGGA,12181€.000,3948.0347,M4,08€618.0837,W,1,09,0.9,255.1,M,-33.7,M,,0000
sentence: $GPRMC,121815.000,A,3948.0347,N,08618.0836,W,0.32,208.51,290812,,. A
sentence: $GPGGA,121817.000,3948.0347,N,08618.0838,W,1,09,0.9,255.0,M,-33.7,M,,0000
sentence: $GPRMC,12181€.000,A,3948.0347,N,08618.0837,W,0.07,278.12,290812,, A
sentence: $GPGGA

sentence: $GPRMC,121817.000,A,3948.0347,N,08618.0838,W,0.22,226.68,290812,, A
sentence: $GPGGA,121819.000,3948.0348,N,08618.0836,W,1,09,0.9,255.1,M,-33.7,M,,0000
sentence: $GPRMC,121818.000,A,3948.0348,N,08618.0837,W,0.29,34.25,290812,,.A
sentence: $GPGGA,121820.000,3948.0349,N,08618.0835,W,1,09,0.9,255.2,M,-33.7,M,,0000
sentence: $GPRMC,121819.000,A,3948.0348,N,08618.0836,W,0.13,82.15,290812,,,A

[¥] Autoscroll

Figure 10-11. Data from GPS shield viewed over a serial link

There are several GPS libraries available plus new ones coming on line all the time. Again, Google is
your friend and searching for the latest library is just an “Arduino GPS library” search away.

The output from that software is shown in Figure 10-12. Keep in mind that most Arduino libraries have
an Examples subdirectory distributed with their libraries. These examples are a great way to learn how to use
the library.

r Ny
|4 comg m—n
Testing TinyGPS library v. 12
by Mikal Hazt
Sizeof (gpscbject) = 115
Sats HDOP Latitude Longitude Fix Date Time Date Alc Course Speed Card Distance Course Card Chars Sentences Checksum

ideg) (deg) Age Age (m) === from GPS ---- =--- to London ---- ®MX X Fail
WAAE BRAE AMLSASS Sssssss Bhes Sbsssss sssssse Ghbs Bebeses ssssss ssses wes [0.00 =*++ g o 0
webe wass 30 24254 -97.82634 2 01/04/2009 20:15:47 4 esbasss 163.06 0.44 SSE 7915 40.66 NE 70 1 0
7 150 30.24254 -97.82634 2 01/04/2009 20:15:48 4 225.60 163.05 0.44 S5E 7513 40.66 NE 152 H o Ii
7 150 30.24254 -97.82634 2 01/04/2009 20:15:48 4 225.60 53.25 0.31 NZ 7819 40.66 NE 221 3 o
7 160 30.24255 -97.82635 1 01/04/2009 20:15:49 5 223.80 53.25 0.31 NE To19 40.66 NE 303 4 o
[¥] Autoscrol Newine =i I

Figure 10-12. GPS data using TinyGPS library

246

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

Depending on the GPS sampling rate you select to write to the SD card, you can actually plot on a street
map where you've been while recording the GPS data. If you ever wondered where your teenage son really
went when he borrowed the family car, this might be your answer! A quick search on the Internet will likely
produce lots of ideas for Arduino shields, including the GPS shield shown here. (More than 2 million hits
occurred when I googled “Arduino GPS".

typedef

I should mention that C provides a way for you to create a new data type from existing data types. For
example, in Chapter 13 we discuss interrupts and these are often associated with unsigned 8-bit variables.
These 8-bit variables are tied to various Arduino pins and are collectively called a port. Although we could
define a port as a byte, since a byte is an unsigned 8-bit data item, it would make more sense to call it a port.
You can do this kind of thing with a typedef. The syntax would be:

typedef byte PORT;
PORT portC, portD;

Note that the typedef doesn’t really “create” a new data type. Rather, it lets you rename the data type.
PORT does not have to be in uppercase letters, but that is a convention that most programmers use. Also
notice that the typedefis really a declaration in that it creates an attribute list for the “new” data type. The
second statement actually defines two variables using the fypedef attribute list for PORT. Proper use of
typedefs can make your code more readable.

Another common use for a typedefis to use them with structures. For example, Listing 10-11 presents a
short program showing how to use a typedef.

Listing 10-11. Using a typedef

typedef struct Students
{

char name[20];

int year;

float gpa;
} STUDENTS;

void setup() {
Serial.begin(115200);
STUDENTS myClass[20];
strcpy(myClass[0].name, "Jack Purdum");
myClass[0].year = 3;
myClass[0].gpa = 3.99; // Never liked psychology

Serial.print("Name: ");

Serial.print(myClass[0].name);

Serial.print(" Class: ");

Serial.print(myClass[0].year);

Serial.print(" gpa: ");

Serial.println(myClass[0].gpa);
}

void loop() {
}

247

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_13
http://www.it-ebooks.info/

CHAPTER 10 ' STRUCTURES, UNIONS, AND DATA STORAGE

Note how the typedefencompasses the struct declaration. Also note how Students names the structure,
whereas STUDENTS is the typedef.

Many programmers find that typedefs make it easier to read the code. My feeling is that it depends upon
the complexity of the data’s attribute list. In all honesty, I probably use typedefs less often than I should.

Another common use is to combine an enum with a typedef:

typedef enum {RESIDENTIAL = 35, STATEROAD = 55, FEDERALHIGHWAY = 70} SPEEDS;
SPEEDS myState = STATEROAD;

In this case, we have an enum list that we treat as a new data type using the typedefkeyword with
the identifier for the new data type stated at the end of the statement. This allows us to have a shorter
definition of the myState variable. Some programmers append an underscore and a t (_t) to the end of
the typedefidentifier to make it clearer that this is a typedef. If you used this convention, the definition of
SPEEDS would be written as SPEEDS_t. If you do prefer one style over the other, just make sure you use it
consistently.

It may appear that a typedefis really little more than a #define in a different set of clothes. Well, not
really. First, a fypedef can only work within the confines of existing data types. You cannot, for example,
use a typedeffor a value. Second, a #define is processed by the preprocessor and involves a simple textual
replacement in the source code. A typedefis processed by the compiler, and since it works with “real” data
types, it persists after the compiler is finished.

Summary

In this chapter you learned how to organize dissimilar data using the struct keyword. You also saw how a
union may be used as a small buffer space in your programs and how it may save you a few bytes of memory.
You also learned how to read and write to EEPROM. Although EEPROM memory has some disadvantages,
like relatively slow access and limited recycling, it is an effective way of storing configuration data or data
that is not likely to change often. Finally, you saw how shields can be used to extend the functionality of a pic
board, both in terms of storage (e.g., an SD shield) or features (e.g., a GPS shield). Always keep in mind that
anytime you find yourself wishing the puc board had more of something (like memory) or you wish it could
do some additional feature (like a little Internet searching), chances are you'll find a shield that can help
solve your problem.

EXERCISES

1. InListing 10-2, it was asserted that yourServicePeople.Phone was unchanged
after the function call. Is this true? Prove it.

Answer: Add these three lines to the bottom of the setup() loop:
Serial.println();

Serial.print("yourServicePeople.Phone rvalue: ");
Serial.println(yourServicePeople.Phone);

and recompile, upload, and run the program. You will see that the phone

number member of yourServicePeople.Phone is unchanged and still has the
value 0.

248

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 STRUCTURES, UNIONS, AND DATA STORAGE

2. When discussing the section on arrays of structures, you saw the definition;

struct servicePeople myCompanies[10] = {

{1, "This is a dummy","admin", 5555555},
{101, "Kacks Lawn Service", "Clowder", 2345678}

};

Clearly, the Name member of the first element in this array suggests that the
data is garbage. Why would someone “throw away” this first element?

Answer: You could use this first element to maintain a count of the number of valid
elements in the array. In other words, the ID member of the first element of the array has
the value 1 stored in it. This means that there is 1 company currently filled in for the array,
even though the array is capable of holding 10 elements. You could access the data for the
last valid data element using:

int index;

int validCompanyID;

index = myCompanies[0].ID;
validCompanyID = myCompanies[index].ID;

You can simplify this considerably by using:

int validCompanyID;
validCompanyID = myCompanies[myCompanies[0].ID].ID;

Think about it. You could also use this information to prevent a loop from reading
garbage data.

3. The code in Listing 10-4 calls WriteOneRecord() ten times even though there
are only four elements in the array that contain useful data. How could you
avoid the redundant calls?

Answer: When the myPeople[] array is defined, 360 bytes of data (36 * MAXPEOPLE) are
allocated to the array. Only the first 144 bytes (4 * 36) of the array contain information.
Because this global data structure is defined with global scope, any uninitialized elements
of the array are filled with 0s. However, EEPROM data that has never been written to is set
to OxFF (or —1 decimal). Therefore, you could modify the forloop in setup() to:

i=0;
while (myPeople[i].ID != -1) {

WriteOneRecord(i++); // Copy to EEPROM
}

249

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ' STRUCTURES, UNIONS, AND DATA STORAGE

4. The phone number displayed in Figure 10-6 is pretty lame. How would
you spiff it up?

Answer: If you add #include <stdlib.h> at the top of the program (so the program knows
about the long-to-ASCII, /foa(), function), and then add the following code to the top of the
DataDump() function:

char t[10];
char buffer[10];
ltoa(temp.Phone, t, 10); // make long a char array

strcpy(buffer, t);
buffer[3] = '-';
strncpy(8buffer[4], &t[3], 5);

and then change the last Serial.printin() to Serial.printin(buffer), the program
displays the phone number with a hyphen between the exchange and the number
(e.g., 234-5678). You should be able to figure out what the code does now.

5. What is a shield?

Answer: In terms of Arduino boards, shields are small boards that usually piggyback directly
onto the pc board. Each shield is designed to meet some specific need (i.e., more memory)
or add a new feature (i.e., read GPS data). Most shields are surprisingly affordable.

6. If a statement contains more than one dot operator, what should you do?

Answer: Just remember that the dot operator is like a key that lets you get inside a black
box. Usually, multiple dot operators mean that you are accessing more than one struct or
union. In O0P languages, like C++, the dot operator is often used to access the members
and methods of a class. Serial.print() is an example of using the dot operator to access the
print() method (i.e., function) of the Serial class. In fact, 00P constructs are little more than
a struct with functions (i.e., methods) defined within them ... something you can’t do with
straight C.

7. Given the code at the top of Listing 10-11

typedef struct Students
{

char name[20];
int year;
float gpa;
} STUDENTS;
STUDENTS myClass[20]; // Make an array of them

initialize the first three elements of myClass/] with data of your choice and then
display the array.

250

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Answer:

typedef struct Students
{

char name[20];

int year;

float gpa;

} STUDENTS;

void setup() {
int i;

Serial.begin(9600);

STUDENTS myClass[20] = {
{"Katie Mohr", 4, 3.30},
{"John Purdum", 1, 3.30},
{"Jane Holcer", 2, 3.80}

};

for (i = 0; i < sizeof(myClass) / sizeof(myClass
Serial.print("Name: ");
Serial.print(myClass[i].name);
Serial.print(" Class: ");
Serial.print(myClass[i].year);
Serial.print(" gpa: ");
Serial.println(myClass[i].gpa);

}

}

void loop() {
}

You should be able to figure out the code for yourself now.

STRUCTURES, UNIONS, AND DATA STORAGE

[0]); i++) {

www.it-ebooks.info

251

http://www.it-ebooks.info/

CHAPTER 11

The C Preprocessor and Bitwise
Operations

In Chapter 4, Table 4-2 presented a list of the C preprocessor directives that are supported by Arduino C. In
this chapter, we want to extend that discussion, plus cover a few additional details that should prove useful
to you. In this chapter you will learn

e What the C preprocessor does
e What parameterized macros are
e What bitwise operators are

e What the standard C header files are

Preprocessor Directives

The ANSI C specification details the duties of the C preprocessor. It is the function of the C preprocessor to
process the defined directives supported by the C compiler. Table 4-2 lists the preprocessor directives that
Arduino C can translate. In the previous sentence, the word “translate” is not a typo, as that is exactly what
the preprocessor does: it translates the directives you have written into your code with whatever you have

designated to be the replacement. For example, consider the following preprocessor directive:

#define FIRESENSOR 145

which would likely appear near the top of your source code file. Now further suppose that you later write the
line:

if (currentSensor == FIRESENSOR) {
//...some code here to do something with the fire sensor state

}

© Jack Purdum 2015 253
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_11

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Tab2
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Tab2
http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

The if statement here is what you see when you examine your source code. One of the first things the
compiler does when you hit the compile button is run the C preprocessor. Conceptually, you can think of
the C preprocessor pass as performing a global search-and-replace using all of the preprocessor directives
you have written in your source code file. When the preprocessor finds the if statement, it substitutes the
value 145 every time it finds FIRESENSOR in your source code. When the preprocessor has finished, the if
statement is transformed and the compiler sees your source code as though you wrote the if statement as:

if (currentSensor == 145) {
//...some code here to do something with the fire sensor state

}

The C preprocessor has translated all of your preprocessor directives into whatever substitution you
wrote. Throughout this text you have used preprocessor directives to get rid of magic numbers in your source
code. Rather than force you to flip back to Chapter 4, Table 4-2 is repeated here as Table 11-1.

Table 11-1. Arduino C Preprocessor Directives

Directive Action

#define NAME value Ascribes the identifier NAME to the constant value.

#undef NAME Removes NAME from the list of defined constants.

#line lineNumberValue Allows the compiler to refer to any line numbers in the file named filename.ino
“filename.ino” to be referenced as line lineNumberValue from this point on by the compiler.

Normally used in debugging. This is not in the Arduino C reference material,
but the compiler recognizes it.

#if definedConstant Conditional compilation. Example:
expression operand
#if LED == 12
#define VOLTS 5
#endif

This is not in the Arduino C reference material, but the compiler recognizes it.

#if defined NAME Allows for conditional compilation of statements if NAME is defined. The
// statement(s) statement block ends with #endif. This is not in the Arduino C reference

#endif material, but the compiler recognizes it.

#if ldefined NAME Same as #if defined, but processes the statement block only if NAME is not
// statement(s) defined. This is not in the Arduino C reference material, but the compiler

#endif recognizes it.

#ifdef Same as #if defined. This is not in the Arduino C reference material, but the

compiler recognizes it.

#ifndef Same as #if /defined. This is not in the Arduino C reference material, but the
compiler recognizes it.

(continued)

254

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Tab2
http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

Table 11-1. (continued)

Directive Action

#else Can be used with #iflike as if-else statement, but to control compiled
statements. Example:

#if defined WINDOWS?7
#define BITS 64
ftelse
#define BITS 32
ftendif

This is not in the Arduino C reference material, but the compiler recognizes it.
#elif Used with #if for cascading #if's

#include “filename.xxx” Opens the file named filename.xxx and reads the contents of the file into the
program source code. Usually, if double quotes surround the file name, the
search for the file is in the currently active directory. If the file is not found
there, the search resumes in the default include directory path. If angle
brackets are used (<filename.xxx>), the search is confined to the default
include directory path.

You already know the #define directive and have used it in several programs. What we need to do here is
just expand the information in Table 11-1 to make it a little clearer.

#undef

The #undefis used to turn off a previously defined #define preprocessor directive. For example, suppose you
have a source file with something like the following code in it:

#ifdef DEBUG
Serial.print("The counter value is: ");
Serial.println(myCounter);

#endif

This is a technique (called scaffolding, remember?) that you have used before to toggle debugging code
into the program. If the source contains

#define DEBUG 1

at the top of the source file, then the two Serial object method calls are compiled into the program. You can
also write the directive simply as

#define DEBUG
without the 1 digit, and it will still behave the same. Why? The reason is because we plan on using DEBUG in
a #ifdef expression. A #ifdef doesn’t care if there is a value or not, just whether it has been defined or not. Still,

this old dog has always used the first form with the 1 digit present, so that’s what we’ll use in the examples
that follow.

255

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

Now let’s suppose the function that contains the debug code is named ReadSensorCounter() and
that you finally have that function working perfectly. You could “shut off” the all of the debug code in the
source file by simply removing or commenting out the #define DEBUG 1 line in the program. Because the
preprocessor would no longer see the #define for DEBUG, the Serial() debug code is not compiled into the
program.

However, that’s not an optimal solution because you may still have more debugging to do in other
parts of the source file. If that’s the case, cut-and-paste the ReadSensorCounter() function source code to
the end of the source code file and add a #undefjust above it in the source file, as seen in the following code
fragment:

#define DEBUG 1

//

// A whole bunch of program lines
// that still need to be debugged
//

#undef DEBUG

ReadSensorCounter() {

// code for the debugged function

}

When the preprocessor sees the #undef directive, it removes DEBUG from its list of #define’s. This has
the effect of removing the Serial() calls from the (now debugged) ReadSensorCounter() function. However,
because the #undefis at the bottom of the source file, all of the other #define DEBUG scaffolding code
is compiled into the program because DEBUG is still defined everywhere above the point of the #undef
directive. Therefore, the #undef directive gives you a way to undefine a previously defined preprocessor
directive. By moving the source code for debugged functions after the #undef directive, you can leave in
the scaffolding code you still need with undebugged code without cluttering up the debug statements with
Serial output statements from code that already works.

If something happens down the road and the ReadSensorCounter() function starts acting up again,
just remove the #undef and the Serial statements are automatically recompiled back into the program the
next time you hit the compile button. By using the #undef directive, you don’t have to retype in the Serial
statements into the code again. While the #undef can be used for other purposes, toggling scaffold code into
and out of a program is a fairly common use.

#line

The #line directive is used most often while debugging a program. The syntax is
#line lineNumberValue "filename.ino"

where lineNumberValue is the line number you want to the compiler to use from that point on in the source
code file name filename.ino. Therefore,

#line 100 "C:\Temp\myCode.ino"
tells the compiler to reference the next line number as line 100 for the source file name myCode.ino. This
directive is useful when your program reads in one or more header files. For example, suppose your source

file begins with

#include <stdio.h>

256

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

and your program has an error on line 10. If file stdio.h has 22 lines in it and your program finds an error
at source code line 10, the error message will say the error is at line 32. This can get confusing, especially if
the compiler isn’t really adept at counting source code lines when include files are used. Fortunately, the
Arduino compiler does a good job of counting lines. In fact, it does not count the lines in header files. Not all
IDEs behave this way.

As an experiment, however, try placing the #line directive in one of your programs and change the file
name to the file that you are working on. You will see that the line number does change according to the line
number you specify in the #line directive.

#if, Conditional Directives

There are a number of conditional directives, and they are very similar, so we can discuss them as a group.
First, the expression

#if definedConstant expression operand
// Statement(s)
#endif

might be written as:

#if BOARD == ATMEGA168
#define MAXEEPROM 1024
#endif

In this example, if BOARD is defined as ATMEGA168, then MAXEEPROM is set to 1024. The #endif
directive is necessary to complete the directive for the compiler. You can have multiple statements
controlled by the conditional directive.

The directive

#if defined BOARD
might be used as:
#if defined BOARD
#define MAXEEPROM 1024

#endif

In this case, however, it doesn’t matter how BOARD is defined, MAXEEPROM is set to 1024 as long as
there is a #define for BOARD.

The directive
#if ldefined expression
is the negative of the previous directive. That is:
#if !defined BOARD

#define MAXEEPROM 1024
#endif

257

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

This says that if BOARD has not been #define’d in the program, MAXEEPROM gets set to 1024. This
directive can also be written using the #ifndefin the same manner:

#ifndef BOARD
#define MAXEEPROM 1024
#endif

The result is exactly as before: If BOARD has not been #define'd in the program, MAXEEPROM is set to
1024.

#else, #endif

All of the conditional preprocessor directives must end with a #endif directive. However, you can have an
if-else type of directive by using #else:

#ifdef BOARD

#define MAXEEPROM 1024
#else

#define MAXEEPROM 512
#endif

In this case, if BOARD is defined, MAXEEPROM is set to 1024; otherwise it is set to 512. This gives you a
little more flexibility for setting MAXEEPROM.
Finally, you can also use #elifto form a cascading if statement, as in:

#if BOARD == ATMEGA168

#define MAXEEPROM 512
#elif BOARD == ATMEGA2560

#define MAXEEPROM 4096
#else

#define MAXEEPROM 1024
#endif

The #elif simplifies the code from what it would be if the directive was not used.

#include

The #include directive is used to read in header files into your program. As a general rule, header files do

not contain executable code. That is, you should not use header files to define functions that you wish to

use in your programs. Header files are properly used for data declarations, not definitions. (The exception is
parameterized macros that can act like code definitions. More on that in the next section.) You have used the
#include directive before, but I never fully discussed what it does. Simply stated, the #include directive

#include <stdio.h>

causes the compiler to read the stdio.h header file into your program as though its contents are part of your
program’s source code. Surrounding the file name with angle brackets (<>) causes the compiler to look in a
compiler-specific default directory for the header file. With the Arduino IDE, the compiler looks in the

\hardware\tools\avr\avr\include directory for the file. (For contributed libraries, like you find in the
libraries subdirectory, those header files are included using either the double quotes or brackets. Not all

258

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

IDEs behave this way.) If you replace the brackets with double quotation marks (#include “myheader.h”), the
compiler looks in the current working directory for the include file. Include files are a convenient place to
store #define's or other preprocessor information that is specific to the source file being compiled. It is also
common to find function declarations (i.e., function prototypes) in header files, too.

You may wish to spend some time examining the standard header files supplied with the compiler, as
there are a number of function declarations and parameterized macros that should prove very useful to you.
Table 11-2 presents some of the “don’t miss” header files.

Table 11-2. Standard C Header Files

Header file name Description

stdio.h Standard I/0 header file with macro for file redirection and most file I/O
stdlib.h Memory allocation functions, string conversions, value-to-ASCII conversions
string.h A host of memory and string processing declarations

math.h Math declarations, symbolic constants (e.g., pi), transcendental declarations
ctype.h Character processing declarations (e.g., isalpha())

It would be well worth your time to browse through all these files, as you are sure to find some nuggets
that you can use in your programs. If nothing else, you will see function prototypes and macros that could
prove very useful to you.

Parameterized Macros

If you look in the stdio.h header file, there’s some pretty scary stuff, like this:
#tdefine feof(s) ((s)->flags & _ SEOF)

You already understand what the #define means, but what does all the rest of the line say? Recall what a
#define does to the source code: it causes a textual replacement to occur in the source file. So, if you wrote a
source line
int myEndOfFile = feof(fileStream);
that line would look like
int myEndOfFile = ((fileStream)->flags & 0x0020);
when the preprocessor pass finished because _ SEOF was also #defined to be
#define _ SEOF 0x0020 /* found EOF */
in the stdio.h header file. To understand what all of this means, you need to understand bitwise operators.

To help you understand bitwise operators, let’s build a simple circuit that simply connects eight LEDs to

the digital pins 4-11. We use a 220-ohm current-limiting resistor on each LED. (Any value between 150 and
680 ohms should work just fine.) The circuit is shown in Figure 11-1.

259

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

s 8 8 8
. 8 8 00

Y]

LouTnpJy

L O

s 8 8 8 9
.8 800

5

499

.« 8 8 8 0 . 8 8 8 8

. 8 8 80 .« 8 8 80 LI
L O L L I O . e
e e 9 00 L O) LN
LI I I O L O I O LI
55 & & & & & ¢ ¢ ¢ & & 55 LI
L O) . e 8 0 0

“ e 9 00 LI Y] . e
" e 8 8 0 - 8 8 8 0 LI
LI O e 8 8 LI
60 & & & & & * & 8 & 8 00 L
e 98 80 LI O O) ..
LI I O . e 8 8 0

L N O L L I O

A BCODE F GHI|)

Figure 11-1. A binary LED display

Now, let’s write a short program to demonstrate how binary data looks for a byte. The first attempt at the
code is presented in Listing 11-1.

Listing 11-1. Simple LED Display

int ledPin[] = {4, 5, 6, 7, 8, 9, 10, 11};
#tdefine ARRAYLENGTH(x) (sizeof(x) / sizeof(x[0]))

void setup()
for (int i = 0; i < ARRAYLENGTH(ledPin); i++)
pinMode(ledPin[i], OUTPUT);

}
}

260

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

void loop()

for (int i = 0; i < ARRAYLENGTH(ledPin); i++)
{
digitalWrite(ledPin[i], HIGH);
delay(500);
digitalWrite(ledPin[i], LOW);
}
}

The purpose of this short program is really to see if the circuit works properly. If so, each LED lights
in sequence for a half second, moves to the next LED, and then the process repeats itself. Note the
parameterized macro ARRAYLENGTH(). We use this macro to control the number of elements that are read
in the program’s for loops. The breakdown of the macro is:

#tdefine ARRAYLENGTH(x) (sizeof(x) / sizeof(x[0]))

#tdefine ARRAYLENGTH(ledPin) (sizeof(ledPin) / sizeof(ledPin[0]))
#tdefine ARRAYLENGTH(ledPin) (16 / 2)

#define ARRAYLENGTH(ledPin) (8)

The macro correctly returns eight elements for the ledPin[] array. It works by using the sizeof{) operator
to determine the total array size (i.e., 16 bytes) and then divides that number by the size of one element in
the array (i.e., 2 bytes for an inf). The really useful thing about this macro is that you can use it with any data
type. .. itis a “typeless” macro. You could write the equivalent as a const int statement

const int arraylength = (sizeof(ledPin) / sizeof(ledPin[0]));

but if you do, it can only be used with a specific array type. In this example, you could only use it with int
arrays. The parameterized macro is more flexible.

The code should look pretty familiar to you by now. The setup() code simply sets all of the LED pins to
be used for OUTPUT using a for loop. The loop() code simply walks through the LEDs and turns each one on
and off for a half second. Pretty simple, but it is a good way to make sure that things are connected correctly,
as we will expand this code in the next section to make it a little more useful.

Decimal to Binary Converter

Let’s modify Listing 11-1 to accept a decimal number between 0 and 255 and display it on the LEDs as a
binary representation. Listing 11-2 shows the modified program.

Listing 11-2. Decimal to Binary Converter

int ledPin[] = {4,5,6,7,8,9,10,11};

#tdefine ARRAYLENGTH(x) (sizeof(x) / sizeof(x[0]))
void setup()

Serial.begin(9600);
for (int i = 0; 1 < ARRAYLENGTH(ledPin); i++)

pinMode(ledPin[i], OUTPUT);
}
}

261

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

void loop()

char buff[4];
int charsRead;
int val;

if (Serial.available() > 0) {
charsRead = Serial.readBytesUntil('\n', buff, 3);
buff[charsRead] = "\0';
val = atoi(buff);
if (val > -1 && val < 256) {

DisplayBinaryDigit(val);

}

}

}

void DisplayBinaryDigit(byte num)
for (int i = 0;1 < ARRAYLENGTH(ledPin);i++)

if (bitRead(num, i) == 1) {
digitalWrite(ledPin[i], HIGH);
} else {
digitalWrite(ledPin[i], LOW);
}
}
}

The code before and up to loop() is the same as Listing 11-1. In loop(), the code waits for the user to
enter a number and press the Enter key of the Serial monitor using the Serial.available() method call. The
readBytesUntil() method of the Serial object is very handy. The first argument (the newline character, ‘\n”)
says to keep fetching keystrokes until you read a newline character, but ignore anything after you have read
three characters (the third argument in the method call). Each keystroke by the user is stuffed into the buff]]
array, which is the second argument in the method call. The readBytesUntil() method returns the number of
characters that were read into the character array, bufj].

Because we want to convert what the user entered from chars to an int, we need to use the atoi() (ASCII
to int) function from the standard C library. However, atoi() expects the argument to be a string, which
means we must take whatever the user entered via the Serial monitor, and add a null to it to form a string.
This is easy because charsRead holds the number of characters entered by the user. The statement

buff[charsRead] = '\0';

adds the null character in the proper element of the array. Because the return count does not include the

"\n' character in its count, the previous statement overwrites the newline character with a null. For example,
if you enter the digit characters 1 and 0, those two keystrokes are assigned to elements buff]0] and buff[1].
However, since two characters where entered (i.e., charsRead equals 2), the statement means buff{2] receives
the null character, thus forming a string, and all’s right with the world. The next line then uses the call to
atoi(buff) to convert the characters entered by the user to an inf with the value of 10. If the value is within 0
and 255, we call DisplayBinaryDigit(val) to display the value in binary (i.e., base 2).

262

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

The bitRead() function is used to read a specific bit in num. If the bit at location i is HIGH (i.e., a 1), the
corresponding LED is turned on. If the bit is LOW, the associated LED is turned off. Control then returns to
loop() and waits for another input by the user.

Turn back to Table 3-2 and you can easily understand the LED output you see when you alter the
numeric values. You may want to run this program as you read the rest of this chapter. Figure 11-2 shows
what the breadboard might look like after you build the circuit.

: ROBO

* YourDuino.com

Figure 11-2. Building the binary converter

Bitwise Operators

Arduino C provides you with four bitwise operators: AND, OR, XOR, and NOT. The first three operators are
binary operators and hence require two operands in the expression. The bitwise NOT operator is a unary
operator and uses only a single operand. Bitwise operations can only be performed on integer data (i.e., no
floating point data). Individual bits do not treat those bits as a (32-, 16-, or 8-bit) unit or number. It is not
uncommon to find the bitwise operators being used in conjunction with various external hardware devices
to extract information from the device. Some examples of each will help you to understand how bitwise
operators work.

Bitwise AND

The bitwise AND operator is a single ampersand (&) and performs a binary AND between the corresponding
bits of the two operands. Keep in mind that bitwise operators are single characters (e.g., &), whereas logical
operators typically use two characters (8&). Confusing the bitwise and logical operators is a flat forehead
mistake waiting to happen . . . and it will. Expect it to happen, and learn from it.

The result of the bitwise AND operation is such that the resultant bit is 1 if, and only if, both operand bits
are 1. For example, suppose you have an external sensor that sends you information over a serial link to the
pc board. To save time, the sensor packs two pieces of information into each byte. Assume the low nibble

263

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab2
http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

(4 bits is called a nibble . . . for real, just like 8 bits are called a byte) contains the sensor’s data and the high
nibble contains the sensor number that generated the data.

The truth table for the bitwise AND is shown in Table 11-3. A truth table shows you all possible results
Jfrom a bitwise operation. Reading the first row, if both bits are 0, the result is 0. If one bit is 1 but the other is
0, the result is 0. Only when both bits are 1 is the result 1.

Table 11-3. Bitwise AND Truth Table

Bit 1 Bit 2 Result
0 0 0
1 0 0
0 1 0
1 1 1

In code, the bitwise AND might look like this:

byte a = 10; // 00001010
byte b = 6; // 00000110
byte c = a & b; // 00000010

Note that a result bit has a value of 1 only when both operand bits are 1. In this example, only bit 1 has a
value of 1.

In Table 3-2, you saw how the bits contained in a byte are interpreted. Suppose the sensor device sent
the byte

00110101

to your code. How would you determine what the data is and which sensor sent it? Simple! You would use
the bitwise AND operator. The hardware specs tell you that the low 4 bits hold the data and the high 4 bits
holds the sensor number that sent the data. We can separate the data using “bitwise masks” to extract the
information. Because a bitwise AND sets a result bit if—and only if—the bit position of the data and of the
mask are both 1, you find that:

00111010 // The sensor data--operandi
00001111 // The low nibble mask--operand2
00001010 // Bitwise AND result using the two operands

The low 4 bits in the mask are all set to 1s because we need to know the data held in all 4 low bits (i.e.,
the low nibble). The rightmost bit in the sensor data is a logic 0, but the low bit of the mask is a 1. Because a
bitwise AND only has a bit value of 1 when both operand bits are 1, the low bit of the result is 0. The second
bitis 1 in the sensor data (operandl), and also a 1 in the mask. A bitwise 1 with 1 always results in 1, so the
result is 1 for the second bit. The third bit in the sensor data byte (operand1) is 0 while the mask (operand?2)
is 1. Therefore, the result is 0. The fourth bit is 1 in the data and 1 in the mask, so the result is 1. Because we
don’t care about the high nibble when looking for the data, the rest of the mask is all 0’s. If you look at
Table 3-2, a byte with the binary value of 00001010 has a decimal value of 10. You now know that the data
value sent from the sensor is 10.

264

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab2
http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab2
http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

So, which sensor sent the data? The device documentation says that the sensor number is held in the
4 high bits (i.e., the high nibble). To determine this, you redefine the mask to look at the high 4 bits:

00111010 // The data
11110000 // The high nibble mask
00110000 // Bitwise AND result-the device

If you only look at the high 4 bits (i.e., 0011), you can see that this would represent sensor number 3 of
the device. (You will see in a moment exactly how to extract this information.)

Asyou can see, bitwise AND is often used to strip away unused bits from data so you can extract the
information that you need.

Bitwise OR

A bitwise OR operator employs the single vertical bar (|, or pipe) operator and is used to set a bit when either
operand bit has a value of 1. Only when both operand bits are 0 is the resultant bit 0. The bitwise OR truth
table is presented in Table 11-4.

Table 11-4. Bitwise OR Truth Table

Bit 1 Bit 2 Result
0 0 0
1 0 1
0 1 1
1 1 1

In code, a bitwise OR fragment might be written as:

byte a = 10; // 00001010
byte b = 6; // 00000110
byte c = a | b; // 00001110

Note that a result bit has a value of 1 when either or both of the operand bits is a 1. Contrast this with the
bitwise AND.

Quite often a bitwise OR is used to set a bit when communicating with an external device. For example,
perhaps the device has a communication register where a 1 in bit position 3 means it’s okay for the device
to send a byte to the controller board. Perhaps the device documentation says that the content of the
communication register should be OR’ed with the communication’s byte. In that case, you want to send a
byte to the register with bit 3 set:

00000100 // Communication byte to device to set bit 3 (operand1)
00000000 // Look for a communication byte (operand2)
00000100 // Bitwise OR result

As aresult, the device knows that it’s okay to send a byte of data back to the pc board. The bitwise OR is
often used to read/set register bits. bitwise OR is often used to combine data fields.

265

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

Bitwise Exclusive OR (XOR)

The bitwise exclusive OR, also known as XOR, uses the carat operator (*). An XOR operation results in 1 only
when the two operands are different, and 0 when they are the same. The truth table for bitwise XOR is shown
in Table 11-5.

Table 11-5. Bitwise XOR Truth Table

Bit 1 Bit 2 Result
0 0 0
1 0 1
0 1 1
1 1 0

Using our code fragment

byte a = 10; // 00001010
byte b = 6; // 00000110
byte c = a * b; // 00001100

note that a result bit has a value of 1 only when both operand bits are different.
What's interesting about an XOR operation is that if you call variable b the XOR mask, and XOR the
result of the preceding code fragment (variable c) with the same mask,

byte a = 12; // 00001100 - the result from the first XOR
byte b = 6; // 00000110 - the XOR mask
byte c = a * b; // 00001010 - the result; the original value

then the result is the original value for variable a/ Because XOR operations have this effect on the data, you
will often find XOR operations done on pixel data to invert an image. XOR'ing a second time restores the
original image.

Bitwise NOT (~)

The bitwise NOT operator uses the tilde character (*) as its operator. The bitwise NOT is a unary operator; it
only requires one operand. A bitwise NOT operation simply “flips the bits” of its argument. That is, all 0 bits
become 1s and all 1 bits become 0s. The bitwise NOT operator truth table is shown in Table 11-6.

Table 11-6. Bitwise NOT Truth Table

Bit 1 Result
0 1

1 0

266

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

For example:
byte a = 1; // 00000001
byte c = ~a; // 11111110

Therefore, the bitwise NOT on the decimal value 1 results in a value of 254. The byte data type is an
unsigned data type, so only positive value are possible (0-255).
This can cause some interesting problems if you use signed data with a NOT operator. For example,

int a = 1; // 00000000 00000001
int ¢ ="~a; // 11111111 11111110

which sets the sign bit (i.e., bit 15), resulting in a value of -32,766 and not 65, 534. Because of the
interpretation of the sign bit, most bitwise NOT operations are done on unsigned data.

Bitwise Shift Operators

C allows you to shift bits of an operand. There are two types of bit shifts: a right shift that uses the >>
operator, and a left shift that uses the << operator. The shift operators are binary operators using the
following syntax:

result = valueToShiftLeft << numberOfPositionToShift // left shift
and
result = valueToShiftRight >> numberOfPositionToShift // right shift

Let’s take a look at each of these operators.

Bitwise Shift Left (<<)

The shift left bitwise operator simply shifts the bits to the left N bit positions, where N is the number of
positions to shift the bits. For example:

byte a = 5; // 000000101
byte result = a << 1; // 000001010 = result

In this example, the bits are shifted left by one position. This changes the value of a from 5 to 10.
This behavior leads to an interesting fact: rotating the bits one position to the left multiplies the original
value by 2. The statement

byte result = a << 2; // 000010100 = result

shifted the bits two positions to the left. If you convert the binary value for result, you'll find that result now equals

20. Because each shift-left bitshift doubles the value, two positions causes a multiplier of 4 (i.e., 2 * 2 = 4), which

yields a final value of 20 (i.e., 5 * 4 = 20). If you shifted the bits three positions, then resultis 40 (i.e., 5*2*2*2).
There is a caveat to this rotating-doubling fact: the topmost bit of each rotation “falls off the end.” That

is, any bit in the high bit position is lost when the shift-left takes place. Therefore, if you shifted any byte

of data eight positions to the left, the value will be 0 because you “over shifted” all the data in the byte into

oblivion.

267

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

Bitwise Shift Right (>>)

A bitwise shift right is the opposite of a bitwise left shift. With a right shift, each bit moves one position to the
right. Any data in the lowest bit also “falls off the end.” For example:

byte a = 10; // 000001010
byte result = a >> 1; // 000000101 = result

As you would expect, a shift right by one bit position has the effect of dividing by two. However, if we
take the result of 5 and shift it one more position to the right

byte a = 5; // 000000101
byte result = a >> 1; // 000000010 = result

it produces a result of 2. This is also a divide-by-2 operation, but the lowest bit is lost in the shift so the result
is 2, not 2.5. This is as it should be since integer division cannot have a fractional value.

Bit shifting is an extremely fast operation at the register level. That is, multiply-and-divide operations
take many assembly-level instructions to arrive at a result. However, shifting the contents of a register is a
single instruction. For that reason, some optimizing compilers look for “powers of 2” math operations on
integer data, and do shifts instead.

One More Example

Recall from our discussion in the section on the bitwise AND operator a device with sensors that returned
data to the pc board. Specifically:

00111010 // The data

The data returned from the device was 00111010. The high 4 bits was the sensor number of the device
that sent the data, and the low 4 bits is the data value from the sensor. So, how can you extract the data and
sensor number? Consider the following code fragment:

byte sensorByte = ReadDevice(); // sensorByte equals 00111010 after the call
byte sensorData = sensorByte & 15; // 15 = 00001111
byte sensorNumber = sensorByte >> 4; // 00110101 >> 4 = 00000011

If you work through the statements, you will find that sensorData now equals 10, which is the value of
the four lowest bits (1010). Bit shifting the data byte four positions to the right has the effect of “throwing
away” the lowest data nibble, leaving a binary result of 00000011, or a value of 3. Therefore, you now
know that sensor number 3 returned a data value of 10. This “bit packing” lets you transmit two pieces of
information in a single byte rather than using two separate function calls to read the device.

It should be noticed that bitwise AND and OR have compound equivalents. That is, the statements

int a = 5;

// Some code

a= aé&10;

// Some more code
a=al3;

268

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

may also be written as:

int a = 5;
// Some code

a &= 10; // Note abbreviated operator
// Some more code

a |=3; // Same here...

Personally, I think the compound versions take a bit more thinking when you read them in code vs. the
simple use of the operators. Still, you have the option if you wish to exercise it.

Using Different Bases for Integer Constants

Sometimes it is easier to understand what a statement means if a different numbering system is used. For
example, you could rewrite the previous sensor data extraction statement as

byte sensorData = sensorByte & B00001111;

which expresses the constant as a binary value. (Note the B before the binary representation of 8-bit data.)
Likewise, the same statement could be expression in hexadecimal as:

byte sensorData = sensorByte & OxOF;

Many programmers who write code for pics are comfortable with hex because it is so often used with
assembly language programming. You can also express constants using the octal (base 8) numbering system
if you wish. (You should use zero-Oh when using octal, as in 00123, so the compiler is clear that you wish to
use octal. The leading zero-Oh is unfortunate because zeroes and Ohs look very much the same.)

Whatever numbering system you decide to use with your integer constants, you should be consistent
when using them.

Parameterized Macros . .. Continued

All the discussion about the bitwise operators was triggered because of a parameterized macro that appears
in the stdio.h header file. (The macro name feof{) comes from filestream end-of-file, which is used to sense
the end of a file.) The macro was:

#tdefine feof(s) ((s)->flags & _ SEOF)

In that discussion, you also saw that __ SEOF was #define’d as the hex constant 0x20.
Therefore, the expression expanded to

int myEndOfFile = ((fileStream)->flags & 0x0020);
which you now know can be rewritten as:
int myEndOfFile = ((fileStream)->flags & B00100000);
If you read the comment in the stdio.h header file, you will discover that the purpose of this statement

is to mask off the end-of-file bit to see if the end of file (EOF) has been read. The statement uses a pointer to
read the value of the flags variable and then masks off the sixth bit to see if EOF was read.

269

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

Why use a parameterized macro? The reason is because macros generate inline code, thus saving the
overhead of a function call. If the macro is found in a tight loop, the time savings could be noticeable.

Summary

In this chapter we added a little more detail to the preprocessor directives that are available to you. You
also learned about parameterized macros, as they are sometimes found in various header files. Also, you
learned how to use the bitwise operators. Understanding how bitwise operators work is often needed when
communicating with external devices over some form of data link. You will also find the bitwise operators
useful if you do a lot of interrupt programming.

EXERCISES

1. Write a preprocessor directive that sets pin 14 to OUTPUT if the development system
is using Windows to host the compiler or to INPUT under any other host system.

Answer:

#tdefine WINDOWS 1
// Some code...
int pini4;

#ifdef WINDOWS
pini4 = OUPUT;
#else
pini4 = INPUT;
#endif

2. Suppose you've written some macro that you want to include in your program.
They are currently stored in a file named myheader.h. How would you write the
statement to include the header file?

Answer: The statement would be:
#include "myheader.h"

You would use the double quote marks instead of the angle brackets (<>) because the
header is likely to be found in your development directory.

3. If you have an integer value k and wish to multiply it by 2 and assign the result
into variable j, what statement would you use?

Answer:
j=k*2;

Just because you know how to shift bits doesn’t mean that’s the way you should do a simple
multiply. If your code is doing something in a really tight loop and you want to see if bit shifting
makes a difference, go ahead and experiment. However, if you do the multiplication with bit
shifts, make sure you put a comment in the code to explain what you’re doing. Keep in mind
that it is estimated that 80% of software development time is spent on testing and debugging.

270

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

Anything you can do to make a section of code easier to read is usually a good thing. Using bit
shifts in place of the multiply operator rarely makes things easier to read.

What types of data would you consider using for bitwise operations?

Answer: You would use byte, unsigned int, and unsigned long data types.
You would likely want to use unsigned data types so there’s no interpretation
problems involving the sign bit.

An external device returns data in the lowest six bits of a data byte. The top two
bits can be ignored. How would you write the code to extract the data?

Answer:
byte myData = deviceByte & B00111111;

You could also write the statement as:

byte myData = deviceByte & 63; // Decimal
byte myData = deviceByte & Ox3F // Hex
byte myData = deviceByte & 0077; // Octal-with a leading zero-oh"

This would also work. Your actual choice depends upon what you think is easiest to read or
perhaps some policy where your work dictates the format.

If you perform a bit shift operation that shifts bits “off the end,” where do those
bits go?

Answer: | don't know either . . . rumor is they fall into a bit bucket.

Okay, at least you’re reading the exercises . . . good for you! As a reward, let’s
modify Listing 11-2 to work with some of the bitwise operators. The lazy reader
won’t even know this program is here! First, however, please try to write the
code yourself. The only way to learn is by doing when it comes to programming.
The code uses the circuit in Figure 11-1.

What we want is to test the bitwise operators for AND, OR, XOR, and NOT. These will
be assigned the numeric values of 1 to 4, respectively. Because all but NOT are binary
operators, the user will enter the bitwise test to use plus the two operands, separated by
commas. For example, to perform a logical OR of the values 33 and 85, the user would type
2,33,85 into the Serial monitor. The program should then show the results on the LEDs from
the bitwise operation. If you can code this on the first try, then you’re ready for just about
anything.
Answer: The code is as follows.
/*

Bitwise operator test. The user can test the AND,

OR, XOR, and NOT bitwise operators. The user enters
test data using the Serial monitor in the form:

271

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

TestToPerform,Operand1,Operand2

As it stands, the comman operator separates fields
in the input stream

Dr. Purdum, December 24, 2014
*/

#define AND
#define OR
#define XOR
#define NOT

B~ wWw N R

#define COMMA "," // Used to separate input arguments

int ledPin[] = {4, 5, 6, 7, 8, 9, 10, 11};
#tdefine ARRAYLENGTH(x) (sizeof(x) / sizeof(x[0]))
int GetBitwiseTestParameters(int *which, int *op1, int *op2);

void setup()

{

Serial.begin(9600);

for (int i = 0; i < ARRAYLENGTH(ledPin); i++)

{

pinMode(ledPin[i], OUTPUT);

}

Serial.println("Bitwise Operators: 1 = AND, 2 = OR, 3 = XOR, and
4 = NOT");

Serial.println("Enter Bitwise Operator COMMA Operandi COMMA
Operand2");

}

void loop()
{

int whichTest = 0;
int operandi;
int operand2;

GetBitwiseTestParameters(&whichTest, &operandi, 8operand2);
if (whichTest != 0) {
ShowTest(whichTest, operandi, operand2);
whichTest = operandil = operand2 = 0;
}
}

[FFFKK

272

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

This function applies the operands and bitwise operator and displays
the results

parameter list:

int which which bitwise operation to use
int op1 first operand
int op2 second operand

Return value:
void
*****/
void ShowTest(int which, int op1, int op2)

{
byte result;

switch (which)
{
case AND:
result = opl & op2;
break;
case OR:
result = opl | op2;
break;
case XOR:
result = opl "~ op2;
break;
case NOT:
result = ~op1;
break;
default:
break;
}
DisplayBinaryDigit((byte) op1);
delay(1000);
DisplayBinaryDigit((byte) op2);
delay(1000);
DisplayBinaryDigit(result);

}

Vaaioiuio

This function takes the string entered by the user via the
Serial monitor and parses it into its relevant parts

parameter list:

int *which pointer to which bitwise operation to use
int *op1 pointer to first operand
int *op2 pointer to second operand

273

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

Return value:

void
*****/
int GetBitwiseTestParameters(int *which, int *op1, int *op2)
{

char buff[10];

char *ptr;

int charsRead;

int temp;

if (Serial.available() > 0) {
charsRead = Serial.readBytesUntil('\n', buff, 9);
}
if (charsRead > 9) {
return 0; // Too many characters
}
buff[charsRead] = NULL; // Make into a string
ptr = strtok(buff, COMMA);
*which = atoi(buff);
ptr = strtok(NULL, COMMA);
*opl = atoi(ptr);
ptr = strtok(NULL, COMMA);
*op2 = atoi(ptr);
}

[FFFKk

This function displays a byte value as a binary number
on the LEDs.

parameter list:
int num the value to display

Return value:

void
*****/
void DisplayBinaryDigit(byte num)
{
for (int i = 0; i < ARRAYLENGTH(ledPin); i++)
{

if (bitRead(num, i) == 1) {
digitalWrite(ledPin[i], HIGH);
} else {
digitalWrite(ledPin[i], LOW);
}
}
}

274

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

You can likely follow everything in the code, but in the GetBitwiseTestParameters() function,
the use of the standard library function strtok() is a little weird. The function is a string
“tokenizer” and is used to parse out substrings from a bigger string. For example, if the
user wants to perform a bitwise AND test on the values 25 and 7, that test data should be
entered in the Serial monitor as 1,25,7. Clearly, you need a way to extract, or parse, the
numeric values 1, 25, and 7 from the input string. In this example, we are assuming that a
comma separates each relevant numeric value.

In the GetBitwiseTestParameters() function consider the statement:
ptr = strtok(buff, COMMA);

This statement, when “filled in” with the input data, looks like this:
ptr = strtok("1,25,7", ",");

So, what we are saying is: “Ok, strtok(), start with the contents of the buff]] character array
and see if you can find a comma in the string.” Obviously, it finds a comma at buff[1], but
here’s the tricky part: strfok() overwrites the comma with a NULL and returns a pointer to
buffl0]. So, after the first call to strtok() completes, it’s as though the code looks like this:

&buff[o] = strtok("iNULL25,7", ",");
This means we have created a substring with the content “1”. The call to afoi() converts

this substring using pifrto a numeric value and assigns 1 into the variable named which.

Recall that the first call to strtok() returns a pointer, which we assigned into ptr. However,
look at the second call to strtok():

ptr = strtok(NULL, COMMA);

The NULL for the first argument is actually a signal to the function to use its internal pointer
on this call rather than an external pointer. (Do you think this internal pointer is defined with
the static storage class? Why or why not?) That is, the internal pointer is actually a pointer
to buff2]. So, in fact, the second call works as though the call is

ptr = strtok(8buff[2], COMMA);

which, after the function completes its work, looks as though it was written as:

ptr = strtok(2sNULL7", ",");

We can now use the same technique to change the string “25” to a numeric value via the call

to atoi(ptr) and assign the numeric value 25 to gp7. You should be able to figure out what the
final call to strtok() does.

After the code in GetBitwiseTestParameters() does its job, control is sent to ShowTest() to
display the results on the LEDs.

275

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 = THE C PREPROCESSOR AND BITWISE OPERATIONS

The strtok() function is very powerful and actually easy to use once you understand what it
does. Also, the second argument can have multiple separators. For example,

ptr = strtok("This,is#a test of? the function.", ",#2.");

and striok() would parse out substrings: “This”, “is”, “a test of”, “ the function”. Why would
you ever want to try and write the equivalent of strfok() yourself? Indeed, as you gain more
experience, your knowledge of what library functions already exist will make you more
and more productive over time. So, whenever you think you need to write a new function,
google the task you need to accomplish just to make sure that someone hasn’t already
made it available to you in a library.

276

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Arduino Libraries

In Chapter 11, Table 11-1 presented a number of standard C header files that are available for use in your
programs. Most of these header files are used in conjunction with their associated Standard C library and
the functions they hold. A C library is nothing more than a group of (often related) functions that have been
precompiled into what is called a library file. Conceptually, you can think of a library file as being organized
like a book. At the front of the file is an index of each function name that appears in the library, followed by
a byte offset that tells where the code for that function can be found in the file, along with the byte-length of
the function. With this information, the compiler is able to extract the code for any given function from that
library and insert it into your program.

What we want to do in this chapter is point out the library routines that are routinely shipped with the
Arduino C compiler. We also want to provide some detail on how those library functions actually get placed
into your program. In this chapter, you will learn

e The purpose of a linker

e Whatalibraryis

e The libraries that are standard with the Arduino C compiler
e How to create your own library

Let’s dig right in and expand your knowledge about C libraries.

The Linker

The process of extracting the function you need from a library is performed by the linker, which is built
into the Arduino IDE. Although I've simplified what actually happens a bit, the linker’s responsibility
is to “tie things together” after the compiler does its thing. (For additional details, see
http://openhardwareplatform.blogspot.com/2011/03/inside-arduino-build-process.html.)

When the compiler sees a function that you have used, but whose source code is not in any of the
source code files (e.g., digitalRead()), it adds the name of that function to a list of “unresolved externals”
The compiler also marks the point in the program where that missing function’s code should be added.
Eventually, the compiler finishes its task, all intermediate files are generated, and finally the linker is
invoked.

© Jack Purdum 2015 277
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_12

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_11
http://dx.doi.org/10.1007/978-1-4842-0940-0_11#Tab1
http://openhardwareplatform.blogspot.com/2011/03/inside-arduino-build-process.html
http://openhardwareplatform.blogspot.com/2011/03/inside-arduino-build-process.html
http://www.it-ebooks.info/

CHAPTER 12 ARDUINO LIBRARIES

The linker finds the compiler’s list of unresolved externals and starts looking through the library
files for the missing functions. Visually, you might think of your program as a book. The list of unresolved
externals are like book pages that are missing from the book, and each unresolved external in that list has
the page number where those missing pages should be inserted into the book. It’s the job of the linker to
find those missing pages and insert them into your program at the proper place. So, how does the linker
know which libraries to search?

Well, if there are no unresolved externals, the linker has nothing to do so the final code is generated for
your program. In reality, however, there are almost always unresolved externals in a program. So, the linker
first searches the default Arduino libraries (e.g., it finds digitalRead()). If there are still unresolved externals
in the list, the linker then searches those libraries associated with the header files you've included in your
code (e.g., #include <Wire.h>). When the linker is finished, all of the missing functions should be resolved
and the linker has supplied all of the missing code to your program. If the linker tells you there are still
“unresolved externals” or something “was not declared in this scope’, it probably means you have forgotten
to #include the header file for the library function you have used.

One of the beautiful things about C is that you are not bound to a set of built-in functions for doing
things like math, I/0, or other commonly performed tasks. If you don’t like the way something is done
by a function in a library, you are free to write your own function to replace it. If you do write your own
version of a library function, the compiler finds the code for the function in your source file and does not
add it to the list of unresolved externals that is passed to the linker. That way, your version is used in the
program and the linker never sees the function in the unresolved externals list. In other words, your code
supersedes the library code.

Libraries

It is useful to divide the libraries that you have available to you into two groups:

e libraries that form the Arduino libraries and are distributed as part of the
Arduino IDE

e all other libraries

Let’s start with the Arduino libraries.

Arduino Libraries

To obtain information about the Arduino libraries, click the Help menu option in the Arduino IDE, and then
select the Reference option. In a moment you will see a page similar to that shown in Figure 12-1. If you look
closely at the figure, you will see the cursor sitting on the Libraries link near the top of the page. Right-click
the Libraries link, and then select Open Hyperlink from the menu that pops up.

278

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ARDUINO LIBRARIES

Arduino

Reference | Language | Libr&ries | Comparison | Changes

[Ctrl-click to open hyperlink file///E:/Arduinal 58/ reference/Libraries.htmi|

Language Reference

Arduino programs can be divided in three main parts: structure, values (variables and constants),

and functions.

Structure Variables Functions

Figure 12-1. The Arduino reference page

After clicking the Libraries link, you will see a page similar to that shown in Figure 12-2. The libraries
that are visible in Figure12-2 are some of the libraries that are provided and supported by the Arduino
IDE. You will often hear these libraries referred to as the Arduino core libraries. In addition, there are a
number of libraries that have been contributed to the Arduino support team and have been judged useful
enough to be included in the libraries distributed with the Arduino IDE. These libraries are normally
referred to as Arduino contributed libraries. What follows is a brief description of each of these two library
groupings.

279

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © ARDUINO LIBRARIES

Reference | Language | Libraries | Comparison | Changes

Libraries

Libraries provide extra functionality for use in sketches, e.g. working with hardware or

manipulating data. To use a library in a sketch, select it from Sketch > Import Library.

Standard Libraries

» EEPROM - reading and writing to "permanent" storage
» Ethernet - for connecting to the internet using the Arduino Ethernet Shield

+ Firmata - for communicating with applications on the computer using a standard serial
protocol.

» LiquidCrystal - for controlling liquid erystal displays (LCDs)

+ SD - for reading and writing SD cards

* Servo - for controlling servo motors

Figure 12-2. Arduino libraries

The Arduino Core Libraries

Table 12-1 presents a list of the Arduino core libraries. These are libraries that are supported directly by the
Arduino C support group. It serves no real purpose to rewrite the documentation for each of these libraries.
You should, however, check the Arduino web site from time to time because the list of Core Libraries grows.
Also, there are some libraries that are earmarked for specific Arduino boards (e.g., the Due) that are not
normally distributed with the core, but are supported by Arduino.

280

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Table 12-1. Arduino Core Libraries

Library name

Description

EEPROM
Ethernet

Firmata

LiquidCrystal
SD

Servo

SPI

SoftwareSerial

Stepper
Wire

Functions to read and write to EEPROM memory

Functions for using Arduino-compatible Ethernet
Shields

Functions for communicating with external devices
using a standard serial protocol

Functions used in conjunction with LCD displays

Functions for reading and writing data to Secure
Digital cards

Functions to control servo motors

Functions for communicating with Serial Peripheral
Interface bus devices

Functions for serial communications using any
digital pins

Functions for controlling stepper motors

Two-wire interface (TWI/12C) for sensor I/O
communication

ARDUINO LIBRARIES

You can read up on these libraries yourself using the Arduino documentation as the need arises.
However, that being said, there are some things that can pose some stumbling blocks along the way. For
example, there are a number of Arduino-compatible shields (peripheral boards that plug into the Arduino
pc boards) that use these core library routines. For example, I have used the SD shield and was lucky that
it worked on the first try. Another programmer friend of mine used the same identical shield, but with a
different SD card, and he couldn’t even format the card. When I gave him my SD card, his code worked
perfectly. The long and the short is that some SD cards simply don’t work in some SD shields. The question
then becomes: How do you find out which cards work and which don’t? Indeed, how can you avoid
common stumbling blocks that may arise when using these contributed libraries?

Using the Forums

The first stopping point you should visit at the outset of any project that is new to you is http://arduino.cc/
forum/. This forum covers a multitude of Arduino topics, as can be seen by the partial listing in Figure 12-3.
In these forums, you will find discussions on everything from using the Arduino to suggestions for improving
the Arduino itself. These forums can be a real time-saver, and you should consult it anytime you begin a new
project or if you are having trouble getting your code to work correctly. Many times I have found hints, tips,
and suggestions that potentially saved me hours of research and trial-and-error time. Also, you will discover
discussions on hardware interfacing issues (like the SD card problem I mentioned), which include ways to
resolve them. The Forum should always be visited before you buy any interface device or shield. I'm positive
the visit will save you time and money.

www.it-ebooks.info

281

http://arduino.cc/forum/
http://arduino.cc/forum/
http://www.it-ebooks.info/

CHAPTER 12 © ARDUINO LIBRARIES

©.0)

ARDUINO

Home Buy Download Products Learning Forum Support Blog

Arduino Forum Unread Posts Updated Topics

Installation & Troubleshooting

+ For problems with Arduino itself, NOT your project 3392 ‘T';'f:’
Last post: Today at 06:31 pm Re: Please help me to un... by PTRVOID
Project Guidance
+ Advice on general approaches or feasibility i‘:‘m 3?;7:1
Last post: Today at 06:56 pm Arduino geared motor+whe_ by Domino50
Programming Questions
i 301558 36,610
== Understanding the language, error messages, etc. miha Tk

Last post: Today at 07:23 pm Re: Compiling error repo... by AWOL

Figure 12-3. Arduino Forum page

Using a Core Library

Anytime you need to use one of the core libraries, simply use the Sketch » Import Library menu option, as
shown in Figure 12-4. (As you add more contributed libraries, the menu list grows to reflect those additions.)
If you import a library, this menu selection alerts the compiler to look in the included library for any

missing functions used in the program code. If there is a header file associated with the library, an #include
preprocessor directive is automatically added to your source code file for the appropriate header file. You
already saw an example of this when you wrote the code in Listing 10-4 from Chapter 10, which #include'd
the EEPROM.h header file. (If you add a new library, you must restart the IDE to establish the necessary links
to the new library.)

282

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_10#FPar5
http://dx.doi.org/10.1007/978-1-4842-0940-0_10
http://www.it-ebooks.info/

CHAPTER 12 I ARDUINO LIBRARIES

sketch_jan10a | Arduino 1.5.8

jo—

W o -t b W

w
=
m
=
Lx]
=

|| File Edit [Sketch] Tools Help

Verify / Compile

Show Sketch Folder Ctrl+K

Add File...

Ctrl+R

lmpci{s Library...
s

void loop() {
// put your main code

m

m

Figure 12-4. Importing a library routine

Add Library...

Arduino AVR Boards

Audio

Bridge

EEPROM

Esplora

Ethernet

Firmata

GSM

LedControl
LiquidCrystal
LiquidCrystal_[2C
NewPing
PS2Keyboard
Robot Control
Robot IR Remote
Robot Motor
RTClib
Scheduler

SD

Comsnom

If you look closely at the list of libraries that are available in Figure 12-4, you will notice several libraries
(e.g., Audio) that are not part of the Arduino Core library set. Where did these come from?

Contributed Libraries

If you reload the Libraries page depicted in Figure 12-2, you will see a large number of contributed libraries.
For example, one of the libraries is called Tone. If you right-click the Tone link and select the Open Hyperlink
option, you are directed to the page shown in Figure 12-5. If you look closely at Figure 12-5, you'll see a note
stating: “The Arduino Tone Library is no longer maintained here. Please go here:’, after which is another link
to the Tone library.

www.it-ebooks.info

283

http://www.it-ebooks.info/

CHAPTER 12 © ARDUINO LIBRARIES

ﬁ arduino-tone

Arduino Tone Library

Project Home

Summary People

Project Information The Arduino Tone Library is no longer maintained here.
&£d) Recommend this on Google Please go here: Arduino Tone Library
Project feeds
Code license
GNU GPL v3

Content license
Creative Commons 3.0 BY-SA

Labels
arduino. tone, notes. music

Figure 12-5. The Tone page

Click that link and you are taken to the linked page, as seen in Figure 12-6. If you click the Downloads
tab, you can download the new Tone library.

@ rogue-code

Rogue Robotics Open Source Code

'ProjectHomel Downloads Wiki Issues Source

Summary People

Project Information A collection of all the source code provided by or maintained by Rogue Robx
Starred by 44 users Project and library information starts at the Wiki.
Project feeds

Rogue Robotics Feed

Code license

Labels

embedded, electronics, SD, flash,

microcontroller, arduino, atmel, avr, pic, [+
stamp, audio, MP3, music, FAT,

openhardware

£% Members

bhag...@roguerobotics.com
rogue.bh...@gmail.com
Figure 12-6. The link page for the Tone library

(Note that there are several other libraries listed on the Downloads page, including one for MP3
players. At the time of this writing, the third library in the list is the Tone library.) The Tone file is a ZIP file,
which Windows can extract for you. Just double-click the ZIP file after you've downloaded it, and Windows
Explorer will extract the files.

The extraction process produces a Tone folder that holds the set of files that are listed in Table 12-2.

284

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 I ARDUINO LIBRARIES

Table 12-2. Extracted Directories and Files from the Tone ZIP File

Item Description

examples A directory that contains sample code on how to use the library

changelog.txt A history of changes made to the library code

keywords.txt A text file that tells the IDE how to handle keywords that are used with the library
Tone.cpp The source code used to write the library

Tone.h The header file for the library

The entire Tone directory should be copied into the Libraries directory of the Arduino IDE. Now close
the Arduino IDE and then reopen it. Now when you select the Sketch » Import Library menu option, you
should see the new Tone library in the list of library options. If you click the Tone library, your source
code file automatically has Tone.h added to it. (There is a new, built-in way to import libraries, too. See
http://arduino-info.wikispaces.com/Arduino-Libraries#NewlLib.)

Using a Contributed Library

Almost any contributed library contains a set of files similar to that shown in Table 12-2. The examples
directory usually contains one or more sample sketches of how the library can be used; it is a great way to
learn about any new libraries you wish to add to your IDE. Indeed, it is a good idea to try the sample sketches
to make sure that your hardware functions properly with the contributed library. I purchased some shields/
sensors that did not work with a related library. However, most of the vendors do know which libraries work
with their sensors and shields. If you are buying over the Internet and are not sure of the compatibility of
their sensor with a given library, e-mail them and ask. Reputable vendors will either say it is compatible,
or they will direct you to a site that provides the proper library. If the vendor doesn’t follow one of these
options, find another vendor.

When you first install a library, take the time to read the header file(s) provided with the library. Often
there are little nuggets of information buried in the header file. I remember an OLED library that must
have had several dozen constructor calls buried within the header file, with a default that the programmer
assumed would be the most popular. Of course, my OLED didn’t use the default and my OLED did not have
any identifying markings on it. After considerable trial-and-error, I found one constructor that worked. If I
hadn’t dug through the header file, I might have just assumed that the OLED was incompatible and moved
on. The lesson is: It pays to read the header file(s).

Between the examples provided with the library and the forum mentioned earlier, you should have little
trouble utilizing a library in your own code.

Other Libraries

Actually, there are “invisible” libraries that hold many useful routines that don’t appear in the Arduino
Library reference. (Many of these library functions are used in conjunction with the Arduino.h header file.
This header file is automatically read into your program for any program you write, even though it doesn’t
appear in the source code file.) To ferret out these invisible libraries, you need to look into the header files
that were presented in Table 10-1. Most of these header files are tied to the System V Standard C library
files. Listing 12-1 is a partial listing of the code from the string.h header file. Almost everything you see in
Listing 12-1 is a function declaration for library functions that you can use in your program.

285

www.it-ebooks.info

http://arduino-info.wikispaces.com/Arduino-Libraries#NewLib
http://dx.doi.org/10.1007/978-1-4842-0940-0_10#Tab1
http://www.it-ebooks.info/

CHAPTER 12 © ARDUINO LIBRARIES

Listing 12-1. The string.h Header File (Partial Listing)

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

void *memccpy(void *, const void *, int, size t);

void *memchr(const void *, int, size t) _ ATTR_PURE_ ;

int memcmp(const void *, const void *, size t) _ ATTR PURE_ ;
void *memcpy(void *, const void *, size t);

void *memmem(const void *, size t, const void *, size t) _ ATTR PURE_;

void *memmove(void *, const void *, size t);

void *memrchr(const void *, int, size t) _ ATTR_PURE__;
void *memset(void *, int, size t);

char *strcat(char *, const char *);

char *strchr(const char *, int) _ ATTR PURE_ ;

char *strchrnul(const char *, int) _ ATTR_PURE_;

int strcmp(const char *, const char *) _ ATTR_PURE_;

char *strcpy(char *, const char *);

int strcasecmp(const char *, const char *) _ ATTR_PURE__;
char *strcasestr(const char *, const char *) _ ATTR PURE_;
size t strcspn(const char * s, const char * reject) ATTR PURE_;
char *strdup(const char *s1);

size t strlcat(char *, const char *, size t);

size_t strlcpy(char *, const char *, size t);

size t strlen(const char *) _ ATTR_PURE_;

char *strlwr(char *);

char *strncat(char *, const char *, size t);

int strncmp(const char *, const char *, size t) _ ATTR PURE_;

char *strncpy(char *, const char *, size t);

int strncasecmp(const char *, const char *, size t) _ ATTR_PURE__;
size_t strnlen(const char *, size_t) _ ATTR_PURE_;

char *strpbrk(const char * s, const char * accept) _ATTR PURE_;
char *strrchr(const char *, int) _ ATTR PURE_ ;

char *strrev(char *);

char *strsep(char **, const char *);

size t strspn(const char * s, const char * accept) _ ATTR PURE_ ;
char *strstr(const char *, const char *) _ ATTR PURE_;

char *strtok(char *, const char *);

char *strtok r(char *, const char *, char **);

char *strupr(char *);

For example, consider the following entry:

extern

I typed “memcpy” into Google and found a reference to the Linux manual for the library documentation
(www.kernel.org/doc/man-pages/online/pages/man3/memcpy.3.html), which is always a good C Standard
Library source. The description for the memcpy() function reads: The memcpy() function copies n bytes from
memory area src to memory area dest. The memory areas must not overlap. Use memmove(3) if the memory

void *memcpy(void *, const void *, size t);

areas do overlap.

Using the function declaration in conjunction with the Linux description, you should be able to figure
out what memcpy() does. When describing functions, the System V Standard library wording uses src for
the source object of a copy and dest as the destination object of the copy. The second parameter in the

286

www.it-ebooks.info

http://www.kernel.org/doc/man-pages/online/pages/man3/memcpy.3.html
http://www.it-ebooks.info/

CHAPTER 12 I ARDUINO LIBRARIES

declaration uses the const void * attribute list, which says it must be the source of what is being copied. The
reason it must be the source is because of the keyword const, which means the function cannot change
whatever is being pointed to. It wouldn’t make sense for the destination array parameter to be a const if
the purpose was to copy something into it. The const keyword would prevent the copy from taking place.
Therefore, the first parameter (void *) must be the destination of the copy.

The term void *is a common C idiom used to denote a “typeless” data type pointer in a function
declaration. In other words, memcpy() does no type checking during the copy process.. . . it assumes that you
know what you are doing and that the pointers all point to valid data! Not paying attention to such details
can produce a very bloody foot.

The size_t keyword is defined in the cplusplus.com reference as: size_t corresponds to the integral data
type returned by the language operator sizeof and is defined in the <cstring> header file (among others) as an
unsigned integral type.

This third parameter in the function declaration, therefore, is n in the memcpy() description, which tells
how many bytes are to be copied. Voila! You now know about a very efficient standard library routine that
does fast memory copies. As a general rule, most System V string functions that use a source and destination
arguments place the destination argument first and the source argument second. Although there may be
some deviations, under pressure this string convention is a good assumption to make.

You should spend a little time studying all the header files presented in Table 10-1, plus any others you
may find interesting in the include directory. There are a lot of good information nuggets contained in those
header files.

Writing Your Own Library

The day will come when you have developed a group of functions that you would like to group together as
alibrary. As you know, placing functions in a library is a convenient way to capture the functionality of a
routine without having the source code directly available in your program. In this section, you will learn how
easy it is to create your own libraries.

Normally, a library contains more than one function, but there is nothing to prevent you from creating a
library with just one function. For purposes of example, let’s take the code from Listing 6-1 (repeated as part
of Listing 12-3) that calculates whether a given year is a leap year or not; we'll convert this into a library so
that we can use it in other programs. While most standard library routines return the Boolean value true or
false as the return value for a leap year function, for reasons I mentioned in Chapter 6, my leap year returns
either 1 or 0. If you don’t like this, you are free to change it.

Listing 12-3 also contains code to calculate the day that Easter falls on for a given year. (The specific
day and month for Easter depends upon the lunar calendar, so the date varies from year to year.) There
are a number of “magic numbers” in the GetEaster() function that are dictated by the way lunar dates are
manipulated. I've slept since I understood what these magic numbers are, so I've left them in “as is”” The
curious readers can research this themselves.

Before we discuss Listing 12-3, however, it makes more sense to discuss the header file used in the
listing.

Note Because the Arduino IDE is set up to recognize .inofiles, it is often easier to write the header
and source code files using a simple text editor like Notepad. (You might want to try Notepad++,
http://notepad-plus-plus.org/. Give it a try and you’ll throw rocks at Notepad.) You can then move the
necessary files to a folder in the Libraries directory after you have tested the files with a sample program.

287

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_10#Tab1
http://dx.doi.org/10.1007/978-1-4842-0940-0_6#FPar3
http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://notepad-plus-plus.org/
http://www.it-ebooks.info/

CHAPTER 12 © ARDUINO LIBRARIES

The Library Header File

Perhaps the best place to start is with the header file associated with the library. Listing 12-2 presents the
necessary format for creating the header file. The very first thing you need to do is decide on a name for your
library. Obviously, you don’t want to cause a conflict with existing libraries, so review those libraries that are in
the Libraries directory and make up a different name for your library. We will use Dates for our library name.
The format that you must use for the header file is more or less etched in stone. Because of this
format inflexibility, you should model any libraries you create closely to what is described here. First, most
libraries start with a comment that tells the name and purpose of the library. That is followed by a #ifndef
preprocessor directive. This is a bit of defensive coding that prevents someone from “double including” the
header file information. Note that the matching #endifis at the very bottom of Listing 12-2. Whatever you
use for the #ifndefname, you don’t want it to collide with any other likely #ifndef’s. Usually, it’s safe to use the
library name followed by an “_h’, as in:

#ifndef Dates_h

Now things get a little strange because the rest of the file uses C++ language syntax, not just C syntax. As
you know, the Arduino compiler is capable of compiling C++ code, and this is the nature of this latest version of
the Arduino IDE. There is no way to do justice to the C++ language here. Personally, I'm a huge fan of object-
oriented programming (OOP), but that’s another story. Although we can’t delve into OOP here (we highlight
some OOP principles in Chapter 14), you already know enough to get things to work in your new library.

The first thing you need to do is tell the compiler that you are going to compile some information into
something called a class. A class is nothing more than a blueprint for something (i.e., an object) you are
going to use in your program. Whatever properties or functions (aka, methods in OOP parlance) you place
in the class are accessed by the programmer using the dot operator in much the same way you did with a
structure. (Indeed, you've been doing this since Chapter 2 when you used the printin() method of the Serial
class.) In fact, a class is much like a structure, only a class is also allowed to have methods (i.e., functions)
defined within it. The general syntax form is:

class YourLibraryName {
public:
// Things you want the outside world to know about
private:
// Things you want to use internally but not make available to others

};

In our library, we don’t have any private elements of the class, so you can leave the private keyword out
of the header file. (Or you can leave it in to document there are no private elements in our class.) The public
elements of the class are those data items you do want the outside world (i.e., other programmers) to be able
to use. The first thing I've placed in the public section of the class shown in Listing 12.2 is a #define for the
ASCII character 0. As you know, when you touch the 0 (zero) key on your keyboard, an ASCII code is sent to
the operating system. In this case, the code is the numeric value 48. We are using ASCIIZERO as a symbolic
constant to get rid of the magic number 48.

Next, we define a structure with the tag easter, which holds the members that are used by the Dates
library. Most of the members are int data types, but the last member, easterStr(], is designed to hold a string
presentation of a date in the MM/DD/YYYY format. One variable named myEaster is defined as a type easter
structure. The structure variable is the only property (i.e., public data item) of this class. In the OOP world,

a property is a variable that is defined within the class. To reinforce the idea of encapsulation, most class
properties use the private storage class.

288

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_14
http://dx.doi.org/10.1007/978-1-4842-0940-0_2
http://www.it-ebooks.info/

CHAPTER 12 I ARDUINO LIBRARIES

Near the bottom of the class are two function prototypes for the functions (usually called methods
in C++) that you want to make available to users of your library. These prototypes allow the compiler to
perform type checking on the functions when they are used in a program. Because this completes our library
(and hence, the class definition), there is a closing brace and semicolon for the class declaration and the
closing #endif for the #ifndef preprocessor directive you placed at the top of the header file.

That’s all that’s necessary for the Dates.h header file. Note that there is no “executable” code in a
header file.

Listing 12-2. The Dates.h Header File

/*
Dates.h - Library for finding is a year is a leap year
and the date for Easter for a given year.
Created and modified by: Dr. Jack Purdum, Dec. 25, 2014
Released into the public domain.
*/
#ifndef Dates_h // If we haven't read this file before...
#define Dates_h // ...read it now. This prevents double-including

#include "Arduino.h" // Not needed for our code, but often included

class Dates
{
public:
#define ASCIIZERO 48 // character for 0 in ASCII
struct easter {
int month;
int day;
int year;
int leap;
char easterStr[11];
};
struct easter myEaster;
// Function prototypes:
int IslLeapYear(int year);
void GetEaster(Dates *myEaster);
b
#endif // Don't forget this!

The GetEaster() function is passed a pointer to an easter structure. It is assumed that the year member
of the structure has been filled in prior to the call to GetEaster(). A pointer to the structure is passed so the
function can fill in the month and day for Easter. The function also fills in easterStr[], which is a MM/DD/
YYYY representation of the date for Easter. Because easterStr|[] is null terminated, it may be used as a string
upon return from the function.

The Library Code File (Dates.cpp)

The Dates.cpp is a C++ file (hence the .cpp secondary file name) that contains the necessary code to make
your library functional (see Listing 12-3). The first line of the source file contains a preprocessor directive
to #include the Arduino.h header file. (In earlier versions of the compiler, this was called Wprogram.h.)
This header file grants access to the standard data types and constants used by the Arduino C compiler.

289

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © ARDUINO LIBRARIES

As mentioned before, this header file is automatically added to all of your programs, but is not added
automatically for library source files; you must add it yourself. Immediately after is an #include for the
header file you just defined, Dates.h. (This actually makes the include of Arduino.h in the header file
unnecessary, but it is usually added by convention.) After the include files, the actual code for the library
functions is written.

The source code for IsLeapYear() begins with a comment of the same form that you have used when you
wrote previous functions. The line

int Dates::IslLeapYear(int year)

looks a little strange because of the scope resolution operator (: :) used in C++. Simply stated, this operator
makes sure that any name conflicts that might arise with other functions finds that the IsLeapYear() method
is associated with the Dates library. Any C++ book or online tutorial can give you more details about the
scope resolution operator if you are interested. The actual code for IsLeapYear() has already been discussed
in Chapter 6.

Listing 12-3. The Dates.cpp Source Code

#include "Arduino.h"
#include "Dates.h"

[k

Purpose: Determine if a given year is a leap year. Algorithm
taken from C Programmer's Toolkit, Jack Purdum, Que
Corp., 1993, p.258.

Parameters:
int year The year to test

Return value:

int 1 if the year is a leap year, 0 otherwise
*****/
int Dates::IslLeapYear(int year)
{
if (year % 4 == 0 8& year % 100 != 0 || year % 400 == 0) {
return 1; // It is a leap year
} else {
return 0; // not a leap year
}
JRxEER
Purpose: Determine the date for Easter for a given year.
Algorithm taken from Beginning Object Oriented
Programming with C#, Jack Purdum, Wrox, 2012.
Parameters:

struct easter *myData Pointer to an easter structure

Return value:
void

290

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://www.it-ebooks.info/

CHAPTER 12 I ARDUINO LIBRARIES

CAUTION: This function assumes that the year member of the structure holds the
year being tested upon entry.

*****/

void Dates::GetEaster(Dates *myData){ // This is line 44
int offset;
int leap;
int day;
int temp1, temp2, total;
myData->myEaster.easterStr[0] = '0"; // Always a '0'
myData->myEaster.easterStr[2] = '/'; // Always a '/’
myData->myEaster.easterStr[3] = '0'; // Assume day is less than 10
myData->myEaster.easterStr[10] = '\0'; // null char for End of string

\

offset = myData->myEaster.year % 19;

leap = myData->myEaster.year % 4;

day = myData->myEaster.year % 7;

templ = (19 * offset + 24) % 30;

temp2 = (2 * leap + 4 * day + 6 * templ + 5) % 7;
total = (22 + templ + temp2);

if (total » 31) {

myData->myEaster.easterStr[1] = '4'; // Must be in April
myData->myEaster.month = 4; // Save the month
day = total - 31;
} else {
myData->myEaster.easterStr[1] = '3'; // Must be in March
myData->myEaster.month = 3; // Save the month
day = total;
}
myData->myEaster.day = day; // Save the day
if (day < 10) { // One day char or two?
myData->myEaster.easterStr[4] = (char) (day + ASCIIZERO);
} else {
itoa(day, myData->myEaster.easterStr + 3, 10); // Convert day to ASCII and...
myData->myEaster.easterStr[5] = '/'; // Always a '/' and overwrites null from
itoa()

itoa(myData->myEaster.year, myData->myEaster.easterStr + 6, 10); // Convert year to
ASCII...

}

The remainder of the source code deals with determining the day of Easter for a given year. Note that
the user of this library function is expected to pass in a pointer to a Dates object. The code then fills in the
members of the structure contained in the Dates class with the appropriate values. If a pointer was not used,
there would be no way to return all of the required values to the caller. By using a pointer, you can fill in the
day, month, and a string representation of the Easter date (easterStr[]) in the function.

291

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © ARDUINO LIBRARIES

Setting the Arduino IDE to Use Your Library

So far, you have two source code files for your library:

e the Dates.h header file

e the Dates.cpp library source code file

You can move these two files into a folder you created and named Dates in the libraries directory of the
Arduino IDE. Figure 12-7 shows how this directory might look on your system. Notice how we have a Dates
folder near the top of the directory. If you opened that directory, you would find the Dates.h and Dates.cpp files.

I, » Computer » HP(C:) » Arduinol0.1 » libraries »
L — — e — e ——————

b4 Include in library » Share with » Burn New folder
hes “ Name Date modified Type
dop ‘E J. Dates 9/10/2012 10:50 AM File folder
mloads Ju EEPROM 7/30/20121:26 PM File folder
ent Places Ju Ethernet 7/30/20121:26 PM File folder
J. Firmata 7/30/20121:26 PM File folder
ies J. LiquidCrystal 7/30/20121:26 PM File folder
4 SD 7/30/20121:26 PM File folder
group Ji Servo 7/30/2012 1:26 PM File folder
1. SoftwareSerial 7/30/20121:26 PM File folder
uter Ju SPI 7/30/20121:26 PM File folder
<) J. Stepper 7/30/20121:26 PM File folder
ip L Time 8/23/2012 4:22 PM File folder
\Alogo L. TinyGPS 8/29/20129:04 AM File folder
sback J Tone 9/8/2012 3:28 PM File folder
“DSee i Wire 7/30/20121:26 PM File folder
laware

Figure 12-7. The Libraries directory of the Arduino IDE

With those files in place in the Libraries directory, close the Arduino IDE and then reopen it. This action
will register the new Dates files with the IDE.

A Sample Program Using the Dates Library

Listing 12-4 presents the code to exercise your new library. The program begins with a #include <Dates.

h> directive. You can type this line in yourself, or you can also use the Sketch » Import Library » Dates
menu selection, which would automatically add the #include <Dates.h> to your source code file for you. The
program then defines a Dates object named myDates for you to use in the program. The setup() call simply
establishes a serial link so that you can see the output produced by the program.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 I ARDUINO LIBRARIES

Listing 12-4. A Program to Test the Dates Library Routine

#include <Dates.h>
Dates myDates;

void setup() {

int i;

Serial.begin(9600);

for (i =

Serial.
Serial.

2000; i < 2016; i++) {
print(i);
print(" is ");

if (myDates.IslLeapYear(i) == 0)
Serial.print("not ");

Serial.

print("a leap year and Easter is on ");

myDates.myEaster.year = i;
myDates.GetEaster (&myDates);

Serial.
Serial.

Serial
Serial

Serial

}

print(myDates.myEaster.easterStr);
print(" ");

.print(myDates.myEaster.month);
print(" ");

Serial.
Serial.

print(myDates.myEaster.day);
print(" ");

.println(myDates.myEaster.year);

}
void loop() {}

The code inside the setup() function uses a for loop to print out the leap year and Easter data for the
years 2000 through 2016. Note how the library routines are called using the dot operator. That is,

myDates.IsLeapYear (i)

says: Load your backpack with variable i. Go to the myDates object, insert your key (the dot operator), enter
into the class black box, and call the IsLeap Year() method. Once inside the class method, the code unpacks
your backpack, extracts the data, and shoves it into the year property. The call to GetEaster() works much the
same, only we pass the lvalue of myDates. This allows us to use indirection via the pointer to permanently
change the state of the members of the myDates object. You can tell that these values are permanently
changed by the way they are referenced in the Serial.print() calls. A sample run of the program can be seen
in Figure 12-8.

293

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © ARDUINO LIBRARIES

S owmmue T ek

[

|[Csend]

2000
2001
2002
[2003

2004
2005
2006
2007
2008
2009
2010
12011
i[2012
|| 2013
2014
2015

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

a leap year and
not a leap year
not a leap year
not a leap year
a leap year and
not a leap year
not a leap year
not a leap year
a leap vear and
not a leap year
not a leap year
not a leap year
a leap year and
not a leap year
not a leap year
not a leap year

Easter is on 04/23/2000 4

and Easter is on 04/15/2001
and Easter is on 03/31/2002
and Easter is on 04/20/2003
Easter is on 04/11/2004 4

and Easter is on 03/27/2005
and Easter is on 04/16/2006
and Easter is on 04/08/2007
Easter is on 03/23/2008 3

and Easter is on 04/12/2009
and Easter is on 04/04/2010
and Easter is on 04/24/2011
Easter is on 04/08/2012 4

and Easter is on 03/31/2013
and Easter is on 04/20/2014
and Easter is on 04/05/2015

23 2000
4 15 2001
3 31 2002
4 20 2003
11 2004
3 27 2005
4 16 2006
4 8 2007
23 2008
4 12 2009
4 4 2010
4 24 2011
g8 2012
3 31 2013
4 20 2014
4 5 2015

-

[¥] Autoscroll

Newiine

v | (9600 baud

>]

Figure 12-8. Sample run of the Easter dates program

Adding the Easter Program As Part of the Library

If you look in any of the other libraries in the Libraries directory shown in Figure 12-7, you will see a folder
named examples. The purpose of this directory is to provide the programmer with one or more examples
of how to use the library. You should create a subdirectory named examples below the Dates library folder
and move the program found in Listing 12-4 into that directory. (As always, the *ino file must appear in the
directory of the same name.) Your Dates directory should now look like Figure 12-9 and the program from
Listing 12-4 should be located in the examples directory.
Whoa! Where did the keywords.txt file come from? That’s the subject of the next section.

Name Date modified Type Size

| L. examples 9/10/20128:23PM File folder
|| Dates.cpp 9/10/20127:34 PM CPP File 3KB
[Dates.h 9/10/20127:30PM H File 1KB
i_] keywords.txt 9/10,/2012 8:22 PM Text Document 1KB

Figure 12-9. The Dates directory

294

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 I ARDUINO LIBRARIES

The keywords.txt File

The Arduino IDE lets you add keywords for syntax highlighting if you wish to do so. For the Dates library, the
keywords.txt file contains the following lines:

Dates KEYWORD1
IsLeapYear KEYWORD2
GetEaster KEYWORD2

Note that the format used in the keywords.txt file is pretty fussy. That is, in the first line, Dates is
immediately followed by a Tab space, and then KEYWORDI. This change causes the class name Dates to
appear in the color reserved for KEYWORDI keywords in your source code files. Using the entries shown
here, the word Dates, for example, takes on the same color as for, which, else, and so forth, when it appears in
the source code window of the Arduino IDE.

The next two lines cause the functions defined in the Dates library to have coloring as defined by
KEYWORD?2. As before, a Tab space must separate the function name from the KEYWORD2 constant. When
you view your source code, the words IsLeapYear and GetEaster take on the same color at any other class
methods you may use. The two function names, for example, will now have the same color as printin
Serial.print().

For the keywords.txt file to take effect, you need to close and reopen the Arduino IDE.

Keyword Coloring (theme.txt)

Some of the colors that the Arduino IDE uses in its editor are difficult for me to see. I don’t know if the reason
is some degree of color blindness or simply eyes that are getting worn out from too much use. Whatever the
reason, I started digging around to see if I could change the default color scheme.

If you look in the lib\theme directory just below where the Arduino EXE file is located (the exact location
depends upon where you installed your compiler), you will find a file named theme.txt. This file holds the
definitions for the colors used in the text editor of the IDE. If you are going to play around with the colors, it’s
a good idea to save a backup copy of the original file. I used Notepad++.exe to make the changes. If you have
the IDE open, you should close it before making the changes suggested next.

First, I loaded up theme.txt and then did a Save As menu option using the name themeBackup.txt. That
way, if I screw something up, I can always go to this file and rename it back to theme.txt—and I'm back where
I started.

Next, [used Notepad++’s Edit » Find menu option (or Ctrl+F) and typed in Keyword1. The result
of that search is shown in Figure 12-10. (If you use a different editor, like Wordpad, it may look different
than Figure 12-10. This is because of the way the end of lines are treated in different editors. If you use
Wordpad, make sure you save the file as a normal text file and not a .doc (or some other) file type.) If you
look closely at Figure 12-10, after the equal sign, you will likely find the entry #cc6600,plain. I changed it
to #0000FF because it’s easier for me to see. Experiment with different color combinations until you're
happy. Keep in mind, however, that this color change applies to all files you use in the IDE, not just your
library.

295

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © ARDUINO LIBRARIES

55 editor.invalid.style = #7e7e7e,bold

13

57 # little pooties at the end of lines that show where they finish
58 editor.eolmarkers = false

589 editor.eolmarkers.color = #999999

60

61 # bracket/brace highlighting D}
62 editor.brackethighlight = true

63 editor.brackethighlight.color = #006699

64

65

66 # TEXT - KEYWORDS

67

68 # e.g abstract, final, private

69 editor. .style = #cc6600,plain

70

71 # e.g. beginShape, point, line

72 editor.keyword2.style = #cc6600,plain

73

74 # e.g. byte, char, short, color

75 editor.keyword3.style = #cc6600,bold

76

77

78 # TEXT - LITERALS

79

80 # constants: e.g. null, true, this, RGB, TWO_PI
81 editor.literall.style = #006699,plain

B2

Figure 12-10. Using Notepad's Find option to locate Keywordl

The cc6600 value is actually the hexadecimal number for the red-green-blue (RGB) value used by the
editor for keywordl words in the source code file. Because my RGB value has no red or green component,
keywordl words now show up in blue. (Prior to my change, the color value was #CC6600, which one of my
students called “baby-poo orange”!) Notice that the actual entry for keywordl looks like:

editor.keywordi.style = #000OFF,plain

If you change the word “plain” to “bold’; the keywords are displayed in bold font. (The answer
to Exercise question 5 at the end of this chapter has a URL for a page that has a nice color chart and
corresponding hex values.)

I also found the “e.g” examples in the themes file misleading. For example, keywordI uses “e.g. abstract,
final, private” as the example of text coloring. A more common example would include the keyword void,
which you will see as the function type specifier for the setup() and loop() functions. Keyword2 is used for
coloring common data types (e.g., char, int, etc.) and method names for class objects (e.g., begin in
Serial.begin()). Keyword2 is used to color function (e.g., setup, loop) and class (Serial) names. I find the code
easier to read when I vary these keywords. You may not, so experiment and see what you think.

296

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 I ARDUINO LIBRARIES

While I was playing around with the themes file, I also changed keyword2 (which now equals FF0000)
and keyword3 (which now equals 009900) using the same Notepad++ search method. When I was finished,
Idid a Save As and used the file name theme.xt. I then reloaded the IDE and, voila! All of the color changes I
made become the default colors for the editor. If you don’t like the changes, you can always go back and try
some new colors. If worst comes to worst, you can rename the themebackup.txt file to theme.txt and you're
back to the default IDE colors.

Summary

The goal of this chapter was to make you feel more comfortable using the nondefault libraries that

are shipped with the Arduino IDE. You should understand what the standard, core, and contributed
libraries are from an operational standpoint. You should also understand the part that header files play
in conjunction with library files. Indeed, you should spend some time looking through all of the header
files available to you. The string.h file is just one example of the treasures you will find in the header files.
Also, you should be comfortable creating your own libraries and adding them to the Arduino IDE. Finally,
you learned how to use the keywords.txt and theme.txt files to alter the way the editor visually presents
keywords in your source code.

EXERCISES

1. If you were trying to explain the concept of libraries to someone who was just
learning about programming, how would you explain it in one sentence?

Answer: A library is a collection of pre-written functions (methods), usually grouped under a
common theme, that you can use in your own programs.

2. Whatis a core library?

Answer: Core libraries are those libraries that the compiler routinely uses when compiling
programs. For example, the Arduino.h header file is automatically included in your source
code for all programs that you write. This header file enables the compiler to draw from
various libraries. There are a number of contributed libraries that are also automatically
installed.

3. What is a contributed library?

Answer: These are libraries that have been supplied by users of the Arduino system.
Because Arduino is an open source project, users are encouraged to share whatever code
they develop. Contributed libraries are one result of this code sharing.

4. What does strncpy() do?

Answer: I'm not going to tell you. It comes from the string.h header file, so it is a routine
stored away in a library and hence you can use it in your programs. The easiest way to
answer this question is to google the function. You should get used to doing this whenever
you see a function that you don’t know about.

5. Suppose you wish to change some of the colors stored in the theme.txt file, but
you don’t know what the RGB hex values are? How can you decipher the color
codes?

297

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © ARDUINO LIBRARIES

Answer: Once again, go to the web and start looking. That’s what | did and | found

www. 2createawebsite.com/build/hex-color-chart-grid.html, which makes it easy
to pick a color you like. There are quite a few colors to choose from . . . 256°, or over 16.7
million! Google is your friend.

Where should you place a library that you’ve written and you want to make
permanently available to the IDE?

Answer: You should place your library in the Libraries directory and it should have a
directory structure as follows:

Libraries
YourLibraryName
examples
YourLibraryName.h
YourLibraryName.cpp
keywords.txt

examples contain the source code for at least one example of how to use your library.

298

www.it-ebooks.info

http://www.2createawebsite.com/build/hex-color-chart-grid.html
http://www.it-ebooks.info/

CHAPTER 13

Interfacing to the Outside World W,

One of the first things most Arduino programmers want to do is “see” something that was produced by their
program. Sure, the Serial monitor is okay for a while, but eventually you will want to display program output
on something other than the Serial monitor. After all, dragging your PC around with you everywhere kind of
limits what you can do with your Arduino.

One of the most popular displays is either a 2x16 or a 4x20 LCD display. These are widely available
and fairly inexpensive, usually running around $5. The Arduino web site has a great discussion about using
these displays (http://playground.arduino.cc/Code/L(D), and because they can display both alpha and
numeric data, it’s pretty easy to find a lot of source code available that use these displays. In fact, googling
“Arduino LCD display source code” turns up more than 390,000 hits!

So, rather than kick a dead horse again, I thought I'd discuss an 8-digit 7-segment LED display instead.
Figure 13-1 shows a typical example that uses the MAX7219 chip working through the Serial Peripheral
Interface (SPI) protocol to your Arduino. The program for this LED display could also use the newer
MAX7221 chip, but those are more expensive, so I concentrated on the MAX7219 chip to control the display.
With a little Internet shopping, you should be able to buy this display for less than $3.

Figure 13-1. An 8-digit, 7-segment LED display using the MAX7219

© Jack Purdum 2015 299
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_13

www.it-ebooks.info

http://playground.arduino.cc/Code/LCD
http://www.it-ebooks.info/

CHAPTER 13 * INTERFACING TO THE OUTSIDE WORLD

The Serial Peripheral Interface (SPI)

The SPI protocol is used to communicate with one or more peripheral devices. In most applications, the
Arduino serves as the master device that holds dominion over the peripheral devices. The communication is
accomplished using four lines that are shared among the devices. These four lines are as follows:

e MISO: This is the Master In, Slave Out line for sending data from a slave to the master
e MOSI: This is the Master Out, Slave In line for sending data to the peripherals

e SCK: This is the Serial Clock line that synchronizes the data transmission by the master
e SS: A pin on a device that the master uses to select the device

Because of the SPI popularity, most Arduino boards bring these control lines out to a single header
called the In Circuit Serial Programming (ICSP) header (see Figure 13-2). You'll notice that the SS line is
missing from the ICSP header. (The SS pin is most often used when a slave device is controlled by an external
master.) However, you can use just about any digital pin to control the select line. (If possible, still avoid pins
0 to 3 because of the USB communications and interrupts that often use these pins.)

If you want more information about the SPI protocol or the ICSP, two good sources are at
http://arduino.cc/en/Reference/SPI and http://en.wikipedia.org/wiki/Serial Peripheral
Interface Bus#Mode_Numbers.

MISO 1 | | | 2 +Vee
SCK 3| | | 4 MOSI
Reset 5 [‘ ‘ 6 Gnd

Figure 13-2. The ICSP header pins

An SPI Program

Let’s write a program that simulates a counter timer. The display shows the approximate time that has
elapsed from when the program was started to the present. The reason that we say “approximate” is because
we are using delay() to track the time. I've already mentioned that delay() is a nice easy function to use, but
it’s not very accurate, plus it uses interrupts that could “block” certain applications where you need an ISR.
The IDE sample program, Blink Without Delay, is a better example of how to code something where you
need to work with interrupts. Rather, the program presented here is used to show how you can display up to
eight numeric digits easily and at a fairly low cost.

The program starts with a zero count, which for this program means that all displays are initialized to
zero. Starting on the left edge of the display, the code uses the first two digits to represent hours. Clearly,
the max number of hours is 99. The remaining pairs of digits are for minutes, seconds, and hundredths of a
second. The hundredths-of-a-second display digits are an illusion; they are there simply to make the output
from the display a little more interesting. If you look at the function named BumpFrame() in Listing 13-1,
you'll see a call to delay() of:

delay(10);

Because the last two digits represent hundredths of a second, and 1000 milliseconds is one second, we
simply divide 1000 by 100 to get a delay of 10 milliseconds between display updates. Clearly, that’s not going

300

www.it-ebooks.info

http://arduino.cc/en/Reference/SPI
http://en.wikipedia.org/wiki/Serial_Peripheral_
http://www.it-ebooks.info/

CHAPTER 13 /" INTERFACING TO THE OUTSIDE WORLD

to be accurate because it takes time to execute the program instructions. You could improve the accuracy by
counting the program instructions and the time it takes to execute each instruction, but that’s an H-bomb-
to-kill-an-ant for our purposes. All I want to do is show you how to interface to an inexpensive LED display.

Listing 13-1. Countdown LED Display

/*
Program is a quick-count stopwatch. The code starts with zero and
counts up from there. No protection rollover. Base code by Blair Thompson.

Modified by Dr. Purdum, 12/26/2014
*/
#include <LedControl.h> // From Arduino LedControl library

int DIN = 10;
int LOADCS = 11;
int CLK = 13;

int ledBrightness = 5; // range is 0-15. O=lowest, 15 = full power

// DIN, CLK, Load/CS, 8 digits

LedControl myLEDs = LedControl(DIN, CLK, LOADCS, 8);
int hundredthso, hundredthsi;

int seconds0, secondsi;

int minuteso, minutesi;

int hourso, hoursi;

void setup()
pinMode(DIN, OUTPUT);

pinMode(CLK, OUTPUT);
pinMode (LOADCS, OUTPUT);

myLEDs.shutdown(0, false); // Wake 'em up
Reset();
myLEDs.setIntensity(0, ledBrightness); //set the brightness

}
void loop()
BumpFrame(); // Bump the necessary display digits

JRRFER

This function increments the hundredths of a second counter and
rolls to the next digit as needed.

Parameter List:
void

301

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

INTERFACING TO THE OUTSIDE WORLD

Return value:
void

*****/
void BumpFrame()

}

delay(10);

myLEDs.setDigit(o,

if (hundredthso ==
hundredths1++;
hundredthso = 0;

0, hundredthso++,

10) {

if (hundredths1 < 9) {
myLEDs.setDigit(0, 1, hundredths1,

} else {
hundredths1 = 0;
myLEDs.setDigit(0, 1, hundredths1,
BumpSeconds();

}

koK

This function increments the seconds

rolls to the next digit as needed.

Parameter List:
void

Return value:
void

*****/

void BumpSeconds()

{

secondsO++;

if (secondso ==
secondsi++;
seconds0 = 0;

}

10) {

myLEDs.setDigit(0, 2, seconds0, true);

if (seconds1 < 6) {

myLEDs.setDigit(0, 3, secondsi, false);

} else {
secondsl = 0;

seconds0 = 0;

)
myLEDs.setDigit(0, 3, secondsi, false);

BumpMinutes();

302

// Count to 99 from 0 every second

false); // Update last digit

// Time to roll over?

false); // Nope
false); // Yep
counter and

// Bump the seconds count

// update units

// Update tens

// Reset and update minutes

www.it-ebooks.info

http://www.it-ebooks.info/

/*****

This function increments the minu

tes counter and

rolls to the next digit as needed.

Parameter List:
void

Return value:
void
*****/
void BumpMinutes()

{

CHAPTER 13

INTERFACING TO THE OUTSIDE WORLD

minuteso++; // Works the same as seconds, only for minutes:

if (minuteso == 10) {
minutesi++;
minutes0O = 0;

}

myLEDs.setDigit(0, 4, minuteso, true);

if (minutes1 < 6) {
myLEDs.setDigit(0, 5, minutesi,

} else {
minutes1l = 0;
minuteso = 0;
myLEDs.setDigit(0, 5, minutesi,
BumpHours();

}

}

JRFRRK

false);

false); // Need to update hours

This function increments the hours counter and
rolls to the next digit as needed.

Parameter List:
void

Return value:
void
*****/

void BumpHours()

hourso++; // Works same as minutes..

if (hourso == 10) {
hoursi++;
hourso = 0;

}

myLEDs.setDigit(0, 6, hourso, true);

if (hours1 < 6) {

myLEDs.setDigit(0, 7, hoursi, false); // Nothing left to bump, so reset

} else {

www.it-ebooks.info

303

http://www.it-ebooks.info/

CHAPTER 13 * INTERFACING TO THE OUTSIDE WORLD

hours1 = 0;
hourso = 0;
Reset();
}
}
/*****

This function resets the digits to zero

Parameter List:
void

Return value:
void
*****/
void Reset()
{
myLEDs.setDigit(o, 0, 0, false);
for (int i = 1; i < myLEDs.getDeviceCount(); i++) {
myLEDs.setDigit(0, i, 0, (i % 2 == 0) ? true : false);
}
}

You can read about the LedControl library and download it at https://github.com/wayoda/
LedControl. One of the nice features of the library is that it allows you to configure the control pins the way
you want to define them.

You probably don’t need me to make too many comments on the code, as there’s not a whole lot
going on. A global LED control object named myLEDs is defined and initialized to work with our eight-digit
display. Next, we define a bunch of int variables that essentially give names to each of the eight seven-
segment displays. The setup() function does little more than set the control pins to OUTPUT, set the LEDs
to active mode, set the display brightness, and clear the display. The loop() function only has one statement:
BumpFrame().

BumpFrame() is responsible for incrementing the hundredths-of-a-second digits of the display. If
the units component (hundredths0) is equal to 10, the tens component (hundredths1) is incremented and
hundredths0 is set to 0. This process continues on until the count is 99, at which time the two digits are set
to 0 and BumpSeconds() is called. In other words, the hundredths of a second “rollover” to the seconds
segments of the display.

If you look at the code for BumpSeconds(), it works pretty much the same as the way the hundredths-
of-a-second digits were incremented, only using a rollover value of 60 (seconds) instead of 100. Indeed,
BumpMinutes() and BumpHours() are the same, only using different units of the display. The algorithm is
essentially the same. Once the display shows 99:59:59:99, the code calls the Reset() function and the count
starts over.

The real point of this program is to show how easy it is to use the SPI interface to control an inexpensive
eight-digit display. Also, you can turn off the display for whatever time period you need and only display
the number on a given criteria. Because LEDs are relatively power hungry, being able to turn the display
off easily can be useful. These displays are a good choice if you only need to display fairly large numbers. In
most cases, these displays cost less and are more easily viewed than a 16x2 LCD display.

304

www.it-ebooks.info

https://github.com/wayoda/LedControl
https://github.com/wayoda/LedControl
http://www.it-ebooks.info/

CHAPTER 13 /" INTERFACING TO THE OUTSIDE WORLD

Interrupts and Interrupt Service Routines (ISR)

Anyone who has been around a two-year-old child for more than a couple of hours knows what an interrupt
is. If you've raised your own kids, you also know what an Interrupt Service Routine (ISR) is— ranging

from diaper changes to chasing away those monsters that live under the bed. Simply stated, interrupts are
notifications that something wants immediate attention. The nature of that attention is contained in the code
that comprises the ISR.

Interrupts offer an alternative to the polling process mentioned in Chapter 5 when we talked about loop
structures. Recall that I discussed how you might use a loop to monitor fire sensors in a building. The code
visited each sensor, and if no fire was sensed, the loop moved to the next sensor. This process of moving from
one area of interest (i.e., a sensor) to the next is called polling. The problem is that if you have thousands of
sensors in the poll list, and it takes a few seconds for each sensor to get an accurate reading, it could take
over a half an hour to make a complete pass through the sensor list. If you're unlucky enough to have a fire
start immediately after a visit to that sensor, the fire is going to get a half-hour start before anyone knows
something’s amiss. Not good. Because of such limitations, critical applications like a fire system would not
use a polling algorithm for the fire system. Instead, the system would be based on sensors that can generate
an interrupt.

The Arduino family supports two types of interrupts: external (hardware) and pin change. External
hardware interrupts are triggered by some type of signal on a pin. Hardware interrupts can be triggered in
four different ways:

e onalowsignal state

e onachange in signal state

e on therising edge of a signal change
¢ on the falling edge of a signal change

Because these interrupts are hardware based, they are very fast. Although external interrupts are
fairly easy to work with, the bad news is that the Arduino boards have a limited number of pins designed to
respond to external hardware interrupts. The good news is that all of the Arduino pins can be used with pin
change interrupts. You simply designate the pin(s) you wish to use and attach them to an ISR. Table 13-1
shows the external interrupt pins for several popular Arduino boards.

Table 13-1. Arduino External Interrupt Pins

Board Int0 Int1 Int2 Int3 Int4 Int5
Uno, Mini, Nano 2 3

Mega 2560 2 3 21 20 19 18
Leonardo, Micro 3 2 0 1

If you look at the LCD examples that are distributed with the Arduino IDE, you'll find that they use
pins 2 and 3 as part of the data communication between the display and the Arduino. The use of those pins
is not etched in stone, so we prefer to move them so pins 2 and 3 are left for hardware interrupts should a
sketch need them. If your design does not require all of the digital pins to be used, we'd suggest leaving pins
0-3 open. As you know, pins 0 and 1 are used by the Serial object to communicate with your PC via the USB
cable. Now you know that pins 2 and 3 are available for external hardware interrupts. While these pins can
be used in your program for digital use, as a rule we leave them empty just in case we want to use an external
interrupt down the road. Figure 13-3 shows how the pins are mapped for the Atmel 328 chip.

305

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_5
http://www.it-ebooks.info/

CHAPTER 13 * INTERFACING TO THE OUTSIDE WORLD

NS
(PCINT14/RESET) PC6 [] 1 28 [1 PC5 (ADC5/SCL/PCINT13)
(PCINT16/RXD) PDO [} 2 27 [1PC4 (ADC4ISDA/PCINT12)
(PCINT17/TXD) PD1 [] 3 26 [1 PC3 (ADC3/PCINT11)
(PCINT18/INTO) PD2 [4 25 [1 PC2 (ADC2/PCINT10)
(PCINT19/0C2B/INT1) PD3 []5 24 [1PC1 (ADC1/PCINT9)
(PCINT20/XCK/T0) PD4 []6 23 [1 PCO (ADCO/PCINTS)
vce 07 22 [1GND
GND []8 21 [J AREF
(PCINT6/XTAL1/TOSC1) PB6 []9 20 [J AvCC
(PCINT7/XTAL2/TOSC2) PB7 [] 10 19 [1 PB5 (SCK/PCINT5)
(PCINT21/0COB/T1) PD5] 11 18 [0 PB4 (MISO/PCINT4)
(PCINT22/0COA/AINO) PD6 [] 12 17 [1 PB3 (MOSI/OC2A/PCINT3)
(PCINT23/AIN1) PD7] 13 16 [1 PB2 (SS/OC1B/PCINT2)
(PCINTO/CLKO/ACP1) PBO [] 14 15 [1 PB1 (OC1A/PCINT1)

Figure 13-3. The Atmel 328 chip

Note how INTO0 and INT1 are actually tied to pins 4 and 5 on the chip. However, most boards arrange
the pinouts so they appear to be digital pins 2 and 3. Pin 1 on the chip is actually the Reset pin, whereas pins
2 and 3 are the RXD/TXD used by the Serial object for communication over the USB link.

There are three ports defined for the Atmel 328 (or 168) chip. These ports allow for faster, low-level
manipulation of the I/0 pins associated with each port. The three ports are defined in Table 13-2. Note that
PORTB, PORTC, and PORTD are symbolic constants that you can use in your programs. Also note that only
PORTB forms an 8-bit port.

Table 13-2. Port Pin Assignments

Port Name Pins Comment

PORTB 14-19 and 9,10 Labeled PB* in Figure 13-2.

PORTC 23-28,1 Labeled PC* in Figure 13-2. Avoid pin 1, the Reset pin.
(These are also the analog pins, ADCO - ADC5.)

PORTD 2-6,9-13 Labeled PD* in Figure 13-2. Avoid interrupt pins 2 and 3,

and Serial pins 0 and 1.

PORTB is labeled PBO through PB7 in Figure 13-2, and corresponds to pins 14-19, but then skips to pins
9 and 10 for the last to bits of the port. PORTC is labeled PCO through PC6 in Figure 13-2, but PC6 is rarely
used because it is the CPU Reset bit. PORTD is labeled PD0 through PD7, but you will usually avoid pins PD0
and PD1 since these are used by the Serial object. PD2 and PD3 correspond to the interrupt pins, INT0 and
INT1, respectively.

Each port is controlled by three registers: the Data Direction Register, the PORT Data Register, and
the port PIN registers. Therefore, DDRD would be the Data Direction Register for Port D, PORTD (as seen
earlier) is the Data Register for port D, and PIND is the PIN register for port D. All of the PIN registers are
read-only.

306

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 /" INTERFACING TO THE OUTSIDE WORLD

Interrupt Details

To appreciate how interrupts work, we need to learn some low-level details about the Arduino boards that
are based on the Atmel 328 CPU. (We'll concentrate on the 328 chip, as that’s the most popular.) First, we
need to understand the External Interrupt Control Register A, EICRA. This can be seen in Table 13-3.

Table 13-3. The External Interrupt Control Register A

Bit 7 6 5 4 3 2 1 0

EICRA ISC11 ISC10 ISCO01 ISC00
Read/Write R R R R R/W R/W R/W R/W

The two interrupts available on the 328 chip are INT0 and INT1. The EICRA controls what triggers these
two interrupts, as described in Table 13-4. In this table, ISC00-01 describes the parameters for INT0, whereas
ISC10-11 is for INT1.

Table 13-4. Interpretation of Bit Patterns

Description ISC11 ISC10 ISCO1 1SCO00
The low level 0 0 0 0
Any logical change 0 1 0 1
Falling edge 1 0 1 0
Rising edge 1 1 1 1

Therefore, if the EICRA register of a 328 processor holds binary 00000010; INTO0 will be using the falling
edge of the signal to trigger the interrupt. A bit pattern of 00001110 says INTO is using a falling edge trigger,
but INT1 is using a rising edge trigger. Make sure you understand why these bit patterns determine how
INTO and INT1 work before you move on.

The determination of which interrupt is being used is set using the External interrupt Mask Register
(EIMSK). This is presented in Table 13-5. If the 0 bit is set (i.e., 1), INTO is active. If the 1 bit is set, INT1 is
active. Obviously, you can also have both interrupts active at one time by setting both bits.

Table 13-5. The External Interrupt Mask Register

Bit 7 6 5 4 3 2 A1 0

EIMSK - - - - - - INT1 INTO
Read/Write R R R R R R R/W R/W

Table 13-6. The External Interrupt Flag Register
Bit 7 6 5 4 3 2 1 0

EIFR - - - - - - INTF1 INTFO
Read/Write R R R R R R R/W R/W

307

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * INTERFACING TO THE OUTSIDE WORLD

When an edge or logic change occurs on either the INT1 or INTO pin and triggers an interrupt
request, the appropriate bit in the External Interrupt Flag Register (EIFR) is set (see Table 13-6). If either
of the corresponding interrupt pins is set in the EIMSK register, control branches to the ISR. The ISR code
determines what the interrupt actual does. The EIFR is cleared when the ISR code is executed.

An External Interrupt Program

Now let’s take a simple example where we wire a switch to pin 2. The ground leg of the switch has a 10K
resistor between the switch and the ground pin on the Arduino. Anytime we press the switch, we want
program control to immediately jump to our ISR. Listing 13-2 shows the source code for our interrupt
program.

Listing 13-2. A Simple Interrupt Program

#include <avr/interrupt.h>
#define LEDPIN 13
volatile int state = LOW,;
void setup() {
DDRB = DDRB | B00100000; // Set pin 6 of Port B to output, but..

// PORTB6 is digital pin 13
PORTD |= (1 << PORTD2); // turn On pin 2 of PORTD

EICRA |= (1 << ISC00); // set INTO to trigger on ANY logic change
EIMSK |= (1 << INTO); // Turns on INTO

sei(); // turn on interrupts

}

void loop() {
unsigned long 1i;
unsigned long sum = 0;
for (i = 0; i < 4000000; i++) // Do this just to have

Sum++; // something to interrupt!
}
ISR(INTO vect)
{
state = Istate; // Flip its state
digitalWrite(LEDPIN, state); // interrupt code here
}

The first thing we do is #include the header file that contains the symbolic constants for using interrupts.
Next we define state as a volatile int variable. The volatile keyword is actually a message to the compiler to
generate code that forces the state variable to be reloaded from memory every time it is accessed, even if it is
currently sitting in a register. That way we can ensure that the code doesn’t use an “out-of-date” (i.e., cached)
value for state. It's a good idea to use the volatile keyword with any variable that is part of the ISR.

308

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 /" INTERFACING TO THE OUTSIDE WORLD

The next statement

DDRB = DDRB | B00100000; // Set pin 6 of Port B to output, but...
// PORTB6 is digital pin 13

is used to set bit 6 of PORTB high by using the Data Direction Register for Port B(DDRB). If you count the
digital pins in Figure 13-2, starting with PD0, and count to PB5, you'll find out that bit 6 of PORTB is the
13% digital I/O pin. Sound familiar? Yep. .. it’s the LED pin. In other words, the preceding statement is the
low-level equivalent of:

pinMode(13, OUTPUT);

Indeed, you could replace the low-level statement with the pinMode() call, and it will work exactly the
same.
The next statement

PORTD |= (1 << PORTD2); // turn On pin 2 of PORTD

is used to turn on pin 2 of Port D. Now refer back to Figure 13-2 and look for PD2 (i.e., pin 2 of Port D). Well,
whaddaya know. . . PD2 is also the pin for INT0! So the statement is simply activating the INTO interrupt.
The first of the next two statements

EICRA |= (1 << ISC00); // set INTO to trigger on ANY logic change
EIMSK |= (1 << INTO); // Enables INTO

can be understood by looking at Table 13-4. Because we are setting bit ISCO00 to 1, we are setting the External
Interrupt Control Register A (EICRA) to use any logic state change on INTO to trigger the interrupt. The | =
operator performs a bitwise OR on the current state of EICRA, which has the effect of maintaining the bit
pattern that prevailed before this statement is executed. That way, the statement only affects the ISC00 bit in
the register. The call to sei() “sets external interrupts,” which enables the interrupts.

If you look at the call to ISR(INTO_vect), it is the ISR we wrote for INTO. Note how the parameter to the
ISR (i.e., INTO_vect) determines which interrupt is being defined. As you can see, the ISR does little more
than toggle the state of the onboard LED. It does this by doing a logical NOT on the current value of state.
Recall that we defined state using the volatile storage specifier to force the compiler to reload state each time
itis referenced. This ensures that state remains “in sync” with what we are trying to do.

Three more little bits of advice about ISR.... First, use the volatile storage specifier with any variables
used in the routine, for the reason we just mentioned. Second, keep the ISR as short as possible. The reason
is because while your ISR is running, everything else is on hold until your ISR finishes. Third, while your ISR
is running, no other interrupts can take place. This often means that any libraries you might use that have
their own ISRs (e.g., Serial methods) are comatose while your ISR is active. This is another reason to keep
yours as short as possible. You'd hate to have your light sensor ISR turning on a couple-hundred hallway
lights in the morning while the fire ISR is trying to tell you that the tenth floor is on fire.

The code in loop() is just there so something is going on when you press the button. If you just put in an
empty loop(), most of the time the compiler optimizes it away. Oh, one more thing. If you run this program,
it sometimes appears that the button press gets out of whack with what you think should be happening. This
is probably caused by “switch bounce.” If you look at a switch closure on a fast oscilloscope, you will see that
the voltage bounces between HIGH and LOW before it settles down to its “real” state. There are ways in both
hardware and software to get rid of switch bounce. A quick session with Google will show you a bazillion
ways to cope with switch debouncing.

309

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * INTERFACING TO THE OUTSIDE WORLD

An Alternative Interrupt Program

Let’s have the same goal as the previous program; namely, blinking the onboard LED when we press a switch
connected to pin 2. This time, however, remove the 10K resistor and just directly wire one leg of the switch to GND
on the Arduino and the other side to pin 2. Arduino pins to default inputs, which means they do not explicitly
need to be defined using the INPUT symbolic constant and pinMode(). Internally, this means each pin behaves as
though it has a high impedance (e.g., 100 megohm) resistor wired in front of each pin. As a result, it takes very little
current to change the pin state, which is beneficial in some situations. However, it also means that unconnected
pins can change state in a seemingly random fashion, as such pins “float” between the HIGH and LOW states.

However, internal to the Arduino are 20K pullup resistors that can be activated by software. (The exact
value of the pullups varies by chip type. Check your chip’s documentation if this is a critical factor to your
circuit.) You can access these pullup resistors using a pinMode() call with the INPUT_PULLUP symbolic
constant. Because of this configuration, with a switch connected to a pin with INPUT_PULLUP active, an
open switch reads HIGH, and it reads LOW when the switch is pressed.

Listing 13-3 is the code that illustrates another way to implement an interrupt. The code is very similar
to Listing 13-2, except we rely on the attachInterrupt() function to do most of the work for us.

Listing 13-3. Alternative Interrupt Program

#include <avr/interrupt.h>
#define LEDPIN 13
volatile int state = LOW;

void setup() {
pinMode(LEDPIN, OUTPUT);
pinMode(2, INPUT_PULLUP);

attachInterrupt(o, myISR, CHANGE);
sei(); // turn on interrupts

}
void loop() {
unsigned long 1i;

unsigned long sum = 0;

for (i = 0; i < 4000000; i++) // Do this just to have
Sum++; // something to interrupt!
}

void myISR()

state = !state;
digitalWrite(LEDPIN, state);/* interrupt code here */
}

The statements

pinMode(13, OUTPUT);
pinMode(2, INPUT PULLUP);

attachInterrupt(o, myISR, CHANGE);

310

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 /" INTERFACING TO THE OUTSIDE WORLD

set the LED pin to OUTPUT and turns on the pullup resistor for pin 2. (Can you get rid of these magic
numbers? If so, then do it!) The attachinterrupt() function has the interrupt number as its first argument.
In our example, we are using interrupt 0 (INTO0). The second argument is the name of the ISR that tells the
program what to do when an interrupt occurs. In our case, we simply toggle the LED using the ISR named
myISR(). The third argument tells what signal condition should cause the interrupt. We have used the
CHANGE symbolic constant to trigger the interrupt whenever the state of the switch changes.

When you run the program and press the switch, the LED blinks on and off. Note, however, that if
you are using a push button switch, pushing it in turns the LED off and letting it go turns it back on. (If you
have a real “bouncy” switch, it may strobe several times.) The reason is because we are using the CHANGE
symbolic constant to trigger the interrupt whenever the state of the switch changes. What would happen if
you changed this to trigger on a rising or falling edge signal?

The code in the loop() function is there to show that we can do something else while the interrupt
is active. Again, if we just used a simple empty loop, the compiler optimizes the loop away, which is why
we use sum in the loop. If you wish, you can put a Serial. print() statement in loop(), but don’t forget that
because the Serial object itself uses interrupts, your interrupt will have to wait until the Serial object finishes
its interrupt code before you can hope for yours to activate.

Ultrasonic Sensor Program

Many of the Arduino Starter Kits detailed in Appendix A include an inexpensive ultrasonic sound sensor (see
Figure 13-4.) These sensors are based on the idea that a transmitted sound takes a known amount of time

to travel a given distance. For example, at 72 degrees Fahrenheit, sound travels 1131.7439486730823 feet/
second, or 344.9555555555555 meters/second. Therefore, if the sensor emits a ping and a wall is 1131.74 feet
away;, it takes approximately 2 seconds for the sound wave to make the round-trip from the sound emitter

to the wall, and back to the sound receiver. (These inexpensive sensors are pretty much deaf at 1100 feet.

Ten feet is a more realistic range.)

Figure 13-4. Ultrasonic sensor

If you look closely at Figure 13-3, you can see that the sensor is controlled by just two pins: a trigger
ping and an echo pin. The idea is that one device emits a sound and the other device detects that sound.
By measuring the time interval in between sending and receiving the ping, you can measure the distance to
an object. The distance range is approximately 1 inch to 12 feet, with an advertised accuracy of about 0.25
inches. The cost of these sensors is about $2.

311

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * INTERFACING TO THE OUTSIDE WORLD

The code to use the sensor is presented in Listing 13-4. You can probably figure out the code without my help.
I chose to use pin 8 for the trigger pin and pin 10 for the echo pin, but you can choose whatever pins you wish.

Listing 13-4. Ultrasound Sensor Program

/*
Code is taken from
http://www.arduino.cc/en/Tutorial/Ping
and was written by David Mellis and modified
by Tom Igoe.

Modified by Dr. Purdum for sound speed at
72 degrees F.
1/2/2105

*/

int triggerPin = §;
int echoPin = 10;

void setup() {
Serial.begin(115200);
pinMode(triggerPin, OUTPUT);
pinMode(echoPin, INPUT);

}

void loop(){
long roundTrip;
float cm;

digitalWrite(triggerPin, LOW); // Trigger a short low pulse
delayMicroseconds(2); // before the HIGH pulse
digitalWrite(triggerPin, HIGH);

delayMicroseconds(10);

digitalWrite(triggerPin, LOW);

roundTrip = pulseIn(echoPin, HICH);

cm = microsecondsToCentimeters(roundTrip);

float inch = cm / 2.54; // Figure out inches
Serial.print(cm);

Serial.print(" cm or ");

Serial.print(inch);

Serial.print(" inches");

Serial.println();

delay(1000);

}

[k

This function calculates how far the pulse travels to
strike and object and return. The air temp is assumed
to be 72F.

Parameter list:
long microseconds the time of the pulse

312

www.it-ebooks.info

http://www.arduino.cc/en/Tutorial/Ping
http://www.it-ebooks.info/

CHAPTER 13 ' INTERFACING TO THE OUTSIDE WORLD

Return value:
float centimeters to and from target
*****/
float microsecondsToCentimeters(long microseconds){
return (microseconds*0.034495)/2;
}

Because the trigger pin (#riggerPin = 8) sends the pulse, we use pinMode() to set the pin for OUTPUT.
Pin 10, echoPin, uses pinMode() to set the pin for INPUT since it receives the pulse.

The documentation for the sensor says to send a short, low pulse immediately before sending out the
pulse of interest. You can see this near the top of loop(). There is a 10-microsecond pulse, after which the
sensor is set to LOW. The statement

roundTrip = pulseIn(echoPin, HIGH);

waits for the pin to go HIGH to start its timing cycle, and stops timing when the pin goes LOW. It returns the
length of the pulse in microseconds. The documentation says pulselnworks with pulses from 10 microseconds
up to almost 3 minutes. The call to microsecondsToCentimeters() is passed the number of microseconds it
took to make the trip from and back to the sensor. For that reason, the actual distance to the object is half

that time, which is why the function adjusts the conversion from time to microseconds by dividing by 2. The
floating point constant reflects the speed of sound when the temperature is 72 degrees Fahrenheit. Figure 13-5
shows a sample run of the program as I moved a book forward and backward in front of the sensor.

& COM21 (Arduino Uno}

3.33 cm or 1.31 inches
3.67 cm or 1.45 inches
6.59 cm or 2.59 inches
5.42 cm or 2.13 inches
4.76 cm or 1.87 inches
4.02 cm or 1.58 inches
4.31 cm or 1.70 inches
6.95 cm or 2.74 inches

50.09 cm or 19.72 inches
58.49 cm or 23.03 inches
7.95 cm or 3.13 inches
5.55 cm or 2.19 inches
18.06 cm or 7.11 inches
8.00 cm or 3.15 inches
7.42 cm or 2.92 inches
8.64 cm or 3.40 inches
8.11 cm or 3.19 inches
8.07 cm or 3.18 inches
13.59 cm or 5.35 inches
27.08 cm or 10.66 inches b
14.63 cm or 5.76 inches
43.74 cm or 17.22 inches

|

[¥] Autoscrol Newline v | (115200 baud |

Figure 13-5. Sample run of ultrasonic sensor program

313

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * INTERFACING TO THE OUTSIDE WORLD

Although sensors like the one shown in Figure 13-3 are often used in robotics types of equipment, that’s
not the reason for showing you how to use it. Rather, I wanted to show you how simple it can be to use a
sensor in a program. Many other types of sensors, from light sensors to audio detectors, are just as easily
interfaced to an Arduino. Many of the starter kits include a variety of sensors, including the ultrasonic sensor.
I'saw an ad on eBay for a collection of 37 sensors for less than $50. Depending upon your interest, pick up a
few sensors and experiment with them.

A Programming Problem

A time will come when you have a sketch working but you'd like to modify it to make it even better. When I
first started working with the Arduino, I needed to display more information than would fit on a standard
2x16 LCD display. I needed the first line of the display to tell the origin of the data presented on the second
line. Although not my actual program problem, let’s say you need the first line of the LCD to say: “From: Jill”
and the second line to show the message. No problem ... as long as the message is 16 characters or less. But
Jill tends to have long messages, so you need to be able to show the entire message while keeping the first
line unchanged. How are you going to do this?

As you know, you can address the LCD cursor, position it where you want it on the display, and then
print characters to it starting at that position. So, my first hack at the solution was to divide the message for
the second line into 16-character chunks and simply scroll through the message. My first thought was to
insert a delay() call after a 16-character chunk was displayed, and then display the next 16-character chunk.
That worked fine, but looked kinda clunky; plus some people read faster or slower than other people. So, my
next hack was to display a message chunk until the user pressed a key on the Serial monitor. For my specific
application, this worked okay, but what if I faced a similar problem down the road and didn’t use a PC as
part of the solution, or I didn’t want the user to have to press a key or switch? Then what? Okay, what’s your
solution? No, really—stop, think for a few minutes, and design a solution that you feel overcomes whatever
shortcomings you perceive.

The first thing you have to realize is that my solution may be a lesser solution than your solution.

After all, if I had all the “perfect” answers, I'd be rich and not writing books during my retirement. (Well, I'd
probably still be writing, as I actually enjoy it.) Either way, you should try to implement your solution before
you read about mine. So, go build your solution and come back after you have it working. Then you’ll be able
to compare the two.

My Solution

Before I get into my solution, I need to point out that there is one LCD display I absolutely love to use.
It's a 16x2 white-on-blue LCD using the Inter-Integrated Circuit (I2C) interface from Yourduino
(http://yourduino.com/sunshop2/index.php?1l=product detail&p=170). The display is reasonably
priced ($5.75), is very fast, and uses only two pins. It took me less than 30 seconds from out-of-the-box
to completely working. If you want an easy-to-use LCD display, it doesn’t get any easier than this one.
I'm sure there are other I2C LCD displays available on the Internet, too.

Anyway, my solution was to implement horizontal scrolling of the second line. The Yourduino display
takes advantage of an LCD library written specifically for an I12C display. You can download the library from
https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads.

(You may have to rename any library that has the same matching folder name.) The library, however,
does not implement horizontal scrolling, so we need to write that function ourselves. To do that, let’s
diagram how we want it to work. We’ll assume that the message we want to display on the second line

314

www.it-ebooks.info

http://yourduino.com/sunshop2/index.php?l=product_detail&p=170
https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads
http://www.it-ebooks.info/

CHAPTER 13 /" INTERFACING TO THE OUTSIDE WORLD

is 40 characters long. The second line of the LCD can be thought of as 16 boxes, each capable of holding
one character:

We'll assume that the message is: “We will meet for lunch at noon at the Twin Lakes Restaurant.”
Therefore, our initial state of the display looks like this when we display the first part of the message that fits

on the display:
1 2 3 ‘ 4 5 ‘ 6 7 8 9 10 11 ‘ 12 13 14 15 (16 ‘
w ¢ w i 1 1 m ¢ 8 t f 0 r

After a moment’s pause, we need to push all of the letters on the display one position to the left and update
position 16 with the next character in the message. Therefore, we want the display to look like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

w i 1 1 m e e t f o r 1

We keep repeating this process until the entire second message is displayed. After the complete
message is displayed, we can either stop or redisplay the entire message again.

So, how would you code this algorithm? You should fall back to the Five Program Steps. The
Initialization Step should create the LCD object for the display, and we likely will need to define some global
variables. It seems likely that we will need char arrays for the first and second message lines (msgl, msg2),
and perhaps symbolic constants for rows and columns. Because we want the message to scroll at a readable
speed, we will likely need a delay of some stated milliseconds while the message is scrolled. That delay
value, too, will likely be a symbolic constant since we will want to experiment with the length of the delay.

The Input Step collects the message to be displayed. In our test case, we are just going to hard-code
a message string during testing. In actual use, the message could come from any device that is capable of
delivering a character stream. It could be the Serial object, a database connection, a Wi-Fi connection, an SD
card reader. . . whatever. The point here, however, is to develop a function capable of horizontal scrolling.

The Process Step involves reading the input stream and formatting the characters into the strings that
can be passed to the Display Step. It is the Display Step that is the focal point of this exercise. As usual, there
is no Termination Step.

So, how do you want to scroll the display? We know we need to “slide” the message from right to left
behind a fixed 16-character “window.” This suggests a for loop to march through the message array in some
fashion. So, let’s use that as a starting point.

315

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * INTERFACING TO THE OUTSIDE WORLD

Listing 13-5 presents our scroll program. There’s really nothing unusual about the global definitions
or setup(). The Serial object is actually not used, but I added it in case you wanted to add some debug print
statements while testing. Note how I use #define DEBUG to toggle the scaffold code.

Listing 13-5. Scroll LCD Display
//#define DEBUG // Uncomment if you want to add debug prints

#include <Wire.h> // Comes with Arduino IDE
// Get the LCD I2C Library here:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads

#include <LiquidCrystal I2C.h>
#define COLS 16
#define ROWS 2
#define PAUSE 300

// For the Yourduino I2C LCD display:

// set the LCD address to 0x27 for a 20 chars 4 line display
// Set the pins on the I2C chip used for LCD connections:

// addr, en,rw,rs,d4,ds5,d6,d7,bl,blpol

// Set the LCD I2C address
LiquidCrystal I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);
char msgi[] = "From: Jill";
char msg2[] = "We will meet for lunch at noon at the Twin Lakes Restaurant”;

void setup()

#ifdef DEBUG

Serial.begin(9600); // For debugging, if needed..
#endif

lcd.begin(COLS, ROWS); // init lcd for 16 chars 2 lines
}

void loop()
{

int len;

len = strlen(msgl);

if (len > COLS) { // Truncate From details if too long
msg1[COLS] = "\o';

}

lcd.setCursor(0,0); //Start at character 4 on line 0

lcd.print(msg1);

len = strlen(msg2);

if (len <= COLS) { // Second part short enough to fit?
lcd.setCursor(1, 0);
lcd.print(msg2);

316

www.it-ebooks.info

https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads
http://www.it-ebooks.info/

CHAPTER 13

} else {
ScrollDisplay(msg2, 1); // Need to scroll the message

}
delay(4000);

/*****

The purpose of this function is to scroll a message across
a line of the display.

Parameter list:
char msg[] the message to scroll
int row the row for scrolling

Return value:
void
*****/
void ScrollDisplay(char msg[], int row)
{
int i;
int j;
char window[COLS + 1]; // Enough room for message + null

strncpy(window, msg, COLS);

window[COLS + 1] = "\0';

lcd.setCursor(0, row); // Show first part...
lcd.print(window);

delay(PAUSE);

j = COLS;
do {
for (i = 0; i < COLS - 1; i++) { // Copy old part
window[i] = window[i + 1];

window[i] = msg[j]; // Add new characcter
lcd.setCursor(0, row);
lcd.print(window);
delay(PAUSE);
Jwhile (msg[++j]);

INTERFACING TO THE OUTSIDE WORLD

In loop(), we determine the length of the message string; and if the second part is too long to fit a
single LCD display width, the ScrollDisplay() function is called. Within the ScrollDisplay() function, we
define a COL + 1 window (e.g., window(]) in which to scroll the message. Because we know the message
is too long to display, we copy the first COL characters from the message to the display window using this

statement:

strncpy(window, msg, COLS);

www.it-ebooks.info

317

http://www.it-ebooks.info/

CHAPTER 13 * INTERFACING TO THE OUTSIDE WORLD

strncpy() is a standard library function that copies up to COLS characters from msg/] to window/(]. The code
then displays the first part of the message string held in window/(] on the LCD display.

Tip Iencourage you to study the standard C library string functions. See www. techonthenet.com/c_
language/standard library functions/string h/.You should study all the str*() and mem™() functions, as
they solve a lot of common programming tasks. | would also encourage you to avoid the String class. While that
class does bring a lot to the table, | find it bloats the code size rather noticeably. Use a char array instead.

The program then uses a do-while loop to scroll the rest of the message. Note how the for loop has the
effect of moving each character one screen column to the left, giving the illusion of horizontal scrolling. When
the loop completes, we update the last character position with a new character from the message. The code
then sets the cursor and displays the window/]line. The delay() call is necessary to keep the display on the
screen long enough to read. You can play around with the delay() argument to suit your preference. We used a
do-while because we want to test for the end of a message after the current character is scrolled.

Conclusion

In this chapter I tried to show you how easy it is to interface your Arduino with the outside world. We haven’t
even scratched the surface. A little work searching the Internet will turn up hundreds of projects that use all
kinds of sensors. Because of the Arduino’s popularity, there are dozens of inexpensive sensors, shields, displays,
and other add-ons available with which you can experiment. You can even use an OLED display that’s less than
1-inch square, but is capable of 128x64 graphics! Dig around a little and you'll be amazed what you will find.

EXERCISES

1. Why is it not a good idea to use the Serial object when you are using interrupts
in your project?

Answer: The reason is because the Serial object itself uses interrupts, which means that
other interrupts may be missed when the Serial object is active.

2. If pinMode() can be used to set pins, why should you bother learning about port manipulation?

Answer: Direct port manipulation is a little faster and allows you to set multiple pins at the
same time.

3. Along the same lines, why use port manipulation for interrupts when you can
use attachinterrupt()?

Answer: Same answer—it is more efficient and it can set multiple pins at once.

4. Why would you choose to use the SPI or 12C interface for an LCD display instead
of the standard interface used in the IDE examples?

Answer: The SPI and 12C interfaces use fewer pins, plus the interfaces can control multiple
devices if needed. Note that using these interfaces requires the use of an LCD display that
has the SPI or 12C hardware as part of the display.

318

www.it-ebooks.info

http://www.techonthenet.com/c_language/standard_library_functions/string_h/
http://www.techonthenet.com/c_language/standard_library_functions/string_h/
http://www.it-ebooks.info/

CHAPTER 13 I INTERFACING TO THE OUTSIDE WORLD

5. The Arduino IDE allows you to use the String class instead of char arrays for
strings. Why did | avoid the String class in this chapter?

Answer: The String class makes a lot of string manipulation very easy, but at a price I'm not
willing to pay. Write a program using the String class and then write the same program using
a char array. In most cases, the String class version will consume about 30% more memory.

6. lasked you to study the str*() and mem*() functions. Why did | do that?

Answer: Because those functions are used over and over in programs—so you need to
learn how to use them. It will save you time (and probably memory) as you develop your
programs. Indeed, learning about what’s available in different libraries is probably one of
the most efficient uses of your time that you can pursue while learning C.

7. Rewrite the ScrollDisplay() function in Listing 13-5 without using a for loop.

Answer: | added this exercise to see if you could apply what you learned in question 6. The
fact that you're reading this suggests that you are interested in doing the exercises. The
benefit of that drive is learning a little bit more than those who just skip over the exercises.
Please try to do this on your own before you read my solution. At the very least, explain to
yourself how | got rid of the forloop and how it works.

Viakalolot)

The purpose of this function is to scroll a message across
a line of the display.

Parameter list:
char msg[] the message to scroll
int row the row for scrolling

Return value:
void
*****/
void ScrollDisplay(char msg[], int row)
{
int i;
int j;
char window[COLS + 1]; // Enough room for message + null

strncpy(window, msg, COLS);

window[COLS + 1] = '"\0';

lcd.setCursor(0, row); // Show first part..
lcd.print(window);

delay(PAUSE);

319

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 * INTERFACING TO THE OUTSIDE WORLD

j = COLS;

do {

memmove (window, &window[1], COLS); // No more for loop!
window[COLS - 1] = msg[j]; // Add new character

lcd.setCursor(0, row);
lcd.print(window);
delay(PAUSE);
twhile (msg[++j]);

}

320

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

A Gentle Introduction to Object-
Oriented Programming and C++ -

The purpose of this chapter is singular: I want to teach you enough about object-oriented programming
(OOP) and C++ so that you can look at the source code of a library header (*.k) file and its associated C plus-
plus (*.cpp) file and have some idea of what the code is doing. To say that I (or anyone else) can teach you
C++ in one chapter is either a lie or a REALLY long chapter. Still, it’s worthwhile having an idea of what OOP
is and what it brings to the programming table. This chapter builds on information contained in Chapter 12,
so make sure that you have already read that chapter.

C++ is not the only OOP language available in the world of programming. Many other languages could
be used (e.g., Java, C#, Visual Basic, Python, Ruby, etc.), and each has its own strengths and weaknesses.
However, given that the Arduino IDE is built upon the Open Source C++ compiler, it’s obvious that any OOP
coding is done in C++. For that reason, the discussion in this chapter is couched in terms of C++. While there
are some minor variations, most of what’s said in this chapter applies to many other OOP languages as well.

The OOP Trilogy

The core of OOP programming and its benefits can be explained in terms of the OOP Trilogy: encapsulation,
inheritance, and polymorphism. Let’s take a quick look at each of these elements of OOP.

Encapsulation

You already have some idea of what encapsulation means: data hiding. When we discussed scope in
Chapter 7, I explained how limiting the visibility of a piece of data by encapsulating it in the most restrictive
scope level possible makes it easier to test and debug a program. Encapsulation means that access to a piece
of data is restricted. By having restricted access, any time that piece of data has a bogus value, you at least
have a well-defined starting point from which you can ferret out what the problem is.

Back in the “bad ole days,” all variables had what we now call global scope and many languages (e.g.,
Basic) had “typeless” data. That is, any variable could hold string, floating point, or integer data. Debugging
was a nightmare. Creating data types and then encapsulating by using the concept of scope made life
much easier for the programmer. OOP simply carries encapsulation one step further by hiding the data in
something called a class. (I explain what a class is later in this chapter.)

© Jack Purdum 2015 321
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0_14

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_12
http://dx.doi.org/10.1007/978-1-4842-0940-0_7
http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

Inheritance

Inheritance is the ability to have a “ground level” description of a piece of data, and then further refine it to
create a new type of data. For example, some time ago I was asked by a real estate investor to write a package
that would track their real estate holdings. The investor has three basic types of buildings: residential,
commercial, and apartments. Each type of rental property had its own special considerations. While the
number of bedrooms affects both residential and apartment properties, it has no impact on commercial
properties. Likewise, commercial properties had to have so many parking places, of which some fraction
had to be for handicap parking. Also, bathroom facilities were affected by the square footage of the building.
There were even snow removal restrictions that varied by property type. So, how do you minimize the
complexity of the software?

You can reduce the complexity by looking for common features for all property types, and then worry
about the details. For example, each property had an address, property taxes, purchase price, insurance cost,
mortgage lender, mortgage amount, and so forth. We could create variables for these aspects of a property
in something called building. We could then create some other object and track the details that make each
building type different. Figure 14-1 shows this relationship.

building

uls au

residential commercial apartment

Figure 14-1. Building types

What we are showing in Figure 14-1 is that a residential, commercial, and apartment buildings are all a
special type of a base type called building. In other words, these three special types of building “inherit” all
of the basic elements shared in common for all buildings. The arrow pointing from each of the three specific
building types is called an “is a” relationship, which says that each of those special building types inherits all
of the traits of building.

OOP jargon often refers to building as the base class; the three building types are subclasses of the
base class. You will also hear the base class called the parent class and the subclasses called child classes.
The interpretation is the same for either set of terms. The important thing to note is that, instead of three
sets of property taxes, mortgages, addresses, and types of variables, we can push that into a common
denominator class (i.e., the base class) and simply let the subclass inherit those member’s variables from
the base class. By using inheritance of the base class, you've reduced the code for tracking those variables
by two-thirds what they would be otherwise. Imagine the code savings if you are a university tracking
50,000 students!

322

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

Polymorphism

The concept of polymorphism literally means one thing has many shapes. In OOP programming, it means
that a method can have a single name, but can behave differently based upon the arguments that are passed
to it. You have used this yourself when you used something like the following:

int val = 10;
Serial.println(val);
Serial.println(val, HEX);

In this example, the Serial object’s println() method is called twice, each using a different argument list.
As a result, the first call prints val using the (default) base 10 numbering system, while the second version
displays val in hexadecimal (base 16).

Sometimes you may read about method overloading. Method overloading is actually polymorphism in
action because it allows you to “overload” a method name with multiple versions of its functionality based
on its signature. As long as the argument list of the methods are different (e.g., different signatures), the
compiler will be able to figure out what your intent is and generate the proper code even though the method
names are the same.

The OOP Class

Perhaps the common denominator of all OOP languages is the concept of a class. A class is a formal
description of something called an object. An object is simply a description of something that you are
interested in. Let’s create a simple example to illustrate what a class is.

Suppose you are looking for a new job. You make an application and the company wants to have a
face-to-face interview. Because you live about a thousand miles away, the company calls you to set up the
interview and arranges to meet you at the airport. During the discussion, you tell them that you're a female,
about 54" tall, blonde hair, slim, and that you will be wearing a black business suit and carrying a black
attaché case. The company guys says he’s male, about six-feet tall, graying hair, overweight, and will be
wearing a gray business suit. You plan to meet near baggage claim.

During this phone call, you are both describing what we might call a person object. The person object
has variables for height, sex, weight, clothing, and hair color. Does this sound familiar? Doesn’t this data
scheme sound a little bit like a C struct? You could declare a Person struct like:

struct Person {
int height;
int sex;
int weight;
char wearing[20];
int hairColor;

};

Recall that each variable in the struct is called a member of the struct. A major difference between a
struct and an OOP class is that a class allows you to add functions to the struct; something a struct does not
allow. In OOP parlance, the functions that are contained within a class are called class methods. You've been
using class methods from day one each time you called Serial.print(). Serial is the class object and print() is
the class method. (I discuss the dot operator a little later.)

323

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

Why was I careful to say: “You could declare a Person struct...”? If you remember, the structure
declaration is just a template for a structure variable. It's not until you do something like

struct Person candidate, interviewer;

that you actually define structure variables that we can use in our program. Now let’s move our
understanding of struct to a class.

Inside an OOP Class

Let’s take a look at one of the more simple C++ libraries. Listing 14-1 presents the EEPROM.h header

file. If you look at the first and last line of the file, you will see the #ifndef-#endif preprocessor directives,
which we discussed in Chapter 11. Almost all library files have a similar starting format. In essence, what
these preprocessor directives say is: “If EEPROM_h is not yet defined, read the contents of this file into the
program. If it is defined, don’t read this file””

Listing 14-1. The EEPROM.h Header File

#ifndef EEPROM_h
#define EEPROM h

#include <inttypes.h>

class EEPROMClass

{
public:
uint8 t read(int);
void write(int, uint8 t);
b

extern EEPROMClass EEPROM;
#endif

This is a bit of defensive coding to prevent us from “double including” the contents of a header file. If we
didn’t do this, we might get a bunch of duplicate definition error messages.
After including the inttypes.h header file, the code has the following statement:

class EEPROMClass
{

This statement says: What follows from the opening brace to the closing brace in this file is a declaration
of what a class named EEPROM(Class contains. The remaining lines say that there are two public methods
named read() and write():

public:
uint8 t read(int);
void write(int, uint8 t);

};

extern EEPROMClass EEPROM;

324

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_11
http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

The keyword public means that access to the following two methods is readily available through a class
object.
Class object?

OOP and Class Objects

The class declaration code presented in Listing 14-1 is like a blueprint for a house. It tells you the features
of the house and how it is to be constructed, but house blueprints are not a house. Just like you can’t live in
a set of blueprints, the declaration of a class is not something you can directly use in a program. To define a
class variable that we can use, we need to use something like the statement:

EEPROM myEEPROM;

However, because each Arduino board only has one EEPROM memory bank, near the bottom of the
header file you see the statement

extern EEPROMClass EEPROM;

which defines an object of the EEPROMClass and calls it EEPROM. The variable named EEPROM is an
object of the EEPROMClass. (Recall that the keyword exfern means the actual variable is defined in another
file. In this case, it means that you will define the EEPROM object in your sketch. Look at one of the EEPROM
library examples and you'll see how this works.) You now have defined a variable that you can use in your
own program. Because of the public keyword in the class declaration, you can now use statements like

EEPROM.read(); // Access to the read() method using the EEPROM object
EEPROM.write(); // « write() “

to read and write the EEPROM memory on your Arduino board.

One more analogy: A C++ class is like a cookie cutter. The members of the class describe the angles
necessary to form the cookie cutter, ounces of dough, and so forth. By changing the angles, you can have
diamond-shaped cookies, Christmas tree cookies, Halloween cookies, and so forth. The class members
dictate the shape, whether it has sprinkles or frosting, whether it uses a bake() or fry() method, and so forth.
Regardless of the class declaration, nothing happens until you press the cookie cutter (i.e., the class) into the
dough (i.e., memory), and extract the actual cookie (i.e., the object of the class), and perhaps apply a method
(i-e., bake()) so that you have something useful to dunk into a glass of milk. The process of using a class
declaration to define a class object is called object instantiation.

Simply stated, a class is the set of blueprints for a house and an object of the class is the actual house
itself. It is the class object that you use in your program.

public vs. private in a Class

The keyword public means that you can directly access that member or method through the class object.
Suppose we modified Listing 14-1 as Listing 14-2.

Listing 14-2. The EEPROM.h Header File

#ifndef EEPROM_h
#define EEPROM_h

#include <inttypes.h>

325

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

class EEPROMClass
{
private:
uint8_t bankSize;

public:
uint8 t read(int);
void write(int, uint8 t);
void clear();

};
extern EEPROMClass EEPROM;
#endif

Notice that we added a new method named clear(). We placed this prototype declaration for the method
in the public section of the header file so that it is accessible via the class object. That is, we could call it using
EEPROM.clear(). We also added the lines

private:
uint8_t bankSize;

to the class declaration. The keyword private means only methods defined within the class have access
to the class member named bankSize. Perhaps the clear() method uses bankSize to clear the contents of
EEPROM memory.

Wait a minute? If banksize is private to the class and hence not accessible outside of the class, how can
it ever be changed? Ah ... great question, and this highlights one of the strengths of OOP design. If you want
to be able to change the state of a private member of a class, like bankSize, you need to write a new method,
perhaps called SetBanksize(), to be able to change the class member named bankSize while the program is
running. (You could, of course, initialize the member to some value as part of its definition, such as:

private:
uint8_t bankSize = 512;

However, by adding a new public method, you are allowing a private class member to be changed while
the program is running.)

Big deal. . . what’s the advantage of that? Why not just make the member public? Well, the advantage is
that you can add some form of error checking in SetBanksize(), giving you better control over the data that
gets “into” the class object. If you make bankSize a public member of the class, the programmer could stick
in some stupid value (e.g., -513) they want and, perhaps, break something further down the line. By forcing
private members to be changed through a public method that you control, you at least have a chance to catch
bogus values before they get into your program. This approach makes testing and debugging easier, too.

Finally, it sometimes helps to think of class members as the attributes, or properties, of the class (e.g.,
weight, height, gender, etc.) Indeed, some programmers refer to class members as class attributes or class
properties. As such, they are like nouns in a sentence: they describe what’s in the class. Class methods, on
the other hand, often describe some action that is performed on the class members: read(), write(), clear(),
setCursor(), and so forth. Because they are action-based, they are like the verbs in a sentence. Because the
class members describe the object and methods provide a means of changing those members (especially
when they are defined using the private storage specifier), changing the value of a member implies changing
the state of the object. Think about it.

Now let’s look inside the EEPROM cpp source code file.

326

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

The EEPROM.cpp File

Listing 14-3 shows what’s in the EEPROM.cpp source code file. Not much there, actually. The first few lines
use the #include preprocessor directive to read in the necessary header files needed by the code. The #ifndef
preprocessor directive in the header file prevents us from “double including” the three include files found in
Listing 14-3. Note that we include the EEPROM.h header file we discussed earlier.

Listing 14-3. The EEPROM.cpp Source Code File

/*
EEPROM.cpp - EEPROM library
Copyright (c) 2006 David A. Mellis. All right reserved.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

JFFFRRkkskskskskskokskokkokskokokskskskskokokokokokokokokokskokskotokkokokokskokokskokskostokokokolokskokokskskskstokskokokokokokokokskoksokokok

* Includes
**/

#include <avr/eeprom.h>
#include "Arduino.h"
#include "EEPROM.h"

JFFRRRRkskkkkkokokokokokokskskskskskkokkokokokokaskokskskkotokokokolokokakokskskskotokokokolokskokoksksksksfokokokolokokokokosk skl ook

* Definitions
KKK RAAFRAAFF AR KKK KKK AR KR AAF AR AAF AR KA AF AR KKK,

JFFFRRRkskskskskskokkokokokskokoskoskskokskokokokokokokokokok skt skokolokskokokskokskokokoskokolokoskokokskskskskokskokolokokokokokskok ok kok

* Constructors
***/

JRRRR Rk ks kk ko kkk kbbb kb kb kb kb bk bk kb kb kb kb kb kb kb kb kb kb kb kb kb kb kb ok sk ok ok ok

* User API
**/

uint8 t EEPROMClass::read(int address)
{

}

return eeprom read byte((unsigned char *) address);

327

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

void EEPROMClass::write(int address, uint8 t value)
{

}

EEPROMClass EEPROM;

eeprom_write byte((unsigned char *) address, value);

The first line of code is
uint8 t EEPROMClass::read(int address)

which is the start of the definition of the read() method. The line is no different than the function signatures
you read about in Chapter 6. It states that the read() method is designed to return a uint8_t data type. If you
look inside the Arduino.h header file, you will find that uint8_t is another way of saying: “unsigned 8-bit
integer data type” So what does the following mean?

EEPROMClass::

The double-colon (: :) is called the scope resolution operator and its purpose is to tell you which class
contains the current method being examined. In other words, to verbalize the statement

uint8 t EEPROMClass::read(int address)

you might say: “The read() method is a member of the EEPROMClass class, takes an integer argument
named address, and returns an unsigned 8-bit integer”” If you want another word pattern for the scope
resolution operator, you could substitute: “contains the member method named”. So a less complete reading
of the line would be: “The EEPROM(Class contains a member method named read().” In other words, the
scope resolution operator tells you the class for which a given method is defined. After all, a write() method
from the EEPROMClass is only one class that uses the name write() for one of its methods. Many other
libraries use the same write() name (e.g., Serial, Wifi, Servo, SD, etc.) but the scope resolution operator
allows the compiler to keep everything tied to the proper class.

Note the last statement in the EEPROM.cpp file:

EEPROMClass EEPROM;

This is the same as the last line in the header file, minus the keyword extern. This makes sense when
you remember what extern means. The extern keyword is telling the compiler that the variable named
EEPROM is defined in some other file, but let me use it in this file as an EEPROMClass object. In the header
file, therefore, EEPROM is a data declaration statement. If that’s the case, and it is, then some other file must
define EEPROM. That'’s what this last statement in EEPROM.cpp does: it defines EEPROM so we can actually
use it in our programs (i.e., it has an Ivalue).

If you load the eeprom_read.ino sample program in the IDE, you will find that the first line in the loop()
function is:

value = EEPROM.read(address);
Because variable EEPROM is an object of the EEPROMClass, you can use it to access the read() method
of the class using the dot operator. The dot operator is used in much the same way as you used it with a struct

variable. With a class object, however, you use the dot operator to bridge the gap between the class object
and one of the object’s members or methods. Simple!

328

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

These two files also illustrate another important fact about a properly constructed library: a well-
designed header file does not contain executable code. That is, header files contain data declarations, not
data definitions. Nor do header files contain definitions of class methods. Header files may contain data
declaration for a class, but the instantiation of a class object is relegated to the associated .cpp or program
(*.ino) files.

Add julian() to Dates

Sometimes it’s useful to know the number of days between two dates. For example, it's common to send an
invoice that states “2-10 net 30" The interpretation is that the billed company can deduct 2% of the invoice cost
if they pay the balance within 10 days. Otherwise, the full amount is to be paid within 30 days. Calculations
like this need to know the number of days between two specified dates. At the heart of such calculations is
determining a Julian date. A Julian date specifies the number of days from January 1 to a specific date.

If you think about it, the only wrinkle is that you have to correct for leap years. Otherwise, it’s pretty
simple. Listing 14-4 presents the code for the julian() method.

Listing 14-4. The julian() Method

Viaioiuio

Purpose: Determine the numbers of days between the given date
and Jan 1 of the same year. Algorithm taken from C
Programmer's Toolkit, Jack Purdum, Que Corp., 1993,

p.257.
Parameters:
int day The day to test
int month The month to test
int year The year to test (e.g., 2015)
Return value:
int The number of days, including the one given
*****/

int Dates::julian(int day, int month, int year)
{
static int runsum[] = {0, 31, 59, 90, 120, 151, 181,
212, 243, 273, 304, 334, 365};
int total;

total = runsum[month - 1] + day;
if (month > 2) {

total += IslLeapYear(year); // Adjust for leap year
}

return total;

The code is straightforward. The array runsum/] is a running total of the number of days from January
1 to the start of the next month. Question: Why did I define the array using the static storage modifier? If you
leave the static modifier out of the definition of the array, then each Dates object you instantiate creates its
own copy of the array. That is,

Dates myBirthday, yourBirthday;

329

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

instantiates two Dates objects. If we omit the static keyword, the runsum/] array is created for each
object. However, since we never change the contents of the runsum/(] array, why not share it with all
instantiations of a Dates object? That’s exactly what the static storage specifier does: It allocates memory
for only one copy of the array and all Dates objects share that single array definition. The good news is
that this saves us 24 bytes of memory for each Dates object our program instantiates. The bad news is
that the compiler will always create that one copy of the array even if you never instantiate a single Dates
object. Still, why would you include the Dates library if you didn’t intend to use it? True, you might not
use the julian() method, but the array is still going to be created anyway. If that’s the case and you're
really hurting for free memory, you can always cannibalize the Dates library and just extract only those
methods you need.

Note how we use IsLeapYear() to adjust the day count when it is a leap year. It's calculations like this
that make returning an int from the method easier to use than returning a boolean.

Before you can use the julian() method of the Dates class, you need to modify the Dates header file so
the compiler knows a new method has been added to the class. How do you do that? Pretty simple, actually.
Just add the method’s signature to the header file, as the following snippet shows:

int IsLeapYear(int year);

void GetEaster(Dates *myEaster);

char *DayOfTheWeek(int day, int month, int year);

char *GetDayOfWeek();

int julian(int day, int month, int year); // New method!

Obviously, the method prototype appears in the public section of the header file so we can access it
using the class object’s dot operator.

No doubt you noticed that there are two methods presented in the snippet that we haven’t discussed
yet. (You did notice, didn’t you?) I added these two new methods simply to show how to use a private
member of a class. The next section discusses these two methods.

Adding a private Class Member

The following code snippet is extracted from the Dates.h header file:

class Dates

{
private:
char today[4]; // Hold string for day of week
public:
#define ASCIIZERO 48 // character for '0' in ASCII

The snippet shows where we placed the definition of the today[] character array. It is used to hold a
string representing the day of the week (e.g., “Fri”) and we have made it private to the class. All of the day
abbreviations use 3 bytes of memory, but we need the 4" byte for the null termination character. Again,
defining foday[] in the private definition section of the Dates class means that only members of the class can
access it directly. So, how can we access today[]? Well, that’s the purpose of the GetDayOfTheWeek() method.
As you will see, this example is a bit contrived and a little on the RDC side, but it still makes a point. The code
for both methods is presented in Listing 14-5.

330

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

Listing 14-5. The Day of the Week Method

Vadkiass
Purpose: Determine day of the week for given date. Algorithm
taken from C Programmer's Toolkit, Jack Purdum, Que

Corp., 1993, p.259.

Parameters:
int day The day to test
int month The month to test
int year The year to test (e.g., 2015)

Return value:

char *
*kkkk

char *Dates::DayOfTheWeek(int day, int month, int year)
{

const static char days[7][4] = {"Sun", "Mon", "Tue", "Wed",
IlThull, IlFrill’ llsatll};

int index;

if (month > 2) {
month -= 2;
} else {
month += 10;
year--;
}
index = ((13 * month - 1) / 5) + day + (year % 100) + ((year % 100) / 4)
+ ((year / 100) / 4) - 2 * (year / 100) + 77;
index = index - 7 * (index / 7);
strcpy(today, days[index]);
return today;

}

/*****
Purpose: Get the object's current day of the week

Parameters:
void

Return value:
char * A 3 character string for the day

WARNING: This method is coupled tightly to DayOfTheWeek() and

assumes it was called prior to calling this method.
*kkkk /

331

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

char *Dates: :GetDayOfheek()
{

return today;
}

Note the warning in the GetDayOfWeek() description. It points out that the method can only return
something useful if DayOfTheWeek() was called first. This is necessary to do that so the today(] class
member gets set. This is a bad design because it couples the two methods together so much that one can'’t
work without the other. But, as I said, 'm doing it for teaching purposes, and teaching using a bad example
can also be instructive. (Could you improve on this bad design? Sure. Move the method prototype for
DayOfTheWeek() into the private section of the class, and place the actual method call as the first line of
GetDayOfWeek(). Because DayOfTheWeek() is now private, it cannot be called outside the class, thus making
it a helper function for GetDayOfWeek(). However, you would now have to pass in the month, day, and year
as parameters to GetDayOfWeek(). It’s still a little clunky, but it would work.)

The actual algorithm for determining the day of the week is based on the lunar calendar and is fairly
complex. However, you should be able to explain why the static storage modifier was used for the days/][]
array. If not, go back and reread the previous section so you do understand why. You do not want to appear
unprepared when this discussion comes up at the next cocktail party.

The today[] class member has the day of the week for the date that was passed to the DayOfTheWeek()
method. The GetDayOfWeek() method can then be called to extract the day from the today[] array, even
though today(] is private to the class. You may hear other programmers refer to methods that access private
members of a class as accessor methods.

Constructors and Destructors

When you use C++, things aren’t always what they seem. As we mentioned before, a class declaration does
not automatically instantiate an object of the class. You must do that yourself. With the Dates class, you can
define a Dates object using the syntax:

Dates myDates;

The result is a Dates object that you have instantiated (or defined) with the name myDates. What is
not so obvious is that, behind your back, the C++ compiler created a constructor method for you that is
responsible for defining the members of the Dates class as part of an invisible background process. The
constructor automatically sets all values types to 0 and all reference types to null. So when you defined
the myDates object, there’s a lot of quiet, sneaky, stuff going on that you didn’t write. This is the way things
are supposed to happen when you use C++. The problem is that in the Arduino world, you don’t have any
control over the way the default constructor behaves.

Consider the code in Listing 14-6.

Listing 14-6. Using the Dates Library

#include "Dates.h"

Dates myDates; // This calls the default constructor
void setup() {

int i;
int total;

332

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

Serial.begin(9600);
//Dates myDates; // Default constructor, no initializer
//Dates myDates(2015); // Constructor with initializer

for (i = 2000; i < 2017; i++) {
Serial.print(i);
Serial.print(" is ");
if (myDates.IslLeapYear(i) == 0) {

Serial.print("not ");

}
Serial.print("a leap year, Easter is on: ");
myDates.myEaster.year = i;
myDates.GetEaster (&myDates);
total = myDates.julian(3, 5, i);
Serial.print(myDates.myEaster.easterStr);
Serial.print(" jullian days to May 3: ");
Serial.println(total);

}

}
void loop() {}

We have added two constructors to the Dates.cpp file and added their prototypes to the associated
header file. The two constructors are presented in Listing 14-7. We have left off their descriptions to keep the
listings as short as possible. The first constructor has no argument list, whereas the second one is the syntax
for initializing the year member we added to the private section of the header file.

Listing 14-7. Adding Two Constructors to Dates.cpp
Dates: :Dates(void)

{
Serial.println("We're in the constructor.");
}
Dates::Dates(int year):year(year)
{
Serial.println("We're in the init constructor.");
}

When we run the version using the default constructor presented in Listing 14-7, the output looks like
Figure 14-2. Even though the default constructor is called, no output is seen. The reason is because the Serial
object hasn’t been initialized yet.

333

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

2000

2011
2012

2016

2001 i
2002 i
2003 i
2004 i
2005 i
2006 i
2007 1
2008 i
2009 i
2010 i

12013 i
2014 i
2015 i

a leap year, Easter is on:
not a leap year, Easter is
not a leap year, Easter is
not a leap year, Easter is
a leap year, Easter is on:
not a leap year, Easter is
not a leap year, Easter is
not a leap year, Easter is
a leap year, Easter is on:
not a leap year, Easter is
not a leap year, Easter is
not a leap year, Easter is
a leap year, Easter is on:
not a leap year, Easter is
not a leap year, Easter is
not a leap year, Easter is
a leap year, Easter is on:

04/23/2000 jullian days to May
04/15/2001 3jullian days to
on: 03/31/2002 3jullian days to
on: 04/20/2003 jullian days to
04/11/2004 Jjullian days to May
03/27/2005 3jullian days to
on: 04/16/2006 jullian days to
on: 04/08/2007 Jjullian days to
03/23/2008 jullian days to May
04/12/2009 jullian days to
04/04/2010 3jullian days to
on: 04/24/2011 3jullian days to
04/08/2012 3jullian days to May
03/31/2013 3jullian days to
on: 04/20/2014 3jullian days to
on: 04/05/2015 3jullian days to
03/27/2016 3jullian days to May

on:

on:

on:

on:

on:

3: 124
May 3:
May 3:
May 3:
3: 124
May 3:
May 3:
May 3:
3: 124
May 3:
May 3:
May 3:
3: 124
May 3:
May 3:
May 3:
3: 124

123
123
123

123
123
123

123
123
123

123
123
123

Newine

-

| (9600 baud

-

f [¥] Autoscroll

Figure 14-2. Using the Default Constructor

Now, comment out the global definition of myDates and uncomment the first definition inside of
loop(), recompile, and run the program. The output appears in Figure 14-3. If you look at the first line
in Figure 14-3, you can see that the no-initializer constructor has been called. If you uncomment the
constructor that passes the year as an argument in sefup(), the proper constructor is called. You should
be able to convince yourself that the parameterized constructor could also be written as what’s shown in
Figure 14-3.

334

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 © A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

.
COM21 (Arduino Uno) B

We're in the constructor.

2000 is a leap year, Easter is on: 04/23/2000 jullian days to May 3: 124
2001 is not a leap year, Easter is= on: 04/15/2001 jullian days to May 3: 123
2002 i3 not a leap year, Easter is on: 03/31/2002 jullian days to May 3: 123
2003 is not a leap year, Easter is on: 04/20/2003 jullian days to May 3: 123
2004 is a leap year, Easter is on: 04/11/2004 jullian days to May 3: 124
2005 is not a leap year, Easter is on: 03/27/2005 jullian days to May 3: 123
2006 is not a leap year, Easter is on: 04/16/2006 3jullian days to May 3: 123
2007 is not a leap year, Easter is on: 04/08/2007 Jjullian days to May 3: 123
2008 is a leap year, Easter is on: 03/23/2008 3jullian days to May 3: 124

2009 is not a leap year, Easter is on: 04/12/2009 jullian days to May 3: 123
2010 is not a leap year, Easter is on: 04/04/2010 jullian days to May 3: 123
2011 is not a leap year, Easter is on: 04/24/2011 3jullian days to May 3: 123
2012 is a leap year, Easter is on: 04/08/2012 3jullian days to May 3: 124
2013 is not a leap year, Easter is on: 03/31/2013 jullian days to May 3: 123
2014 is not a leap year, Easter is on: 04/20/2014 jullian days to May 3: 123 |
#|2015 is not a leap year, Easter is on: 04/05/2015 3jullian days to May 3: 123
2016 is a leap year, Easter is on: 03/27/2016 3jullian days to May 3: 124

[¥] Autoscrol Newine v |9600baud v

Figure 14-3. Constructor in setup()

Dates::Dates(int yr)

{
Serial.println("We're in the init constructor.");
year = yr;

So, when do you write your own constructor, and when do you just rely on the default constructor? If
you have a reason to have a class start with specific values for its members, then you can write a constructor
that meets your specific needs. If you can live with the initial state of the object having its members with the
values 0 or null, there’s no reason to write your own constructor. For example, I once wrote a membership
program for a club in Indianapolis. Because virtually all of the members were from Indianapolis, I initialized
the City and State members of the class to “Indianapolis” and “IN” as default values for any new object
instantiated from the class. Because people do make mistakes, anything you can do to minimize their inputs
is usually a good thing.

335

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

You can also call a destructor in C++, which should free the resources associated with the object. The
syntax is

Dates::~Dates(void)

{
}

and the destructor is called when the object goes out of scope. Note the tilde operator, (~). You can also call it
directly, as in myDates.~Dates(). The goal of a destructor is to allow the resources associated with the object
to be released for reuse.

Truth be told, most Arduino programmers do not use constructors or destructors. We only present this
small discussion about them so you know they exist. If you need to initialize a class member with a value,
most Arduino programmers create a method that initializes the member. This is, for example, the exact
purpose of the Serial.begin() method of the Serial object. You use the begin() method to set the default
state for the baud rate to 9600 baud (in most cases). However, if you feel you need to override the default
constructor for your class, you should research the topic thoroughly. We've only presented enough here for
you to shoot yourself in the foot.

That said, you should be able to read the header and .cpp files you find in the libraries subdirectory and
get a pretty good feel for what the code does. Don’t be afraid to experiment with the library code; especially
the code you find in a library’s examples directory.

Conclusion

Well, our journey through the C language has come to an end. However, that doesn’t mean you are done
learning about C. I've been using C for almost 40 years now and I am still learning new techniques. Anytime
I'have a new programming task, my first stop is an Internet search on the topic of concern. There are a lot of
incredibly bright people out there writing some very good code. Likewise, there is even more RDC out there,
too. Hopefully, as you learn more and more, you'll appreciate elegance of finely crafted code and appreciate
the efforts of those whose shoulders we all stand on.

EXERCISES

1. What is the OOP trilogy?
Answer: The OO0P trilogy is encapsulation, inheritance, and polymorphism.
2. If you wish to make a polymorphic method, what condition must be true?
Answer: The method signatures must be different.

3. If you have a private class member and wish to be able to change it, how
should you do it?

Answer: Write a class method (i.e., an accessor method) that can be called to change the
private member of the class. This affords you the chance to perform error checking on the
new value, too.

336

www.it-ebooks.info

http://www.it-ebooks.info/

4,

CHAPTER 14 = A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

If a private class member is int gender and another member is a boolean
pregnant, how would you handle an input for gender as Male and pregnant as
True?

Answer: This type of error checking is called consistency error checking and it is not easy
to be complete on consistency error checking because there are ill-defined cases. For
example, if gender is Female, and pregnant is True, that seems reasonable until you notice
that she’s 87 years old. How far you carry such error checking depends upon the cost of
being wrong vs. the cost of making sure it’s right.

How is encapsulation enforced in the OOP world?

Answer: If you truly want to encapsulate a variable, you should make it a private member of
a class and then use a public accessor method to provide the means of changing its state.
Any error checking should be part of the method. Once done, the only way to gain access to
the private member is through a class object using the dot operator and the class method.

Do | have to use a class header file and a class .cpp file?

Answer: Technically, no. You could write everything in a single cpp file. However, that's
probably not a good idea and it would be best for you to stick with the *.hand *.cpp model
for now.

337

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A

Suppliers and Sources

This appendix presents information about where you can go for further information on some of the many
Arduino-compatible boards, sensors, and other peripheral devices.

Starter Kits

These are great if you're just getting started, as most include an Arduino-compatible board.

e 16Hertz LLC (www.16hertz.com). The Ultimate Starter Kit (see Figure A-1) has just
about everything you'd want to begin working with an Arduino Uno, including the
board at a very competitive price (about $60). The package includes a variety of
sensors, displays, LEDs, and even a small stepper motor and assorted jumpers. The
company also sells Starter Kits with fewer components at lower prices.

© Jack Purdum 2015 339
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0

www.it-ebooks.info

http://www.16hertz.com
http://www.it-ebooks.info/

APPENDIXA © SUPPLIERS AND SOURCES

e HelloJack03 (http://stores.ebay.com/hellojacko3). This UNO R3 starter kit is
the top-selling kit on eBay, containing 40 types of the most widely used components,
all fully compatible with Arduino. This kit also comes with 26 tutorials for beginners.
It is very competitively priced.

340

www.it-ebooks.info

http://stores.ebay.com/hellojack03
http://www.it-ebooks.info/

APPENDIX A SUPPLIERS AND SOURCES

<8
& o ﬂ i

EEmRE ol = |

“..“....*
g == (N
LIRS [

UL

Figure A-2.

e OSEPP (http://osepp.com). The company offers a number of Arduino-compatible
boards and sensors. Their Starter Kit is complete and includes an Uno-compatible
board. They also have a nicely packaged robotics kit that has everything you need to
build a small robot, including their Uno-compatible board, motors, wheels, and so
forth. It also comes with very good documentation for building and using the robot.

Figure A-3.

341

www.it-ebooks.info

http://osepp.com
http://www.it-ebooks.info/

APPENDIXA © SUPPLIERS AND SOURCES

e Yourduino (http://Yourduino.com). This company sells their YourDuinoRobol
Arduino-compatible board with a variety of starter kits. The company also sells
an 12C 16 x2 LCD display that I really like. Their Yourduino RoboRed is a very nice
Uno clone and I really like how they have brought out the I/0 pins so that they can
be used with female jumpers as well as the standard headers. They have several
different starter kits priced for just about anyone’s pocketbook.

PUSHBUTT

Figure A-4.

Figure A-5.

342

www.it-ebooks.info

http://yourduino.com
http://www.it-ebooks.info/

APPENDIX A SUPPLIERS AND SOURCES

e 4D Systems (www.4dsystems.com.au). This company has a wide product line of
high-end displays with pretty amazing graphics capabilities. While a lot of the
graphics power comes from onboard electronics, it probably makes sense to use
the ATMega2560 family with these displays. The company has online support for a
variety of microcontrollers.

e Seeed Studio (www.seeedstudio.com). Suppliers of many reasonably priced pc
boards, sensors, and shields. They submitted their Seeed Mega 2560 and SD shield
for evaluation. Their 2560 Mega board has one of the smallest footprints I've seen
for this board. I have also purchased several of their other shields, and everything
has been of very high quality and performed as advertised. They also sent a robotic
kit that has everything you need to build a robot. These are extremely high-quality,
machined parts that should produce a rugged and durable system.

Makebi$ck

Make Your ldeas Rock !

Figure A-6.

343

www.it-ebooks.info

http://www.4dsystems.com.au
http://www.seeedstudio.com
http://www.it-ebooks.info/

APPENDIXA © SUPPLIERS AND SOURCES

Figure A-7.

344

Diligent Inc. (www.digilentinc.com). The Max32 board takes advantage of the
powerful PIC32MX795F512 microcontroller. This microcontroller features a

32-bit MIPS processor core running at 80Mhz (quite a bit faster than the Atmel
clock speed), 512K of flash program memory, and 128K of SRAM data memory. In
addition, a USB 2 OTG controller, 10/100 Ethernet MAC, and dual CAN controllers
that can be accessed via add-on I/0 shields and 83 I/O lines. There is a modified
IDE that is an Arduino look-alike and available for Windows, Mac, and Linux. (The
board supports all three.) The modified IDE can be downloaded free at https://
github.com/chipKIT32/chipKIT32-MAX/downloads. I tried several of my sketches
and all ran without modification on the ChipKit Max32. However, the compiler has
some differences ... most of them good! For example, an int data type for this board
uses 4 bytes of storage and a double is 8 bytes, versus 2 and 4 for most Atmel boards.
Depending upon your app, this could be a real plus in terms of range and precision.
If you need a bunch of I/0 lines and a very fast processor, this is a great choice and
clearly worth investigating. I also found the placement of the reset button to be very
convenient.

aw g

7
3
1
3

g
1
5
9

1&&; Max32 ANALOG m‘ =

PIC-M1V-0 84V-0 2 ¢

(A=

www.it-ebooks.info

http://www.digilentinc.com
https://github.com/chipKIT32/chipKIT32-MAX/downloads
https://github.com/chipKIT32/chipKIT32-MAX/downloads
http://www.it-ebooks.info/

Figure A-8.

APPENDIX A SUPPLIERS AND SOURCES

Nextion (http://imall.iteadstudio.com). TFT displays allow inputs to be entered
from the display screen. This display, however, avoids the rat’s nest of wires that TFTs
usually require, and replaces them with its own serial interface using a single port.
The device includes an editor so that you can design your own interface objects. An
onboard SD card stores custom data. There are two sizes: 2.4” and 4.3”, which makes
them small enough for many different applications. The cost ranges between $20
and $35.

345

www.it-ebooks.info

http://imall.iteadstudio.com
http://www.it-ebooks.info/

APPENDIX A

SUPPLIERS AND SOURCES

Tinyos Electronics (http://tinyosshop.com). This company supplies an
Atmega328- compatible board, which is shown in Figure A-9. As you can see, relative
to the pen cap in the photo, this is one of the smallest boards I received, but it ran all
of my sketches perfectly. The board is well constructed and reasonably priced. Also
note that the chip is removable. This means you could load software onto the board,
remove the chip, and place in a bare-bones board with only a chip and a few other
components if you wanted to do so. I used this board a lot while writing this book,
mainly because of its size. The company also sells a wide variety of shields, sensors,
and other products for the Arduino boards.

346

Cooking Hacks (www. cooking-hacks.com). This company supplies a GPS module
that is depicted in Figure A-10. I find this a very interesting piece of hardware and I
hope to do more work with it once this book is put to bed. The web site also provides a
tutorial on using the module, as well as downloadable software for testing purposes.

www.it-ebooks.info

http://tinyosshop.com
http://www.cooking-hacks.com
http://www.it-ebooks.info/

APPENDIX A SUPPLIERS AND SOURCES

Figure A-10.

Specific Parts Sources

There are a number of places where you can go to purchase electronic components for your projects. Some
of the ones I have used are listed next. You should also use eBay and Amazon as sources and references for
parts. With more than 100 purchases on eBay, including from many foreign suppliers, I have never had a
problem.

Bezels

RMF Products (www.bezelsource.com). This company is one of the few that offers bezels for LCD displays
and other components. It’s pretty tough to make an LCD project look professional without something to hide
the fact that you didn’t cut a perfect hole in the project box. The bezels come in different sizes and include

a filter (if you want to use it) and mounting hardware. Depending on the size, you can buy them quantity
one for $7.50 to $8.00. However, if you have a minimum order totaling $25, the cost drops to about $2 each.
I'would opt for about a dozen to get the minimum order size. You will likely use all of them anyway, or you
can sell them to friends (e.g., ham radio club) for their projects.

347

www.it-ebooks.info

http://www.bezelsource.com
http://www.it-ebooks.info/

APPENDIXA © SUPPLIERS AND SOURCES

Figure A-11.

Jumper Wires

Leo Sales Ltd. Good quality jumpers with/without connectors. Carried by numerous domestic stores.
Search the Internet for the closest supplier to you.

Project Cases

Parts Express (http://parts-express.com). Component supplier with good project cases. A variety of
other useful parts, too.

Domestic Parts Suppliers
e All Electronics (www.allelectronics.com). Components supplier.

e Debco Electronics (www.debcoelectronics.com). Components supplier and a fun
place to shop. A mom-and-pop place that’s like the old hardware stores with bin after
bin of parts.

¢ Digi-Key Electronics (www.digikey.com). Components supplier. No minimum
order.

e Jameco Electronics (www.jameco.com). Components supplier.

e Kbell Engineering (http://plasmadyn.en.hisupplier.com). Source for the
Leonardo Pro Mini board.

e Martin P Jones & Associates (www.mpja.com). Components supplier. Their monthly
e-mail specials are interesting. They are a good source for all components, including
power supplies.

e Mouser Electronics (www.mouser.com). Components supplier.

¢ Radio Shack (www.radioshack.com). Components supplier. Great for when you
forgot to order that one part that makes it all work. Sadly, the company may not even
make it to press time.

348

www.it-ebooks.info

http://parts-express.com
http://www.allelectronics.com
http://www.debcoelectronics.com
http://www.digikey.com
http://www.jameco.com
http://plasmadyn.en.hisupplier.com
http://www.mpja.com
http://www.mouser.com
http://www.radioshack.com
http://www.it-ebooks.info/

APPENDIX B

Electronic Components
for Experiments

In this appendix, you are given a short list of the components that you need to implement the experiments
mentioned in this book. Chapter 1 also discusses what you need. The major items are repeated here, plus a
few other thoughts you may want to consider.

Microcontroller Board

No big surprise here. You probably already have a board. If not, Appendix A presents some board options that
you should consider, as I have used all the boards mentioned there and any one of them would be a good
choice. So, which one should you choose? It depends. For the most part, I rarely have run out of flash memory
or EEPROM. There are times when I bumped into the SRAM limit, but not all that often. For some projects,
Tused a 2560 board because of the larger number of I/O pins and more memory. In certain situations, more
pins is a better solution than multiplexing. Again, it depends upon your needs. You should be able to purchase
alow-end Arduino-compatible board for less than $10. You can find an Atmega2560 board for around $15.
Personally, I start all projects with the least expensive board and “move up” if the project demands it.

Solderless Breadhoard

This is a necessity if you plan to do any experimentation. I like the board shown in Figure 1-2 because it’s
large enough to hold a lot of components but small enough to fit easily on my work desk. It also has points
for connecting an external power supply. You should be able to buy a breadboard with over 2000 tie points
for less than $20. In most cases, you'll find deals that even throw in a bunch of jumper wires, too.

Electronic Components

This is a catchall category that includes LEDs, jumper wires, resistors, and so forth. Keep in mind that

the power supplied by the Arduino I/O pins is very limited. As a result, I created a small “power supply”

(see Figure B-1) that uses an LM 7805 to provide 5 volts at currents of about 1 ampere. There is a connector
seen near the top-right edge of the board that accepts input from a 5V “wall wart” capable of supplying up to
1.5 amps of current. I bought a lot of 10-piece LM7805 voltage regulators on eBay for less than $2.50, including
shipping. My guess is that with the perf board, the two electrolytic capacitors, the resistor, and the LED, I have
less than $1 tied up in the board. There are two pins at the left edge of the board that supply 5 volts. The mini
board is plugged into my breadboard when I feel that I need more power than what the USB cable can provide.

© Jack Purdum 2015 349
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming
for the Arduino, DOI 10.1007/978-1-4842-0940-0

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_1
http://dx.doi.org/10.1007/978-1-4842-0940-0_BM1
http://dx.doi.org/10.1007/978-1-4842-0940-0_1#Fig2
http://www.it-ebooks.info/

APPENDIX B * ELECTRONIC COMPONENTS FOR EXPERIMENTS

Figure B-1. A small voltage regulator circuit

For the simple circuits described in this book, all you'll need is a few LEDs and some resistors. Chapter 13
does discuss some specialty sensors and parts if you wish to construct those projects, but Appendix A can
still be used as a source for the parts. All the components used in this book can be purchased locally at
your favorite parts supplier. If you need to save every penny, check online to see if your area has a local
amateur (i.e., “ham”) radio club. They sometimes have flea markets that are a great source for inexpensive
electronic components. If you have a local college or university nearby, check if they have an engineering or
physics department. They may have ideas for finding local parts. If those avenues fail, there is always online
purchasing.

Online Component Purchases

I am often asked if I feel confident in purchasing electronic items and components online. Definitely, yes.

I have purchased items online from the suppliers mentioned in Appendix A, and I have never had a problem.
Quite honestly, I always check eBay to get an idea of the market price for any item I don’t use on a regular
basis. If nothing else, eBay makes it easy to find out the price of things. When possible, I support my local
shops. Also, Amazon carries many items you find on eBay, usually at fairly competitive prices. It's worth
checking both sources.

Perhaps the second most often question I get asked is my experience using eBay to purchase items
online. I know that I have made more than 100 purchases on eBay for various items. Of those purchases,

I have never had one bad experience, especially with the electronics/component purchases I've made. Do
I buy from China? Absolutely. Although I've made “bulk” purchases (e.g., 100 resistors or capacitors) from
domestic suppliers, I've also made bulk purchases from China without a problem. While it’s nice to be able
to drive to my local Radio Shack, Micro Center, or Debco and buy that odd part I didn’t have at home, when
Ineeded 125 blue LEDs for a 5x5x5 LED cube project, I shopped around. Not too long ago, I purchased

150 LEDs with dropping resistors for less than $10. True, it took about eight days to get them, but they were
postage paid and exactly what I ordered.

Where you buy your components is up to you. If I was a bazillionaire, I probably would just pay
whatever the price is to have the item(s) tomorrow. Alas, unless you people start buying tens of thousands of
copies of this book, I will still need to shop around for a good price. After a while, you'll find a few suppliers
that you're happy with and you'll tend to use them over and over.

350

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0940-0_13
http://dx.doi.org/10.1007/978-1-4842-0940-0_BM1
http://dx.doi.org/10.1007/978-1-4842-0940-0_BM1
http://www.it-ebooks.info/

APPENDIX B * ELECTRONIC COMPONENTS FOR EXPERIMENTS

Experiment!

Lastly, I would hope you enjoy experimenting, even if you don’t consider yourself an expert. True, electric
circuits can be harmful, so you do need to be careful, especially with 120V circuits. Even a wall wart
supplying 5 volts and low current deserves respect. Still, I would hope you're willing to try things on your
own. I've smoked my share of resistors and sent more than one LED to supernova heaven, but Ilearned
things during the process. My interest in electronics started before I got my amateur radio license in 1954,
and it’s never waned since. I hope that you find your microcontroller projects to be just as much fun as I
have mine.

Experiment and enjoy!

351

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

abs(), 194

Accessor methods, 332, 336, 337

Address of operator (&), 148,170-171, 173, 175, 177,
178, 182, 187, 194, 204, 230, 239

Advantage of a union, 233

Algorithm, 28, 30, 59, 108, 121, 126, 129, 132, 133,
290, 304, 305, 315, 332

American National Standard Institute (ANSI), 1, 23,
45,98, 119, 149, 205, 228, 253

American Standard Code for Information
Interchange (ASCII), 31, 49-53, 57, 96, 128,
136, 191, 225, 259, 262, 288

Ampersand (&), 263, 269

Angle brackets (<>), 89, 160, 255, 258, 270

Anode, 39, 73, 75

Arduino contributed libraries, 279

Arduino core libraries, 279-287

Arduino experimenter kits, 3

Arduino.h header file, 53, 285, 289, 297, 328

Arduino libraries, 136, 246, 277-298

Arduino Sandwiches, 244

Arduino Starter Kits, 2, 78, 311

Argument, 133

Argument list, 57, 121-126, 129, 209, 215, 323, 333

Arguments vs. Parameters, 133-134

Array, 53, 180-185

Array data type, 58-59, 193

Array elements, 58, 238

ArrayElementSize(x), 114

Array generalizations, 58-59

Array index, 58, 180, 181

ARRAYLENGTHY(), 261

Array name, 102, 105, 114, 175, 177, 178, 181, 182,
194, 199, 202, 208, 213, 231

Array of structures, 222, 231-232

Arrays of pointers to function, 210-214

ASCII code, 31, 191, 288

ASClIITable, 50

© Jack Purdum 2015

Assignment operator, 25, 48, 54, 62, 64, 68, 72, 76,
83,116, 173-174, 222, 223

Assignment statements, 61-62, 64, 170, 232

Assumptions, 2-3

Asterisk (*) operator, 26, 166, 171, 215

ATmega2560, 5, 6, 138, 343, 349

Atmel, 1, 3, 5, 10, 22, 52, 160, 233, 305-307, 344

atoi(), 136, 161, 163, 262, 275

attachinterrupt() function, 310, 311

ATTiny85 chip, 5

Attribute list, 60, 61, 123, 157, 158, 247, 248, 287

Attributes, 45, 215, 326

Auto variables, 152

Backpack, 27, 39-41, 48, 57, 71, 77, 80, 86, 94, 105,
120-122, 124, 126, 129, 133, 137, 139, 175,
187,293

Backpack analogy, 27, 39-40, 57, 120, 137

Backslash character (), 224

Bad design, 65, 332

Bad news, 2, 41-42, 67, 151, 233, 305, 330

Base class, 322

9600 Baud, 18, 336

Baud rate, 18, 22, 86, 110, 111, 234, 336

begin() method, 18, 336

Binary data, 19, 45, 260

Binary digits, 45

Binary expressions, 24

Binary numbers, 48-49

Binary operators, 24, 69, 263, 267, 271

Binary representation, 261, 269

Bit packing, 268

Bits, 45, 48

Bit shifting, 49, 128, 268, 270

Bit shift types, 267

Bitwise AND operator, 263-265, 268

Bitwise Exclusive OR (XOR), 263, 266-267, 271

Bitwise masks, 264

353

J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming

for the Arduino, DOI 10.1007/978-1-4842-0940-0

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Bitwise NOT operator, 263, 266-267

Bitwise operators, 259, 263-267, 270, 271

Bitwise OR operator, 265, 309

Bitwise shift operators, 267

Black boxes, 27, 147, 241

Black wires, 73

Blink program, 34-36, 42, 72-78, 88, 179-180

BlinkWithoutDelay, 42

Block, 300

Body, 98

Bold, 296

Boolean data type, 47-49, 86

Bootloader, 3, 4, 18

Bottom Of Stack (BOS), 138

Boundary conditions, 116

Braces, 18, 27, 32, 72, 86, 94, 114, 222

Brackets, 54, 89, 105, 160, 177, 206, 214, 255, 258,
259, 290

Breadboard, 6-7,73, 91, 263, 349

Break statement, 85-87, 106-108

The Bucket Analogy, 62-64, 233

Bug, 2, 66, 83, 116, 122, 143, 192, 237

Build process, 157, 277

BumpFrame() method, 300

Byte data type, 45, 48, 51-52, 267

4-Byte pointers, 168

C

Calling a function, 39, 40, 43

Camel notation, 47

Carat operator (*), 266

Cascading if statements, 80-82

Case fall through, 86

Case sensitive, 40, 47, 53, 80

Case statement, 85, 86, 88

Cast operator, 64-66, 68

Cast rule, 65

Cathode, 39, 73, 75

#cc6600, plain, 295

Central processing unit (CPU), 19, 41, 42, 52, 70,
238, 306, 307

CHANGE symbolic constant, 311

Change the state, 99, 101, 181, 293, 326

Character constants, 51

Child classes, 322

chipMAXIDE, 10

Class, 222, 288, 323

Class attributes, 326

Class method prototypes, 159

Class properties, 288, 326

Closing brace (}), 18, 27, 55

Coding style, 72, 88, 94, 114-115, 118, 133, 134, 166

Cohesive function, 126, 127, 141

Colon character (:), 86

354

Comma-delimited list, 99

Commas, 121, 271

Comment lines, 36

Comments, 2, 31, 35-37, 115, 149, 226, 234, 304
Compeatibility, 285

Compile, 19

Complex data definitions, 209, 214, 216
Complex expression, 24-26, 100, 130, 132
Compound equivalents, 268

Conditional directives, 257

Conditional preprocessor directives, 258
Configuration data, 4, 234

Consistency, 72, 114, 125, 134, 337
Consistency error checking, 337
Constant lvalues, 202

Const generalizations, 76

Const keyword, 75, 76, 287

Contents of the bucket, 64

Context, 58, 59, 88, 95,171, 172, 199
Continue statement, 107, 109
Contributed libraries, 258, 279, 281, 283-285, 297
Convert the ASCII code, 191

Couples, 332

Coupling, 126, 127, 141

.cpp, 289

(*.cpp), 321

ctype.h, 259

Current working directory, 259

D

Data declarations, 61, 123, 157, 158, 211, 258, 329

Data definition, 47, 58, 61, 76-78, 88, 93, 123, 147,
152, 153, 157-159, 166, 173, 209, 214, 215,
222,234, 329

Data Direction Register, 306, 309

Data dribble, 64

Data hiding, 321

Data logging, 234-242

Data type, 45

Data type checking, 61

Data type modifier, 76

Data type specifier, 76, 166, 193, 214, 220

DDRD, 306

Debouncing, 309

DEBUG, 235

Debug code, 190, 193, 256

Declaration, 61, 145, 211, 220, 231, 232, 278

Declare variables, 59

Decrement operator (--), 83

Default inputs, 310

Default statement, 85, 87

Defined, 61

#define DEBUG, 192, 193, 235, 255, 256, 315

#defines, 90, 93, 114, 254

www.it-ebooks.info

http://www.it-ebooks.info/

Define variables, 59

delay() function, 41, 46, 47, 77

delay() method, 300

Dereference operator (=), 230

Destructor, 332-336

Device driver, 13, 14

Digispark board, 5

digitalWrite(), 41, 77, 80, 94, 179

digit 7-segment LED display, 299

Diligent chipMAX, 10, 238

Display step, 157, 189, 315

Dot operator, 55, 136, 222-233, 240, 241, 250, 288,
323, 328, 330, 337

Double data type, 1, 23, 53

Double including, 288, 289, 324, 327

Double quotation marks, 259

Double quote marks, 31, 54, 160, 231, 270

Double quotes, 54, 89, 255, 258

Do-while loop, 106-107, 116, 118, 318

Download, 1, 2, 8, 10, 244, 284, 304, 314, 344, 346

Drawbacks, 4

Due, 5, 6

Duplicate definition errors, 159

Dupont, 7

E

Easter, 287

Echo pin, 311, 313

E2END, 237

EEPROM, 281

EEPROM library, 234, 235, 238, 325

EEPROM memory, 233-234

EEPROM write() function, 239

EICRA, 307-309

#elif, 89, 255, 258

#else, 89, 255, 258

Encapsulated, 187

Encapsulation, 140, 143, 147, 151, 193, 288, 321, 335

Endian problem, 238

#endif, 89, 193, 254, 258, 288

End of file (EOF) bit, 269

Enum data type, 210-214

Erase/write cycles, 234

Error-prone process, 113, 116

Escape sequences, 224-225

Ethernet, 281, 344

Examples subdirectory, 158, 246

Expression, 24

Expressionl, 71, 72, 86, 87, 94, 98-100, 102, 106, 107,
112,130-132, 137, 139

Expression2, 98-109, 117, 130, 131, 184, 204, 207, 239

Expression3, 98-106, 112, 117

Extensible, 116

Extern, 157

INDEX

External, 305

External Interrupt Control Register A (EICRA), 307, 309
External Interrupt Flag Register (EIFR), 307-309
External interrupt Mask Register (EIMSK), 307, 309
External interrupt pins, 189, 305

F

Factoring, 24

Falling edge, 305, 307, 311

#0000FF, 295, 296

Fire sensors, 29, 33, 41, 305

Firmata, 281

Five program steps, 28-30, 41, 42, 91, 102, 109, 116,
129, 189, 315

Flash memory, 3-5, 21, 22, 168, 225, 234, 349

Flat forehead, 231

Flat Forehead Mistake (FFM), 72, 104, 201

Float data type, 53, 208, 232

Forum, 281, 285

Function, 119

Function arguments, 39, 105, 119, 121-123, 159,
175,234

Function blocks, 23, 27, 28, 37, 150

Function block scope, 143, 146-152

Function body, 18, 124

Function library, 37,119, 134

Function parameters, 40

Function prototype, 123, 158, 159, 227, 259

Function scope, 151, 234

Function signature, 123-125, 127, 129, 134, 140,
177,328

Function type specifier, 71, 120-125, 128, 134, 140,
188, 296

G

generateRandomNumber(), 94

GetDayOfTheWeek() method, 330

GetEaster() function, 287, 291

Global scope, 105, 143, 150-151, 153, 154, 157, 161,
249, 321

Global search-and-replace, 116, 254

Goal, 1, 16, 30,91, 109, 115, 127, 153, 297, 310, 336

Good news, 1, 41-42, 67, 72, 75, 151, 233, 305, 330

Good variable name, 47

Graceful termination, 30

Ground rail, 73

H

Hard-code, 54, 315

Hardware interrupts, 305

Header files, 123, 159, 160, 170, 253, 256-259, 270,
277,278, 285, 287, 297, 327, 329

355

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Heap, 154, 205

Helper function, 332

Hexadecimal, 50, 52, 125, 269, 323
HIGH, 41,77

High bit, 48, 49, 67, 112, 267

High nibble, 264, 265

Horizontal scrolling, 82, 95, 314, 315, 318

Identifier, 59, 63, 89, 214, 215, 248, 254

#if, 254, 257-258

#ifdef, 193, 254

#if !defined, 254

#if !defined expression, 257

if-else statement, 79-82, 86, 89, 255

#ifndef, 159, 258

#ifndef Dates_h, 288

if statement, 70-72

if statement block without braces, 72

Import Library menu option, 282, 285

In Circuit Serial Programming (ICSP), 300

#include, 159-160, 255, 258-259

#include preprocessor directive, 158-160, 235,
282, 327

Incredibly Dumb Code (IDC), 81

Increment operators (++), 82-83

Indent, 70, 82, 115

Indent size, 70

Indirection operator (*), 171-172, 174, 183,
191, 194

Infinite loops, 97, 98

Inheritance, 321, 322, 336

Initialization of Loop Control Variable, 97-98

Initialization step, 28-31, 39, 40, 77, 91, 93, 103, 189,
237,315

Initializer list, 55

ino files, 16, 287, 329

INPUT_PULLUP symbolic constant, 310

Input step, 29-31, 40, 41, 91, 129, 157, 189, 315

INTO, 306-309, 311

INT1, 306-308

Int data type, 51, 52, 60, 61, 128, 166, 168, 209, 238,
288, 344

Integrated development environment (IDE), 1, 12

International Organization for Standardization
(IS0), 23

Interrupt, 305-311

Interrupt pins, 189, 305, 306, 308

Interrupt Service Routine (ISR), 42, 43, 160,
305-311

Invert an image, 266

Invisible libraries, 285

356

Is a relationship, 322

1SC00, 307, 309

I1SC10, 307

isdigit() function, 191

IsLeapYear() function, 119, 120, 128, 133-134, 138,
139, 158, 161, 290

J

Julian date, 329
Jjulian() method, 329, 330
jumper wires, 6, 7, 73, 348, 349

K

Kanji character set, 49
Keyword, 46
KEYWORDI, 295
KEYWORD2, 295
keywords.txt file, 295

L

Leap year algorithm, 129, 133
LedControl library, 304
Left-associative, 26, 180

Leftleg, 61

Left shift (<<) operator, 267

Left value, 61

Leonardo, 5, 6, 35, 305, 348

Library, 28, 277

Library header file, 288-289

#line directive, 254, 256-257

Linker, 277-278

Linker pass, 157

LiquidCrystal library, 157, 159, 281
LittleEndian/BigEndian problem, 238
Local scope, 146, 147

Location value, 61

Logical AND operator, 130

Logical NOT operator (!), 131-132, 309
Logical operators, 129-132, 263
Logical OR operator (]|), 131

Logic error, 59

Long data type, 52, 78

Loop body, 98-101, 104, 107, 108, 115, 118
Loop Control Test, 98

loop() function, 10, 32-34, 189, 190
LOW, 77

lowercase letter, 47, 80, 120, 136

Low nibble, 263, 264

Lunar calendar, 287, 332

lvalue, 60-61

www.it-ebooks.info

http://www.it-ebooks.info/

Magic numbers, 39, 88, 113, 254

Mandarin, 22

Master In, Slave Out (MISO), 300

Master Out, Slave In (MOSI), 300

math.h, 259

MAX7219 chip, 299

Medieval kings, 143

mem*() function, 318, 319

Memory, 158

memset() function, 105, 106

Method/function, 18, 55

Method overloading, 323

Methods, 23, 288, 289, 323

Microcontroller (pc), 1-3, 5, 41, 116, 343, 344,
349, 351

Microcontroller (puc) board, 12

MicrosecondsToCentimeters() method, 313

Mistake, 25, 30, 71, 72, 95, 114, 140, 201, 263, 355

Modified Blink Program, 72-78, 88, 179-180

Modulo (modulus), 26, 79, 91, 94, 95, 132

Modulo operator (%), 79, 94

Multi-line comments, 36

Multiplication operator, 26, 102, 171

N

Name Collisions, 129, 147-150
Newline character, 136, 224, 262
Nibble, 263-264

Non-printing characters, 47
Nouns, 326

N-1 Rule, 58, 194

Null character ('\0'), 54, 136

Null pointer, 168

Numbering system, 48, 50, 269, 323

(0

Object, 323

Object instantiation, 325

Object-oriented programming (OOP), 18, 55, 222,
321-337

Octal (base 8), 50, 269

oddWires.com, 3

Ohms Law, 74

OLED display, 285, 318

One task, 28, 141

OOP trilogy, 321-323

Opening brace ({), 18, 27, 55, 70, 124

Open Source C++ compiler (GCC), 88, 90, 125

Operand, 24

Operator, 24

INDEX

|= operator, 269, 309

Operator precedence, 26, 130
Optimizing compilers, 160, 268

Out of scope, 144-146, 168, 178, 193, 336
OUTPUT, 40, 77

Output Step, 29-31, 41, 91

Overloaded function, 119, 125

PQ

Parameter, 134

Parameterized macros, 114, 253, 259-261
Parent class, 322

Parses, 30, 35, 274

Pass-by-reference, 177,178, 180, 185, 187, 188
Pass-by-value, 137, 140, 175, 177, 180, 185, 194
Pass-by-value vs. pass-by-reference, 185-188
PD2, 306, 309

PD3, 306

pde files, 16

Percent sign, 79

Pin change, 305

PIND, 306

PIN registers, 306

Pins 0-3, 305

Pin state, 77, 310

Plain, 80, 224, 295, 296

Pointer arithmetic, 198-202

Pointer definitions, 165-168, 182
Pointer name, 166

Pointer rules, 174-175

Pointers, 165, 180-185

Pointer scalars, 166-168

Polarity, 75

Polling, 41, 305

Polymorphism, 321, 323

Port, 247

Portable code, 115

PORTB, 306

PORTC, 306

PORTD, 306

PORTD2, 309

PORT data register, 306

Port selection, 12-16

Positive voltage rail, 73
Post-decrement operator, 83
Post-increment operators, 82, 83, 183
Precedence, 230

Precedence of operators, 84
Precision, 53, 67, 344

Pre-decrement operator, 83
Pre-increment operators, 82, 83, 153
Preprocessor, 88-90

Preprocessor directives, 88, 253

357

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Pretty Good Code (PGC), 128

println() statement, 94, 174

Private keyword, 288, 326

Private storage class, 288

Procedures, 23

Processing Development Environment (pde) files, 16
Process step, 29-31, 91, 93, 129, 157, 189
Program instruction pointer, 139
Programming exercises, 2

Program starting point, 70
Property(ies), 288, 293, 322, 326
Prototype declaration, 227, 326

Public keyword, 288, 325-326

Pullup resistors, 310, 311

Punctuation, 47

R

Rail, 73

random() function, 91, 94, 125
Random number, 91, 109-112, 213
RandomSeed|(), 91, 93

RDC case, 241

readBytesUntil() method, 136, 262
Really Dumb Code (RDC), 79
Recycling the int, 109, 112
Red-green-blue (RGB), 296

Red wires, 73

Refactoring, 113,118

Reference option, 278

Reference types, 45, 98, 177, 332
Register, 152

Register storage class, 152

Register value, 61

Relational operations, 69, 197-198
Relational operators, 24, 69-70, 98
Relational tests, 71, 72, 79, 82, 95, 98, 197
Reset pin, 306

Reset the pointer, 201

Resistor values, 74-75

Resolving, 24, 26

Restart the IDE, 282

Returning from the function, 39, 40
Return to the caller, 39, 43, 48
Right-Left Rule, 197, 209, 214-215
Right leg, 61

Right shift (>>) operator, 267, 268
Right value, 61

Ring bugffer, 234, 237

Rising edge trigger, 307

Rubber feet, 8

Rvalue, 61,170

Rvalue-to-rvalue assignment, 171, 222
RXD/TXD, 306

RX/TX, 189

358

S

Sample sketches, 285

Scaffold code, 235, 315

Scaffolding, 193, 235, 255, 256

Scalar, 175, 185, 194

Scalar size, 167, 208, 216

Scalar value, 168, 171

Scope, 143,178, 321

Scope resolution operator (::), 290, 328

SD card, 115, 242-244, 247, 281, 315, 345

SD library, 244

SD shield, 243-245, 281, 343

Search until, 104

Seed, 91

sei(), 309

Semantic errors, 30, 35, 59, 95, 172

Semicolon (;), 25, 31, 36, 89, 98, 99, 144, 211, 220,
222,289

Serial.begin() method, 336

Serial Clock (SCK), 300

Serial device, 18, 31, 241

Serial monitor, 18, 19, 21, 22, 31, 32, 50, 86, 100, 105,
109, 110, 136, 137, 148, 161, 188, 189, 191,
213,222, 225, 262, 271, 274, 299, 314

Serial object, 18

Serial Peripheral Interface (SPI) protocol, 281, 299,
300

Serial.read(), 191

Servo, 281, 328

setup() function, 10, 18

Shield, 242-244

Short int, 52

Signature, 123-125, 127, 129, 134, 139, 140, 177, 227,
323, 328, 330

Sign bit, 48, 49, 51, 52, 112, 267, 271

Silent cast, 65-66

Single-line comments, 36

Single quote marks, 51, 54, 55, 225

Size of a bucket depends, 64

sizeof() operator, 105-106, 113, 114, 182, 261

Sketch, 16, 22, 35, 156, 158-160, 166, 282, 285, 292,
305, 314, 325, 344, 346

Skin a cat, 80

Slash-asterisk pair (/*), 36

Slash characters, 36

Smoke, 95

SoftwareSerial, 281

Sorta Dumb Code (SDC), 80, 112-113

Sound sensor, 311

Source code, 30, 35

Splash screen, 9

SS pin, 300

Stack, 48, 138-140, 154, 168, 174, 178, 179, 187, 203,
205, 228, 234, 244

www.it-ebooks.info

http://www.it-ebooks.info/

Stacking, 244

Standard C, 23, 115, 262, 277, 285

Standard C header files, 259, 277

State, 98, 326

Statement, 25

Statement block, 26-27

Statement block body, 27

Statement block scope, 144-149, 152, 153

Statement terminator, 25, 211

Static keyword, 153, 179, 203, 330

Static random-access memory (SRAM), 4, 5, 22, 60,
90, 146, 168, 174, 179, 201, 203, 205, 219,
232-234, 239, 344, 349

Static storage class, 153-154, 275

stdio.h header file, 170, 258, 259, 269

stdlib.h, 249, 259

Stepper, 27, 281, 339

Storage classes, 152-157, 161

Storage class modifier, 157

str*() function, 318, 319

String class, 56, 57, 183, 318

String convention, 287

String data type, 53-57, 67, 183

string.h, 199, 259, 285, 286, 297

strnepy() function, 297, 317

strtok() function, 274, 275

Structure, 220

Structure members, 220, 222, 225, 230, 233, 241

Structures can also be use, 227

Structure tag, 220, 222

Stubs, 213

Subclasses, 322

Subroutines, 23

Supernova, 74

Swiss Army knife, 28, 126, 140

Switch bounce, 309

Switch statement, 82, 84-88, 95, 106, 107, 115

Symbolic constant, 39-41, 53, 159, 170, 189, 237,
259, 288, 306, 308, 310, 311, 315

Syntax errors, 36, 59, 62, 172

Syntax highlighting, 295

T

Tab space, 295

Tab stop, 70, 115

Tag, 210

Template, 221, 324

Termination step, 30, 32, 41, 42, 92-94, 189, 315
Ternary operators, 24

Text editor, 1, 199, 231, 287, 295

Theme.txt, 295-297

Think, 116

INDEX

Tilde character (~), 266

Tilde operator (~), 336

Timer, 300

Tokenizer, 274

Tone, 283

Too few comments, 37

Too many comments, 37, 304

Top Of Stack (TOS), 138, 139

Trade-off, 151

Train wreck, 90, 167, 230

triggerPin, 313

Trigger ping, 311

True/false, 47, 69

Truncated, 52

Truth tables, 130, 131, 264-266

Two-dimensional array, 202-208

Two dot operators, 240, 241

Type checking, 61, 122, 123, 227, 287, 289

Typeless data, 90, 261, 287, 321

Types of interrupts, 305

Type specifiers, 63-65, 67, 71, 76, 120, 122-125, 128,
129, 134, 139, 140, 166-168, 172,175, 179,
188, 193, 209, 214, 215, 296

U

uintl6_t, 53

uint8_t data type, 53, 328

Unary operators, 24, 83, 130, 131, 171, 263, 266
#undef, 89, 254-256

Unicode character set, 49

Union tag, 232, 236

Unresolved externals, 277, 278

Unsigned data type, 48, 52, 267, 271
Unsigned int, 46, 48, 52, 62, 168, 271, 287
Upload, 3

Upload button, 20, 21, 50

Uppercase letters, 40, 55, 76, 120, 136, 247
USB cable, 3, 11, 15, 18, 305, 349

USB connection, 4, 11, 189

UTF-8, 49

Vv

Valid pointer, 166, 168

Value data types, 45, 46, 177, 227
Variable, 25, 45

Variable names, 47

Verbs, 59, 172, 326

Verify button, 21

void *, 287

Void data type, 57-58

Volatile keyword, 160, 308

359

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

W X
Wall wart, 11, 349 0x, 269
Warts, 88 X3J11 committee, 23
Well-behaved loops, 97-98, 103-104,
106, 107 Y
When to Use a for Loop, 102
When to Use Comments, 36-37 Year property, 293
Where the bucket is stored, 64 Yourduino.com, 3, 314, 342
While loop, 103-105
Wire, 281 Z
Word data type, 52
Wraps around, 234, 237 Zero-based indexing, 58
360

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Assumptions About You
	Resources

	Chapter 1: Introduction
	Why Choose This Book?
	Assumptions About You
	What You Need
	An Atmel-Based Microcontroller Card
	Types of Memory
	Flash Memory
	SRAM
	EEPROM

	Making the Choice
	Board Size
	Input/Output (I/O) Pins

	Breadboard
	Miscellaneous Parts

	Installing and Verifying the Software
	Verifying the Hardware
	Attaching the USB Cable
	Selecting Your μc Board in the Integrated Development Environment
	Port Selection

	Loading and Running Your First Program
	Writing Your First Program
	What the Program Does

	Compiling and Uploading a Program

	Summary

	Chapter 2: Arduino C
	The Building Blocks of All Programming Languages
	Expressions
	Statements
	Operator Precedence

	Statement Blocks
	Function Blocks

	The Five Program Steps
	1. Initialization Step
	2. Input Step
	3. Process Step
	4. Output Step
	5. Termination Step
	The Purpose of the Five Program Steps

	A Revisit to Your First Program
	The setup() Function
	The loop() Function
	Arduino Program Requirements

	The Blink Program
	Program Comments
	Single-Line Comments
	Multi-line Comments
	When to Use Comments

	The setup() Function in Blink
	How to Find Information About Library Functions

	The loop() Function
	delay(): Good News, Bad News

	Summary

	Chapter 3: Arduino C Data Types
	Keywords in C
	Variable Names in C
	The boolean Data Type
	Walking Through the Function Call to ReadSwitchState ()
	Binary Numbers

	The char Data Type and Character Sets
	Generating a Table of ASCII Characters

	The byte Data Type
	The int Data Type
	The word Data Type
	The long Data Type
	The float and double Data Types
	Floating Point Precision

	The string Data Type
	String Data Type
	Which Is Better: String or strings Built from char Arrays?

	The void Data Type
	The array Data Type
	Array Generalizations

	Defining vs. Declaring Variables
	Language Errors
	Symbol Tables
	lvalues and rvalues
	Understanding an Assignment Statement
	The Bucket Analogy

	Using the cast Operator
	The Cast Rule
	Silent Casts

	Summary

	Chapter 4: Decision Making in C
	Relational Operators
	The if Statement
	What if Expression1 Is Logic True?
	What if Expression1 Is Logic False?
	Braces or No Braces?

	A Modified Blink Program
	The Circuit
	Circuit Resistor Values
	The Modified Blink Program
	const Keyword

	Software Modifications to the Alternate Blink Program
	The if-else Statement Block
	Cascading if statements
	The Increment and Decrement Operators
	Two Types of Increment Operators (++)
	Two Flavors of the Decrement Operator(--)
	Precedence of Operators

	The switch statement
	A switch Variation, the Ellipsis Operator (…)
	Which to Use: Cascading if-else or switch?

	The goto Statement
	Getting Rid of Magic Numbers
	The C Preprocessor
	Heads or Tails
	Initialization Step
	Input Step
	Process Step
	Output Step
	Termination Step

	Summary

	Chapter 5: Program Loops in C
	The Characteristics of Well-Behaved Loops
	Condition 1: Initialization of Loop Control Variable
	Condition 2: Loop Control Test
	Condition 3: Changing the Loop Control Variable’s State

	Using a for Loop
	Program to Show Expression Evaluation
	When to Use a for Loop

	The while Loop
	When to Use a while Loop
	The sizeof() Operator

	The do-while Loop
	Why a do-while is Different from a while Loop

	The break and continue Keywords
	The break Statement
	The continue Statement

	A Complete Code Example
	Step 1. Initialization
	Step 2. Input
	Step 3. Process
	Step 4. Output
	Step 5. Termination
	Listing 5-5 Is SDC
	Getting Rid of a Magic Number
	A Macro for an Array Size

	Loops and Coding Style
	Portability and Extensibility
	Summary

	Chapter 6: Functions in C
	The Anatomy of a Function
	Function Type Specifier
	Function Name
	Good Names, Bad Names

	Function Arguments
	Function Signatures and Function Prototypes

	Function Body
	Overloaded Functions

	What Makes a “Good” Function
	Good Functions Use Task-Oriented Names
	Good Functions Are Cohesive
	Good Functions Avoid Coupling

	Writing Your Own Functions
	Function Design Considerations
	Function Type Specifier
	Showoff Code

	Function Name
	Argument List
	Function Body

	Logical Operators
	Logical AND Operator (&&)
	Logical OR (||)
	Logical NOT (!)

	Writing Your Own Function
	The IsLeapYear() Function and Coding Style
	Arguments vs. Parameters

	Why Use a Specific Function Style?

	Leap Year Calculation Program
	Passing Data into and Back from a Function
	Pass-by-Value

	Summary

	Chapter 7: Storage Classes and Scope
	Hiding Your Program Data
	The Three Scope Levels
	Statement Block Scope
	What Does Out of Scope Mean?

	Why Use Statement Block Scope?

	Function Block Scope
	Name Collisions and Scope

	Global Scope
	Trade-offs
	Global Scope and Name Conflicts

	Scope and Storage Classes
	The auto Storage Class
	The register Storage Class
	The static Storage Class
	The Effect of the static Storage Class
	The extern Storage Class
	Adding a Second Source Code File to a Project
	Using the extern Keyword
	Why a New Source Code File?

	Function Prototypes
	#include Preprocessor Directive
	A common #include Idiom
	Where Are the Header Files Stored?

	The volatile keyword
	Summary

	Chapter 8: Introduction to Pointers
	Defining a Pointer
	Pointer Name
	Asterisk (*)
	Pointer Type Specifiers and Pointer Scalars
	Pointer Scalars

	Why All Arduino Pointers Use Two Bytes for Storage
	Pointer Initialization
	Using the Address-Of Operator
	The Indirection Operator (*)
	Using Indirection
	Using the Indirection Operator in an Assignment
	Summary of Pointer Rules

	Why Are Pointers Useful?
	Modified Blink Program
	Pointers and Arrays
	The Importance of Scalars
	Pass-by-Value vs. Pass-by-Reference

	Your Turn
	One Approach
	One Solution
	Debug Statements Using the Serial Object

	Summary

	Chapter 9: Using Pointers Effectively
	Relational Operations and Test for Equality Using Pointers
	Pointer Comparisons Must Be Between Pointers to the Same Data

	Pointer Arithmetic
	Constant lvalues

	Two-Dimensional Arrays
	A Small Improvement
	How Many Dimensions?

	Two-Dimensional Arrays and Pointers
	Treating the Two-Dimensional Array of chars As a String

	Pointers to Functions
	Arrays of Pointers to Functions
	enum Data Type

	The Right-Left Rule
	Summary

	Chapter 10: Structures, Unions, and Data Storage
	Structures
	Declaring a Structure
	Defining a Structure
	Accessing Structure Members
	The Dot Operator

	Escape Sequences
	Memory Requirements for a Structure
	Returning a Structure from a Function Call
	Using Structure Pointers
	Initializing a Structure
	Arrays of Structures

	Unions
	EEPROM Memory
	Using EEPROM
	Data Logging

	Other Storage Alternatives
	Shields
	Other Uses for SD Storage

	typedef
	Summary

	Chapter 11: The C Preprocessor and Bitwise Operations
	Preprocessor Directives
	#undef
	#line
	#if, Conditional Directives
	#else, #endif

	#include

	Parameterized Macros
	Decimal to Binary Converter
	Bitwise Operators
	Bitwise AND
	Bitwise OR
	Bitwise Exclusive OR (XOR)
	Bitwise NOT (~)

	Bitwise Shift Operators
	Bitwise Shift Left (<<)
	Bitwise Shift Right (>>)

	One More Example
	Using Different Bases for Integer Constants
	Parameterized Macros . . . Continued

	Summary

	Chapter 12: Arduino Libraries
	The Linker
	Libraries
	Arduino Libraries
	The Arduino Core Libraries
	Using the Forums
	Using a Core Library
	Contributed Libraries
	Using a Contributed Library

	Other Libraries

	Writing Your Own Library
	The Library Header File
	The Library Code File (Dates.cpp)

	Setting the Arduino IDE to Use Your Library
	A Sample Program Using the Dates Library
	Adding the Easter Program As Part of the Library
	The keywords.txt File
	Keyword Coloring (theme.txt)

	Summary

	Chapter 13: Interfacing to the Outside World
	The Serial Peripheral Interface (SPI)
	An SPI Program
	Interrupts and Interrupt Service Routines (ISR)
	Interrupt Details
	An External Interrupt Program

	An Alternative Interrupt Program
	Ultrasonic Sensor Program
	A Programming Problem
	My Solution

	Conclusion

	Chapter 14: A Gentle Introduction to Object-Oriented Programming and C++
	The OOP Trilogy
	Encapsulation
	Inheritance
	Polymorphism

	The OOP Class
	Inside an OOP Class
	OOP and Class Objects
	public vs. private in a Class

	The EEPROM.cpp File
	Add julian() to Dates
	Adding a private Class Member
	Constructors and Destructors
	Conclusion

	Appendix A: Suppliers and Sources
	Starter Kits
	Shields, Boards, Sensors
	Specific Parts Sources
	Bezels
	Jumper Wires
	Project Cases
	Domestic Parts Suppliers

	Appendix B: Electronic Components for Experiments
	Microcontroller Board
	Solderless Breadboard
	Electronic Components
	Online Component Purchases
	Experiment!

	Index

