


Build Your Own Programming 
Language
Second Edition

A developer’s comprehensive guide to crafting, compiling, and 
implementing programming languages

Clinton L. Jeffery

BIRMINGHAM—MUMBAI



Build Your Own Programming Language
Second Edition

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in 
any form or by any means, without the prior written permission of the publisher, except in the case of brief 
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express or 
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any 
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products 
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee 
the accuracy of this information.

Senior Publishing Product Manager: Denim Pinto

Acquisition Editor: Peer Reviews: Gaurav Gavas

Project Editor: Parvathy Nair

Content Development Editor: Elliot Dallow

Copy Editor: Safis Editing

Technical Editor: Aneri Patel

Proofreader: Safis Editing

Indexer: Hemangini Bari

Presentation Designer: Ajay Patule

Developer Relations Marketing Executive: Vipanshu Pareshar

First published: December 2021

Second edition: January 2024

Production reference: 2300124

Published by Packt Publishing Ltd. 

Grosvenor House

11 St Paul’s Square

Birmingham 

B3 1RB, UK.

ISBN 978-1-80461-802-8

www.packt.com

www.packt.com



Foreword

In the dynamic world of computer science, the creation of a programming language stands as a 

testament to ingenuity and a deep understanding of computational principles. Build Your Own 

Programming Language is not just a guide; it is an invitation to delve into the complexity and 

beauty of programming language creation.

At the helm of this voyage is Clinton L. Jeffery, a distinguished professor and Chair of the Depart-

ment of Computer Science and Engineering at the New Mexico Institute of Mining and Technology. 

His academic journey, marked by degrees from the University of Washington and the University 

of Arizona, has been a path of relentless exploration in the realms of programming languages, 

program monitoring, and visualization, among others. His work culminates in the creation of the 

Unicon programming language, a testament to his expertise and vision.

This book is structured to guide the reader through the nuanced process of developing a pro-

gramming language. Beginning with motivations and types of language implementations, Jeffery 

sets the stage for understanding the fundamental “why” behind language design. He intricately 

discusses organizing a bytecode language and differentiates between programming languages 

and libraries, laying a solid foundation for both novices and experienced programmers.

The detailed chapters delve into the heart of language design, parsing, and the construction 

of syntax trees, with practical examples and case studies like the development of Unicon and 

the Jzero language. Jeffery’s approach is meticulous, ensuring that readers grasp the essentials 

of technical requirements, lexical categories, context-free grammar, and symbol tables. This 

comprehensive coverage ensures that readers are not just following instructions but are truly 

understanding the principles at play.

What makes this book exceptional is its blend of theoretical knowledge and practical application. 

Jeffery does not shy away from the complexities of designing graphics facilities or tackling syntax 

trees and symbol tables. Instead, he embraces these challenges, guiding the reader with clarity 

and insight. The inclusion of questions at the end of each chapter prompts critical thinking and 

reflection, reinforcing the overall learning experience.



As you progress through Build Your Own Programming Language, you will find yourself not just 

acquiring knowledge, but also developing a new perspective on programming languages. They 

are not merely tools for tasks but are expressive mediums that reflect human creativity and prob-

lem-solving skills.

Clinton L. Jeffery, with his extensive experience and pioneering work in Unicon, provides a com-

prehensive and enlightening guide for anyone interested in the art and science of programming 

language development. Whether you are a student, a professional programmer, or an enthusiast 

of computer science, this book is a beacon, illuminating the path to understanding and creating 

your own programming language.

Welcome to a journey of discovery, creativity, and technical mastery in the world of programming 

languages!

Imran Ahmad, PhD

Senior Data Scientist, Canadian Federal Government
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Preface

This second edition was begun primarily at the suggestion of a first edition reader, who called me 

one day and explained that they were using the book for a programming language project. The 

project was not generating code for a bytecode interpreter or a native instruction set as covered 

in the first edition. Instead, they were creating a transpiler from a classic legacy programming 

language to a modern mainstream language. There are many such projects, because there is a lot 

of old code out there that is still heavily used. The Unicon translator itself started as a preproces-

sor and then was extended until it became in some sense, a transpiler. So, when Packt asked for 

a second edition, it was natural to propose a new chapter on that topic; this edition has a new 

Chapter 11 and all chapters (starting from what was Chapter 11 in the previous edition) have seen 

their number incremented by one. A second major facet of this second edition was requested by 

Packt and not my idea at all. They requested that the IDE syntax coloring chapter be extended to 

deal with the topic of adding syntax coloring to mainstream IDEs that I did not write and do not 

use, instead of its previous content on syntax coloring in the Unicon IDEs. Although this topic is 

outside my comfort zone, it is a valuable topic that is somewhat under-documented at present 

and easily deserves inclusion, so here it is. You, as the reader, can decide whether I have managed 

to do it any justice as an introduction to that topic.

After 60+ years of high-level language development, programming is still too difficult. The demand 

for software of ever-increasing size and complexity has exploded due to hardware advances, while 

programming languages have improved far more slowly. Creating new languages for specific 

purposes is one antidote for this software crisis.

This book is about building new programming languages. The topic of programming language 

design is introduced, although the primary emphasis is on programming language implementa-

tion. Within this heavily studied subject, the novel aspect of this book is its fusing of traditional 

compiler-compiler tools (Flex and Byacc) with two higher-level implementation languages. A 

very high-level language (Unicon) plows through a compiler’s data structures and algorithms 

like butter, while a mainstream modern language (Java) shows how to implement the same code 

in a more typical production environment.
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One thing I didn’t really understand after my college compiler class was that the compiler is only 

one part of a programming language implementation. Higher-level languages, including most 

newer languages, may have a runtime system that dwarfs their compiler. For this reason, the 

second half of this book spends quality time on a variety of aspects of language runtime systems, 

ranging from bytecode interpreters to garbage collection.

Who this book is for
This book is for software developers interested in the idea of inventing their own language or 

developing a domain-specific language. Computer science students taking compiler construction 

courses will also find this book highly useful as a practical guide to language implementation to 

supplement more theoretical textbooks. Intermediate-level knowledge and experience of working 

with a high-level language such as Java or C++ are required in order to get the most out of this book.

What this book covers
Chapter 1, Why Build Another Programming Language?, discusses when to build a programming 

language, and when to instead design a function library or a class library. Many readers of this 

book will already know that they want to build their own programming language. Some should 

design a library instead.

Chapter 2, Programming Language Design, covers how to precisely define a programming language, 

which is important to know before trying to build a programming language. This includes the 

design of the lexical and syntax features of the language, as well as its semantics. Good language 

designs usually use as much familiar syntax as possible.

Chapter 3, Scanning Source Code, presents lexical analysis, including regular expression notation 

and the tools Ulex and JFlex. By the end, you will be opening source code files, reading them char-

acter by character, and reporting their contents as a stream of tokens consisting of the individual 

words, operators, and punctuation in the source file.

Chapter 4, Parsing, presents syntax analysis, including context-free grammars and the tools iyacc 

and byacc/j. You will learn how to debug problems in grammars that prevent parsing, and report 

syntax errors when they occur.

Chapter 5, Syntax Trees, covers syntax trees. The main by-product of the parsing process is the 

construction of a tree data structure that represents the source code’s logical structure. The con-

struction of tree nodes takes place in the semantic actions that execute on each grammar rule.
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Chapter 6, Symbol Tables, shows you how to construct symbol tables, insert symbols into them, 

and use symbol tables to identify two kinds of semantic errors: undeclared and illegally redeclared 

variables. In order to understand variable references in executable code, each variable’s scope 

and lifetime must be tracked. This is accomplished by means of table data structures that are 

auxiliary to the syntax tree.

Chapter 7, Checking Base Types, covers type checking, which is a major task required in most pro-

gramming languages. Type checking can be performed at compile time or at runtime. This chapter 

covers the common case of static compile-time type checking for base types, also referred to as 

atomic or scalar types.

Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses, shows you how to perform 

type checks for the arrays, parameters, and return types of method calls in the Jzero subset of 

Java. The more difficult parts of type checking are when multiple or composite types are involved. 

This is the case when functions with multiple parameter types must be checked, or when arrays, 

hash tables, class instances, or other composite types must be checked.

Chapter 9, Intermediate Code Generation, shows you how to generate intermediate code by looking 

at examples for the Jzero language. Before generating code for execution, most compilers turn 

the syntax tree into a list of machine-independent intermediate code instructions. Key aspects 

of control flow, such as the generation of labels and goto instructions, are handled at this point.

Chapter 10, Syntax Coloring in an IDE, addresses the challenge of incorporating information from 

syntax analysis into an IDE in order to provide syntax coloring and visual feedback about syntax 

errors. A programming language requires more than just a compiler or interpreter – it requires 

an ecosystem of tools for developers. This ecosystem can include debuggers, online help, or an 

integrated development environment.

Chapter 11, Preprocessors and Transpilers, gives an overview of generating output intended to be 

compiled or interpreted by another high-level language. Preprocessors are usually line-oriented 

and translate lines into very similar output, while transpilers usually translate one high-level 

language to a different high-level language with a full parse and significant semantic changes.

Chapter 12, Bytecode Interpreters, covers designing the instruction set and the interpreter that ex-

ecutes bytecode. A new domain-specific language may include high-level domain programming 

features that are not supported directly by mainstream CPUs. The most practical way to generate 

code for many languages is to generate bytecode for an abstract machine whose instruction set 

directly supports the domain, and then execute programs by interpreting that instruction set.
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Chapter 13, Generating Bytecode, continues with code generation, taking the intermediate code 

from Chapter 9, Intermediate Code Generation, and generating bytecode from it. Translation from 

intermediate code to bytecode is a matter of walking through a giant linked list, translating each 

intermediate code instruction into one or more bytecode instructions. Typically, this is a loop 

to traverse the linked list, with a different chunk of code for each intermediate code instruction.

Chapter 14, Native Code Generation, provides an overview of generating native code for x86_64. 

Some programming languages require native code to achieve their performance requirements. 

Native code generation is like bytecode generation, but more complex, involving register alloca-

tion and memory addressing modes.

Chapter 15, Implementing Operators and Built-In Functions, describes how to support very high-level 

and domain-specific language features by adding operators and functions that are built into the 

language. Very high-level and domain-specific language features are often best represented by 

operators and functions that are built into the language, rather than library functions. Adding 

built-ins may simplify your language, improve its performance, or enable side effects in your 

language semantics that would otherwise be difficult or impossible. The examples in this chap-

ter are drawn from Unicon, as it is much higher level than Java and implements more complex 

semantics in its built-ins.

Chapter 16, Domain Control Structures, covers when you need a new control structure, and provides 

example control structures that process text using string scanning, and render graphics regions. 

The generic code in previous chapters covered basic conditional and looping control structures, 

but domain-specific languages often have unique or customized semantics for which they in-

troduce novel control structures. Adding new control structures is substantially more difficult 

than adding a new function or operator, but it is what makes domain-specific languages worth 

developing instead of just writing class libraries.

Chapter 17, Garbage Collection, presents a couple of methods with which you can implement gar-

bage collection in your language. Memory management is one of the most important aspects of 

modern programming languages, and all the cool programming languages feature automatic 

memory management via garbage collection. This chapter provides a couple of options as to 

how you might implement garbage collection in your language, including reference counting, 

and mark-and-sweep garbage collection.

Chapter 18, Final Thoughts, reflects on the main topics presented in the book and gives you some 

food for thought. It considers what was learned from writing this book and gives you many sug-

gestions for further reading.
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Appendix, Unicon Essentials, describes enough of the Unicon programming language to understand 

those examples in this book that are in Unicon. Most examples are given side by side in Unicon 

and Java, but the Unicon versions are usually shorter and easier to read.

Answers, gives you some proposed answers to the revision questions placed at the end of each 

chapter. 

To get the most out of this book
In order to understand this book, you should be an intermediate-or-better programmer in Java 

or a similar language; a C programmer who knows an object-oriented language will be fine.

Instructions for installing and using the tools are spread out a bit to reduce the startup effort, ap-

pearing in Chapter 3, Scanning Source Code, to Chapter 5, Syntax Trees. If you are technically gifted, 

you may be able to get all these tools to run on macOS, but it was not used or tested during the 

writing of this book.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Build-Your-Own-Programming-Language-Second-Edition. We also have other code bundles 

from our rich catalog of books and videos available at https://github.com/PacktPublishing/. 

Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3njc15D.

NOTE

If you are using the digital version of this book, we advise you to type the code yourself 

or, better yet, access the code from the book’s GitHub repository (a link is available 

in the next section). Doing so will help you avoid any potential errors related to the 

copying and pasting of code.

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition
https://github.com/PacktPublishing/
https://bit.ly/3njc15D
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Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. 

You can download it here: https://packt.link/gbp/9781804618028.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file 

extensions, pathnames, dummy URLs, user input, and X (more commonly known as Twitter) 

handles. For example: “The JSRC macro gives the names of all the Java files to be compiled.”

A block of code is set as follows:

public class address {

   public String region;

   public int offset;

   address(String s, int x) { region = s; offset = x; }

}

Any command-line input or output is written as follows:

j0 hello.java               java ch9.j0 hello.java

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, 

words in menus or dialog boxes appear in the text like this. For example: “A makefile is like a 

lex or yacc specification, except instead of recognizing patterns of strings, a makefile specifies 

a graph of build dependencies between files”.

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://packt.link/gbp/9781804618028
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Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of 

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do 

happen. If you have found a mistake in this book, we would be grateful if you reported this to us. 

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 

be grateful if you would provide us with the location address or website name. Please contact us 

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Share your thoughts
Once you’ve read Build Your Own Programming Language, Second Edition, we’d love to hear your 

thoughts! Please click here to go straight to the Amazon review page for this book and 

share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1804618020
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Section I
Programming Language 

Frontends
In this section, you will create a basic language design and implement the frontend of a compiler 

for it, including a lexical analyzer and a parser that builds a syntax tree from an input source file.

This section comprises the following chapters:

•	 Chapter 1, Why Build Another Programming Language?

•	 Chapter 2, Programming Language Design

•	 Chapter 3, Scanning Source Code

•	 Chapter 4, Parsing

•	 Chapter 5, Syntax Trees





1
Why Build Another 
Programming Language?
This book will show you how to build your own programming language, but first, you should 

ask yourself, why would I want to do this? For a few of you, the answer will be simple: because 

it is so much fun. However, for the rest of us, it is a lot of work to build a programming language, 

and we need to be sure about it before we make that kind of effort. Do you have the patience and 

persistence that it takes?

This chapter points out a few good reasons to build your own programming language, as well as 

some circumstances in which you don’t need to build your contemplated language. After all, de-

signing a class library for your application domain is often simpler and just as effective. However, 

libraries have their limitations, and sometimes, only a new language will do.

After this chapter, the rest of this book will take for granted that, having considered things care-

fully, you have decided to build a language. But first, we’re going to consider our initial options 

by covering the following main topics in this chapter:

•	 Motivations for writing your own programming language

•	 Types of programming language implementations

•	 Organizing a bytecode language implementation

•	 Languages used in the examples

•	 The difference between programming languages and libraries

•	 Applicability to other software engineering tasks
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•	 Establishing the requirements for your language

•	 Case study – requirements that inspired the Unicon language

Let’s start by looking at motivations.

Motivations for writing your own programming 
language
Sure, some programming language inventors are rock stars of computer science, such as Dennis 

Ritchie or Guido van Rossum! Becoming a rock star in computer science was easier back in the 

previous century. In 1993, I heard the following report from an attendee of the second ACM History 

of Programming Languages Conference: “The consensus was that the field of programming languages 

is dead. All the important languages have been invented already.” This was proven wildly wrong a 

year or two later when Java hit the scene, and perhaps a dozen times since then when important 

languages such as Go emerged. After a mere six decades, it would be unwise to claim our field is 

mature and that there’s nothing new to invent that might make you famous.

In any case, celebrity is a bad reason to build a programming language. The chances of acquiring 

fame or fortune from your programming language invention are slim. Curiosity and a desire 

to know how things work are valid reasons, so long as you’ve got the time and inclination, but 

perhaps the best reason to build your own programming language is necessity.

Some folks need to build a new language, or a new implementation of an existing programming 

language, to target a new processor or compete with a rival company. If that’s not you, then 

perhaps you’ve looked at the best languages (and compilers or interpreters) available for some 

domain that you are developing programs for, and they are missing some key features for what 

you are doing, and those missing features are causing you pain. This is the stuff Master’s theses 

and PhD dissertations are made of. Every once in a blue moon, someone comes up with a whole 

new style of computing for which a new programming paradigm requires a new language.

While we are discussing your motivations for building a language, let’s also talk about the differ-

ent kinds of languages, how they are organized, and the examples this book will use to guide you. 

Types of programming language implementations
Whatever your reasons, before you build a programming language, you should pick the best tools 

and technologies you can find to do the job. In our case, this book will pick them for you. First, 

there is a question of the implementation language, which is to say, the language that you are 

building your language in. 
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Programming language academics like to brag about writing their language in that language 

itself, but this is usually only a half-truth (or someone was being very impractical and showing 

off at the same time). There is also the question of just what kind of programming language 

implementation to build:

•	 A pure interpreter that executes the source code itself

•	 A native compiler and a runtime system, such as in C

•	 A transpiler that translates your language into some other high-level language

•	 A bytecode compiler with an accompanying bytecode machine, such as in Java

The first option is fun, but the resulting language is usually too slow to satisfy real-world project 

requirements. The second option is often optimal, but may be too labor-intensive; a good native 

compiler may take years of effort.

The third option is by far the easiest and probably the most fun, and I have used it before with 

good success. Don’t discount a transpiler implementation as a kind of cheating, but do be aware 

that it has its problems. The first version of C++, AT&T’s cfront tool, was a transpiler, but that gave 

way to compilers, and not just because cfront was buggy. Strangely, generating high-level code 

seems to make your language even more dependent on the underlying language than the other 

options, and languages are moving targets. Good languages have died because their underlying 

dependencies disappeared or broke irreparably on them. It can be the death of a thousand cuts.

For the most part, this book focuses on the fourth option; over the course of several chapters, we 

will build a bytecode compiler with an accompanying bytecode machine because that is a sweet 

spot that gives a lot of flexibility, while still offering decent performance. A chapter on transpilers 

and preprocessors is provided for those of you who may prefer to implement your language by 

generating code for another high-level language. A chapter on native code compilation is also 

included, for those of you who require the fastest possible execution.

The notion of a bytecode machine is very old; it was made famous by UCSD’s Pascal implemen-

tation and the classic SmallTalk-80 implementation, among others. It became ubiquitous to the 

point of entering lay English with the promulgation of Java’s JVM. Bytecode machines are abstract 

processors interpreted by software; they are often called virtual machines (as in Java Virtual 

Machine), although I will not use that terminology because it is also used to refer to software 

tools that implement real hardware instruction sets, such as IBM’s classic platforms, or more 

modern tools such as Virtual Box.
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A bytecode machine is typically quite a bit higher level than a piece of hardware, so a bytecode 

implementation affords much flexibility. Let’s have a quick look at what it will take to get there…

Organizing a bytecode language implementation
To a large extent, the organization of this book follows the classic organization of a bytecode 

compiler and its corresponding virtual machine. These components are defined here, followed 

by a diagram to summarize them:

•	 A lexical analyzer reads in source code characters and figures out how they are grouped 

into a sequence of words or tokens.

•	 A syntax analyzer reads in a sequence of tokens and determines whether that sequence 

is legal, according to the grammar of the language. If the tokens are in a legal order, it 

produces a syntax tree.

•	 A semantic analyzer checks to ensure that all the names being used are legal for the 

operations in which they are being used. It checks their types to determine exactly what 

operations are being performed. All this checking makes the syntax tree heavy, laden with 

extra information about where variables are declared and what their types are.

•	 An intermediate code generator figures out memory locations for all the variables and 

all the places where a program may abruptly change execution flow, such as loops and 

function calls. It adds them to the syntax tree and then walks this even fatter tree, before 

building a list of machine-independent intermediate code instructions.

•	 A final code generator turns the list of intermediate code instructions into the actual 

bytecode, in a file format that will be efficient to load and execute.

In addition to the steps of this bytecode virtual machine compiler, a bytecode interpreter is 

written to load and execute programs. It is a giant loop with a switch statement in it. For very 

high-level programming languages, the compiler might be no big deal, and all the magic may be 

in the bytecode interpreter. The whole organization can be summarized by the following diagram:
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Figure 1.1: Phases and dataflow in a simple programming language

It will take a lot of code to illustrate how to build a bytecode machine implementation of a pro-

gramming language. How that code is presented is important and will tell you what you need to 

know going in, as well as what you may learn from going through this book.



Why Build Another Programming Language?8

Languages used in the examples
This book provides code examples in two languages using a parallel translations model. The first 

language is Java because that language is ubiquitous. Hopefully, you know Java (or C++, or C#) 

and will be able to read the examples with intermediate proficiency. The second example language 

is the author’s own language, Unicon. While reading this book, you can judge for yourself which 

language is better suited to building programming languages. As many examples as possible are 

provided in both languages, and the examples in the two languages are written as similarly as 

possible. Sometimes, this will be to the advantage of Java, which is a bit lower level than Unicon. 

There are sometimes fancier or shorter ways to write things in Unicon, but our Unicon examples 

will stick as close to Java as possible. The differences between Java and Unicon will be obvious, 

but they are somewhat lessened in importance by the compiler construction tools we will use.

This book uses modern descendants of the venerable Lex and YACC tools to generate our scanner 

and parser. Lex and YACC are declarative programming languages that solve some of our hard 

problems at a higher level than Java or Unicon. It would have been nice if a modern descendant 

of Lex and YACC (such as ANTLR) supported both Java and Unicon, but such is not the case. One 

of the very cool parts of this book is this: by choosing tools for Java and Unicon that are very 

compatible with the original Lex and YACC and extending them a bit, we have managed to use 

the same lexical and syntax specifications of our compiler in both Java and Unicon!

While Java and Unicon are our implementation languages, we need to talk about one more lan-

guage: the example language we are building. It is a stand-in for whatever language you decide 

to build. Somewhat arbitrarily, this book introduces a language called Jzero for this purpose. 

Niklaus Wirth invented a toy language called PL/0 (programming language zero; the name is 

a riff on the language name PL/1) that was used in compiler construction courses. Jzero is a tiny 

subset of Java that serves a similar purpose. I looked pretty hard (that is, I googled Jzero and then 

Jzero compiler) to see whether someone had already posted a Jzero definition we could use and 

did not spot one by that name, so we will just make it up as we go along.

The Java examples in this book will be tested using Java 21; maybe other recent versions of Java 

will work. You can get OpenJDK from http://openjdk.org, or if you are on Linux, your operating 

system probably has an OpenJDK package that you can install. Additional programming language 

construction tools (Jflex and byacc/j) that are required for the Java examples will be introduced 

in subsequent chapters as they are used. The Java implementations we will support might be 

more constrained by which versions will run these language construction tools than anything else.

http://openjdk.org
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The Unicon examples in this book work with Unicon version 13.3, which can be obtained from 

http://unicon.org. To install Unicon on Windows, you must download a .msi file and run the 

installer. To install on Linux, you should follow the instructions found on the unicon.org site. 

Having gone through the basic organization of a programming language and the implementation 

that this book will use, perhaps we should take another look at when a programming language 

is called for, and when building one can be avoided by developing a library instead.

The difference between programming languages and 
libraries
Unless you are in it for the “fun” or the intellectual experience, building a programming language 

is a lot of work that might not be necessary. If your motives are strictly utilitarian, you don’t have 

to make a programming language when a library will do the job. Libraries are by far the most 

common way to extend an existing programming language to perform a new task. A library is a 

set of functions or classes that can be used together to write applications for some hardware or 

software technology. Many languages, including C and Java, are designed almost completely to 

revolve around a rich set of libraries. The language itself is very simple and general, while much of 

what a developer must learn to develop applications consists of how to use the various libraries.

The following is what libraries can do:

•	 Introduce new data types (classes) and provide public functions (an API) to manipulate 

them

•	 Provide a layer of abstraction on top of a set of hardware or operating system calls

The following is what libraries cannot do:

•	 Introduce new control structures and syntax in support of new application domains

•	 Embed/support new semantics within the existing language runtime system

Libraries do some things badly, so you might end up preferring to make a new language:

•	 Libraries often get larger and more complex than necessary.

•	 Libraries can have even steeper learning curves and poorer documentation than languages.

•	 Every so often, libraries have conflicts with other libraries.

•	 Applications that use libraries can become broken if the library changes incompatibly in 

a later version.

http://unicon.org
unicon.org
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There is a natural evolutionary path from a library to a language. A reasonable approach to building 

a new language to support an application domain is to start by making or buying the best library 

available for that application domain. If the result does not meet your requirements in terms of 

supporting the domain and simplifying the task of writing programs for that domain, then you 

have a strong argument for a new language.

This book is about building your own language, not just building your own library. It turns out 

that learning about tools and techniques to implement programming languages is useful in 

many other contexts.

Applicability to other software engineering tasks
The tools and technologies you learn about from building your own programming language can 

be applied to a range of other software engineering tasks. For example, you can sort almost any 

file or network input processing task into three categories:

•	 Reading XML data with an XML library

•	 Reading JSON data with a JSON library

•	 Reading anything else by writing code to parse it in its native format

The technologies in this book are useful in a wide array of software engineering tasks, which is 

where the third of these categories is encountered. Frequently, structured data must be read in 

a custom file format.

For some of you, the experience of building your own programming language might be the sin-

gle largest program you have written thus far. If you persist and finish it, it will teach you lots of 

practical software engineering skills, besides whatever you learn about compilers, interpreters, 

and the such. This will include working with large dynamic data structures, software testing, and 

debugging complex problems, among other skills.

That’s enough of the inspirational motivation. Let’s talk about what you should do first: figure 

out your requirements.

Establishing the requirements for your language
After you are sure you need a new programming language for what you are doing, take a few min-

utes to establish the requirements. This is open-ended. It is you defining what success for your 

project will look like. Wise language inventors do not create a whole new syntax from scratch. 

Instead, they define it in terms of a set of modifications to make to a popular existing language. 
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Many great programming languages (Lisp, Forth, Smalltalk, and many others) had their suc-

cess significantly limited by the degree to which their syntax was unnecessarily different from 

mainstream languages. Still, your language requirements include what it will look like, and that 

includes syntax.

More importantly, you must define a set of control structures or semantics where your program-

ming language needs to go beyond existing language(s). This will sometimes include special 

support for an application domain that is not well served by existing languages and their libraries. 

Such domain-specific languages (DSLs) are common enough that whole books are focused on 

that topic. Our goal for this book will be to focus on the nuts and bolts of building the compiler 

and runtime system for such a language, independent of whatever domain you may be working in.

In a normal software engineering process, requirements analysis would start with brainstorming 

lists of functional and non-functional requirements. Functional requirements for a programming 

language involve the specifics of how the end user developer will interact with it. You might not 

anticipate all the command-line options for your language up front, but you probably know 

whether interactivity is required, or whether a separate compile step is OK. The discussion of 

interpreters and compilers in the previous section, and this book’s presentation of a compiler, 

might seem to make that choice for you, but Python is an example of a language that provides a 

fully interactive interface, even though the source code you type into Python gets compiled into 

bytecode and executed by a bytecode machine, rather than being interpreted directly.

Non-functional requirements are properties that your programming language must achieve that 

are not directly tied to the end user developer’s interactions. They include things such as what 

operating system(s) your language must run on, how fast execution must be, or how little space 

the programs written in your language must run within.

The non-functional requirement regarding how fast execution must be usually determines the 

answer as to whether you can target a software (bytecode) machine or need to target native code. 

Native code is not just faster; it is also considerably more difficult to generate, and it might make 

your language considerably less flexible in terms of runtime system features. You might choose 

to target bytecode first, and then work on a native code generator afterward.

The first language I learned to program on was a BASIC interpreter in which the programs had to 

run within 4 KB of RAM. BASIC at the time had a low memory footprint requirement. But even in 

modern times, it is not uncommon to find yourself on a platform where Java won’t run by default! 

For example, on virtual machines with configured memory limits for user processes, you may 

have to learn some awkward command-line options to compile or run even simple Java programs.



Why Build Another Programming Language?12

In addition to identifying functional and non-functional requirements, many requirements anal-

ysis approaches also define a set of use cases and ask the developer to write descriptions for them. 

Inventing a programming language is different from your average software engineering project, 

but before you are finished, you may want to go there and perform such a use case analysis. A use 

case is a task that someone performs using a software application. When the software application 

is a programming language, if you are not careful, the use cases may be too general to be useful, 

such as write my application and run my program. While those two might not be very useful, you 

might want to think about whether your programming language implementation must support 

program development, debugging, separate compilation and linking, integration with external 

languages and libraries, and so forth. Most of those topics are beyond the scope of this book, but 

we will consider some of them.

Since this book presents the implementation of a language called Jzero, here are some requirements 

for Jzero. Some of these requirements may appear arbitrary. You could certainly add your own 

requirements and produce your own Java dialect, but this list describes what we are aiming for 

in this book. If it is not clear to you where one of the following requirements came from, it either 

came from our source inspiration language (plzero) or previous experience teaching compiler 

construction:

•	 Jzero should be a strict subset of Java. All legal Jzero programs should be legal Java pro-

grams. This requirement allows us to check the behavior of our test programs when we 

are debugging our language implementation.

•	 Jzero should provide enough features to allow interesting computations. This includes if 

statements, while loops, and multiple functions, along with parameters.

•	 Jzero should support a few data types, including Booleans, integers, arrays, and the String 

type. However, it only needs to support a subset of their functionality, (as you’ll see later). 

These types are enough to allow input and output of interesting values into a computation.

•	 Jzero should emit decent error messages, showing the filename and line number, includ-

ing messages for attempts to use Java features not in Jzero. We will need reasonable error 

messages to debug the implementation.

•	 Jzero should run fast enough to be practical. This requirement is vague, but it implies that 

we won’t be doing a pure interpreter. Pure interpreters that execute source code directly 

without any internal code generation step are a very retro thing, evocative of the 1960s and 

1970s. They tend to execute unacceptably slowly by modern standards. On the other hand, 

you might very well decide that your language should provide the highly interactive look 

and feel of a pure interpreter, like Python does. Anyhow, that is not in Jzero’s requirements.
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•	 Jzero should be as simple as possible so that I can explain it. Sadly, this rules out writing 

a full description of a native code generator or even an implementation that targets JVM 

bytecode; we will provide our own simple bytecode machine.

Perhaps more requirements will emerge as we go along, but this is a start. Since we are constrained 

for time and space, perhaps this requirements list is more important for what it does not say, 

rather than for what it does say. By way of comparison, here are some of the requirements that 

led to the creation of the Unicon programming language.

Case study – requirements that inspired the Unicon 
language
This book will use the Unicon programming language, located at http://unicon.org, for a run-

ning case study. We can start with reasonable questions such as, why build Unicon, and what 

are its requirements? To answer the first question, we will work backward from the second one.

Unicon exists because of an earlier programming language called Icon, from the University of Ari-

zona (http://www.cs.arizona.edu/icon/). Icon has particularly good string and list processing 

facilities and is used to write many scripts and utilities, as well as both programming language 

and natural language processing projects. Icon’s fantastic built-in data types, including structure 

types such as lists and (hash) tables, have influenced several languages, including Python and 

Unicon. Icon’s signature research contribution is its integration of goal-directed evaluation, in-

cluding backtracking and automatic resumption of generators, into a familiar mainstream syntax. 

This leads us to Unicon’s first requirement.

Unicon requirement #1 – preserve what people love about 
Icon
One of the things that people love about Icon is its expression semantics, including its generators 

and goal-directed evaluation. A generator is an expression that is capable of computing more than 

one result; several popular languages feature generators. Goal-directed evaluation is a semantic 

to execute code in which expressions either succeed or fail, and when they fail, generators within 

the expression can be resumed to try alternative results that might make the whole expression 

succeed. This is a big topic beyond the scope of this section, but if you want to learn more, you 

can check out The Icon Programming Language, Third Edition, by Ralph and Madge Griswold, at 

www.cs.arizona.edu/icon.

http://unicon.org
http://www.cs.arizona.edu/icon/
www.cs.arizona.edu/icon
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Icon also provides a rich set of built-in functions and data types so that many or most programs 

can be understood directly from the source code. Unicon’s preservation goal is 100% compatibility 

with Icon. In the end, we achieved more like 99% compatibility.

It is a bit of a leap from preserving the best bits to the immortality goal of ensuring old source code 

will run forever, but for Unicon, we include that as part of requirement #1. We have placed a much 

firmer requirement on backward compatibility than most modern languages. While C is very 

backward compatible, C++, Java, Python, and Perl are examples of languages that have wandered 

away, in some cases far away, from being compatible with the programs written in them back in 

their glory days. In the case of Unicon, perhaps 99% of Icon programs run unmodified as Unicon 

programs. Unicon requirement #2 was to support programming in large-scale projects.

Unicon requirement #2 – support large-scale programs 
working on big data
Icon was designed for maximum programmer productivity on small-sized projects; a typical Icon 

program is less than 1,000 lines of code, but Icon is very high level, and you can do a lot of com-

puting in a few hundred lines of code! Still, computers keep getting more capable, and modern 

programmers are often required to write much larger programs than Icon was designed to handle. 

For this reason of scalability, Unicon adds classes and packages to Icon, much like C++ adds them 

to C. Unicon also improved the bytecode object file format and made numerous scalability im-

provements to the compiler and runtime system. It also refines Icon’s existing implementation 

to be more scalable in many specific items, such as adopting a much more sophisticated hash 

function. Unicon requirement #3 is to support ubiquitous input/output capabilities at the same 

high level as the built-in types.

Unicon requirement #3 – high-level input/output for 
modern applications
Icon was designed for classic UNIX pipe-and-filter text processing of local files. Over time, more 

and more people wanted to use it to write programs that required more sophisticated forms of 

input/output, such as networking or graphics.

Arguably, despite billionfold improvements in CPU speed and memory size, the biggest differ-

ence between programming in 1970 and programming in the 2020s is that we expect modern 

applications to use a myriad of sophisticated forms of I/O: graphics, networking, databases, and 

so forth. Libraries can provide access to such I/O, but language-level support can make it easier 

and more intuitive.
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Support for I/O is a moving target. At first, with Unicon, I/O consisted of networking facilities and 

GDBM and ODBC database facilities to accompany Icon’s 2D graphics. Then, it grew to include 

various popular internet protocols and 3D graphics. The definition of what I/O capabilities are 

ubiquitous continues to evolve, varying by platform, but touch input and gestures or shader 

programming capabilities are examples of things that have become ubiquitous today, and maybe 

they should be added to the Unicon language as part of this requirement. The challenge posed 

by this requirement is increased by Unicon requirement #4.

Unicon requirement #4 – provide universally implementable 
system interfaces
Icon is very portable. I have run it on everything, from Amigas to Crays to IBM mainframes with 

EBCDIC character sets. Although the platforms have changed almost unbelievably over the years, 

Unicon still retains Icon’s goal of maximum source code portability: code that gets written in 

Unicon should continue to run unmodified on all computing platforms that matter.

For a very long time, portability meant running on PCs, Macs, and UNIX workstations. But again, 

the set of computing platforms that matter is a moving target. These days, to meet this require-

ment, Unicon should be ported to support Android and iOS, if you count them as computing 

platforms. Whether they count might depend on whether they are open enough and used for 

general computing tasks, but they are certainly capable of being used as such.

All those juicy I/O facilities that were implemented for requirement #3 must be designed in such 

a way that they can be multi-platform portable across all major platforms.

Having given you some of Unicon’s primary requirements, here is an answer to the question, why 

build Unicon at all? One answer is that after studying many languages, I concluded that Icon’s 

generators and goal-directed evaluation (requirement #1) were features that I wanted when 

writing programs from now on. However, after allowing me to add 2D graphics to their language, 

Icon’s inventors were no longer willing to consider further additions to meet requirements #2 and 

#3. Another answer is that there was a public demand for new capabilities, including volunteer 

partners and some financial support. Thus, Unicon was born.

Summary
In this chapter, you learned the difference between inventing a programming language and in-

venting a library API to support whatever kinds of computing you want to do. Several different 

forms of programming language implementations were considered. This first chapter allowed 

you to think about functional and non-functional requirements for your own language. 
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These requirements might be different for your language than the example requirements discussed 

for the Java subset Jzero and the Unicon programming language, which were both introduced.

Requirements are important because they allow you to set goals and define what success will 

look like. In the case of a programming language implementation, the requirements include 

what things will look and feel like for the programmers that use your language, as well as what 

hardware and software platforms it must run on. The look and feel of a programming language 

include answering both external questions regarding how the language implementation and the 

programs written in the language are invoked, as well as internal issues such as verbosity: how 

much the programmer must write to accomplish a given compute task.

You may be keen to get straight to the coding part. Although the classic build-and-fix mentality of 

novice programmers might work on scripts and short programs, for a piece of software as large as 

a programming language, we need a bit more planning first. After this chapter’s coverage of the 

requirements, Chapter 2, Programming Language Design, will prepare you to construct a detailed 

plan for the implementation, which will occupy our attention for the remainder of this book!

Questions
1.	 What are the pros and cons of writing a language transpiler that generates C code, instead 

of a traditional compiler that generates assembler or native machine code?

2.	 What are the major components or phases in a traditional compiler?

3.	 From your experience, what are some pain points where programming is more difficult 

than it should be? What new programming language feature(s) address these pain points?

4.	 Write a set of functional requirements for a new programming language.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw


2
Programming Language Design

Before trying to build a programming language, you need to define it. This includes the design 

of the features of the language that are visible on its surface, including basic rules to form words 

and punctuation. This also includes higher-level rules, called syntax, that govern the number 

and order of words and punctuation in larger chunks of programs, such as expressions, state-

ments, functions, classes, packages, and programs. Language design also includes the underlying 

meaning, also known as semantics.

Programming language design often begins with you writing example code to illustrate each of 

the important features of your language, as well as show the variations that are possible for each 

construct. Writing examples with a critical eye lets you find and fix many possible inconsistencies 

in your initial ideas. From these examples, you can then capture the general rules that each lan-

guage construct follows. Write down sentences that describe your rules as you understand them 

from your examples. Note that there are two kinds of rules. Lexical rules govern what characters 

must be treated together, such as words, or multi-character operators, such as ++. Syntax rules, 

on the other hand, are rules to combine multiple words or punctuation to form a larger meaning; 

in natural language, they are often phrases, sentences, or paragraphs, while in a programming 

language, they might be expressions, statements, functions, or programs.

Once you have come up with examples of everything that you want your language to do, and 

have written down the lexical and syntax rules, it is time to write a language design document 

(or language specification) to which you can refer while implementing your language. You can 

change things later, but it helps to have a plan to work from.
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In this chapter, we’re going to cover the following main topics:

•	 Determining the kinds of words and punctuation to provide in your language

•	 Specifying the control flow

•	 Deciding on what kinds of data to support

•	 An overall program structure

•	 Completing the Jzero language definition

•	 Case study – designing graphics facilities in Unicon

Let’s start by identifying the basic elements that are allowed in the source code in your language.

Determining the kinds of words and punctuation to 
provide in your language
Programming languages have several different categories of words and punctuation. In natural 

language, words are categorized into parts of speech – nouns, verbs, adjectives, and so on. The 

categories that correspond to the parts of speech that you will have to invent for a programming 

language can be constructed by doing the following:

•	 Defining a set of reserved words or keywords

•	 Specifying characters in identifiers that name variables, functions, and constants

•	 Creating a format for literal constant values for built-in data types

•	 Defining single and multi-letter operators and punctuation marks

You should write down precise descriptions of each of these categories as part of your language 

design document. In some cases, you might just make lists of particular words or punctuation 

to use, but in other cases, you will need patterns or some other way to convey what is and is not 

allowed in a category.
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For reserved words, a list will do for now. For names of things, a precise description must include 

details such as what non-letter symbols are allowed in such names. For example, in Java, names 

must begin with a letter and can then include letters and digits; underscores are allowed and 

treated as letters. In other languages, hyphens are allowed within names, so the three symbols 

a, -, and b make up a valid name, not a subtraction of b from a. When a precise description fails, 

a complete set of examples will suffice.

Constant values, also called literals, are a surprising and major source of complexity in lexical 

analyzers. Attempting to precisely describe real numbers in Java comes out something like this: 

Java has two different kinds of real numbers – floats and doubles – but they look the same until 

you get to the end, where there is an optional f (or F) or d (or D) to distinguish floats from doubles. 

Before that, real numbers must have either a decimal point (.), an exponent (e or E) part, or both. 

If there is a decimal point, there must be at least one digit on one side of the decimal or the other. 

If there is an exponent part, it must have an e (or E), followed by an optional minus sign and 

one or more digits. To make matters worse, Java has a weird hexadecimal real constant format, 

consisting of 0x or 0X followed by digits in hex format, with an optional mantissa consisting of 

a period followed by hexadecimal digits, and a mandatory power part consisting of a p (or P), 

followed by digits in the decimal format that multiplies the number by 2, raised to that power. If 

you want to write constants like 0x3.0fp8, then this IEEE-based format is for you.

Describing operators and punctuation marks is usually almost as easy as listing the reserved 

words. One major difference between operators and punctuation marks is that operators usually 

have precedence rules that you will need to determine. For example, in numeric processing, the 
multiplication operator has almost always higher precedence than the addition operator, so 

x + y * z will multiply y * z before it adds x to the product of y and z. In most languages, there 

are at least three to five levels of precedence, and many popular mainstream languages have from 

13 to 20 levels of precedence that must be considered carefully. 
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The following diagram shows the operator precedence table for Java, from the lowest to highest 

precedence. We will need it for Jzero:

Figure 2.1: Java operator precedence
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The preceding diagram shows that Java has a lot of operators, organized into 10 levels of prece-

dence, although I might be simplifying this a bit. In your language, you might get away with fewer, 

but you will have to address the issue of operator precedence if you want to build a real language.

A similar issue is operator associativity. In many languages, most operators associate from left 

to right, but a few unusual ones associate from right to left. For example, the x + y + z expres-

sion is equivalent to (x + y) + z, but the x = y = 0 expression is equivalent to x = (y = 0).

The principle of least surprise applies to operator precedence and associativity, as well as to 

what operators you put in your language in the first place. If you define arithmetic operators 

and give them unusual precedence or associativity, people will reject your language out of hand. 

If you happen to be introducing new, possibly domain-specific data types, you have way more 

freedom to define operator precedence and associativity for any new operators you introduce in 

your language for those types.

Once you have determined what the individual words and punctuation in your language should 

be, you can work your way up to larger constructs. This is the transition from lexical analysis to 

syntax, and syntax is important because it is the level at which bits of code become large enough 

to specify some computation to be performed. We will look at this in more detail in later chapters, 

but at the design stage, you should at least think about how programmers will specify the control 

flow, declare data, and build entire programs. First, you must plan for the control flow.

Specifying the control flow
The control flow is how a program’s execution proceeds from place to place within the source 

code. Most control flow constructs should be familiar to programmers who have been trained in 

mainstream programming languages. The innovations in your language design can then focus on 

the features that are novel or domain-specific, and that motivated you to create a new language 

in the first place. Make these novel things as simple and readable as possible. Envision how those 

new features ought to fit into the rest of the programming language.

Every language must have conditionals and loops, and almost all of them use if and while to 

start them. You could invent your own special syntax for an if expression, but unless you’ve got a 

good reason to, you would be shooting yourself in the foot. Here are some control flow constructs 

from Java that would certainly be in Jzero:

if (e) s;

if (e) s1 else s2;

while (e) s;

for (…) s;
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Here are some other less common Java control flow constructs that are not in Jzero. If they were 

to appear in a program, what should a Jzero compiler do with them?

switch (e) { … }

do s while (e);

Since these constructs are not in Jzero, if they appear in the input source code, then by default, 

our compiler will print a cryptic syntax error message that doesn’t explain things very well. In 

the next two chapters, we will make our compiler for Jzero print a nice error message about the 

Java features that it does not support.

Besides conditionals and loops, languages tend to have a syntax to call subroutines and return 

afterward. All these ubiquitous forms of control flow are abstractions of the underlying machine’s 

capability to change the location where instructions are executing – the GOTO. If you invent a 

better notation for changing the location where instructions are executing, it will be a big deal.

The biggest controversy when designing many or most control flow constructs seems to be whether 

they are statements, or whether you should make them expressions that produce a result that 

can be used in a surrounding expression. I have used languages where the result of if expressions 

are useful – C/C++/Java even have an operator for that: the i?t:e conditional operator. I have not 

found a language that did something very meaningful by making a while loop an expression; the 

best the languages did was to have the while expressions produce a result, telling us whether the 

loop exited due to the test condition or an internal break.

If you are inventing a new language from scratch, one of the big questions for you is whether you 

should come up with some new control structure(s) to support your intended application domain. 

For example, suppose you want your language to provide special support for investing in the 

stock market. If you manage to come up with a better control structure for specifying conditions, 

constraints, or iterative operations within this domain, you might provide a competitive edge 

to those who are coding in your language for this domain. The program will have to run on an 

underlying von Neuman instruction set, so you will have to figure out how to map any such new 

control structure to instructions such as Boolean logic tests and GOTO instructions.

Whatever control flow constructs you decide to support, you will also need to design a set of 

data types and declarations that reflect the information that the programs in your language will 

manipulate.
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Deciding on what kinds of data to support
There are at least three categories of data types to consider in your language design. We will 

describe each of these in this section. The first one is atomic, scalar primitive types, often called 

first-class data types. The second is composite or container types, which hold and organize collec-

tions of values. The third (which may be variants of the first or second categories) is application 

domain-specific types. You should formulate a plan for each of these categories.

Atomic types
Atomic types are generally built-in and immutable. As the word immutable suggests, you can-

not modify existing atomic values, only combine them to compute new values. Pretty much all 

languages have such built-in atomic types for numbers and a few additional types. A Boolean 

type, null type, and maybe a string type are common atomics, but some languages have others.

You decide just how complicated to get with atomics: how many different machine representa-

tions of integers and real numbers do programs written in your language need? Some higher-level 

languages such as BASIC might provide a single type for all numbers, while lower-level languages 

such as C or C++ might provide 5 or 10 (or more) representations for different sizes and kinds of 

integers, and another few for real numbers. The more you add, the more flexibility and control 

you give to programmers who use your language, but the more difficult your implementation 

task will be later. In addition, the increased complexity reduces readability and makes programs 

harder to understand.

Similarly, it is impossible to design a single string data type that is ideal for all applications that 

use strings a lot. But how many string types do you want to support? One extreme is having no 

string type at all, only a short integer type to hold characters. Such languages consider strings to 

be composite types. Maybe strings are supported only by a library rather than in the language. 

Strings may be arrays or objects, but even such languages usually have some special lexical rules 

that allow string constant values to be given as double-quoted sequences of characters of some 

kind. Another extreme is that, given the importance of strings in many application domains, your 

language might want to support multiple string types for various character representations (ASCII, 

UTF8, and so on) with auxiliary types (character sets) and special types and control structures 

that support the analysis and construction of strings. Many popular languages treat strings as 

a special atomic type.
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If you are especially clever, you may decide to support only a few built-in types for numbers and 

strings but make those types as flexible as possible. Once you go beyond integers, real numbers, 

and strings, the only types that are universal are container types, which allow you to assemble 

data structures.

Some of the things you must think about regarding atomic types include the following:

•	 How many values do they have?

•	 How are all those values encoded as literal constants in the source code?

•	 What kinds of operators or built-in functions use this type as operands or parameters?

The first question will tell you how many bytes the type will require in memory. The second and 

third questions tie back to determining the rules for words and punctuation in the language. The 

third question may also give insight into how much effort, in terms of the code generator or run-

time system, will be required to implement support for the type in your language. Atomic types 

can be more work or less work to implement, but they are seldom as complicated as composite 

types, which we will discuss next.

Composite types
Composite types are types that help you allocate and access multiple values in a coordinated 

fashion. Languages vary enormously regarding the extent of their syntax support for composite 

types. Some only support arrays and structs (Java programmers: you can think of these as classes 

without methods) and require programmers to build all their own data structures on top of these. 

Many provide all higher-level composite types via libraries. However, some higher-level languages 

provide numerous sophisticated data structures as built-ins with syntax support.

The most ubiquitous composite type is an array type, where multiple values are accessed using 

a numerically contiguous range of integer indices. You will probably have something like an 

array in your language. Your main design considerations should be how the indices are given, 

and how changes in the size of the composite value are handled. Most popular languages use 

indices that start at zero. Zero-based array indexes simplify index calculations and are easier 

for a language inventor to implement, but they are less intuitive for new programmers. Some 

languages use 1-based indices or allow a programmer to specify a range of indices, starting at an 

arbitrary integer other than 0.

Regarding changes in size, some languages allow no changes in size at all in their array types, or 

they make the programmer jump through hoops to build new arrays of different sizes based on 

existing arrays. 
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Other languages are engineered to make adding values to an array a cheap and easy operation. 

No one design is perfect for all applications, so you just pick one and live with the consequences: 

do you choose to support multiple array-like data types for different purposes, or instead choose 

to design a very clever type that accommodates a range of common uses well?

Besides arrays, you should think about what other composite types you need. Almost all lan-

guages support a record, struct, or class type to group values of several different types together 

and access them by names, called fields. The more elaborate you get with this, the more complex 

your language implementation will be. If you need proper object orientation in your language, be 

prepared to pay for it in time spent writing your compiler and runtime code. Features like classes 

and inheritance do not come for free. Language designers are advised to keep things simple, but 

as a programmer, I would not want to use a programming language that did not give me this 

capability in some form.

You might be able to think of several other composite types that are essential for your language, 

which is great, especially if they will be used a lot in the programs that you care about. I will talk 

about one more composite type that is of great practical value: the (hash) table data type, also 

commonly called a dictionary type. A table type is something halfway in between an array and 

a record type. You index values using names, and these names are not fixed; new names can be 

computed while the program runs. Any modern language that omits this type is just leaving 

many of its prospective users out. For this reason, your language may want to include a table type. 

Composite types are general-purpose “glue” that’s used to assemble complex data structures, but 

you should also consider whether some special-purpose types, either atomic or composite, belong 

in your language to support applications that are difficult to write in general-purpose languages.

Domain-specific types
In addition to whatever general-purpose atomic and composite types you decide to include, you 

should think about whether your programming language is aimed at a domain-specific niche; if so, 

what data types can your language include to support that domain? There is a smooth continuum 

between domain-specific languages that provide domain-specific types and control structures 

and general-purpose languages such as C++ and Java, which provide libraries for everything. 

Class libraries are powerful, but for some applications and domains, the library approach may 

be more complex and bug-prone than a language expressly designed to support the domain. For 

example, Java and C++ have string classes, but they do not support complex text-processing 

applications better than languages that have special-purpose types and control structures for 

string processing. Besides data types, your language design will need an idea of how programs 

are assembled and organized.
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Overall program structure
When looking at the overall program structure, we need to look at how entire programs are orga-

nized and put together, as well as the important question of how much nesting is in your language. 

It almost seems like an afterthought, but how and where will the source code in programs begin 

executing? In languages based on C, execution starts from a main() function, while in scripting 

languages, the source code is executed as it is read in, so there is no need for a main() function 

to start the ball rolling.

Program structure also raises the basic question of whether a whole program must be translated 

and run together, or if different packages, classes, or functions can be separately compiled and 

then linked and/or loaded together for a program to run. A language inventor can dodge a lot 

of implementation complexity by either building things into the language (if it is built in, there 

is no need to figure out linking), requiring the whole program’s source code to be presented at 

runtime, or by generating code for some well-known standard execution format where someone 

else’s linker and loader will do all the hard work.

Perhaps the biggest design question relating to the overall program structure is which constructs 

may be nested, and what limits on nesting are present, if any. This is perhaps best illustrated by 

an example. Once upon a time, two obscure languages were invented around 1970 that struggled 

for dominance: C and Pascal.

The C language was almost flat – a program was a set of functions linked together, and only 

relatively small (fine-grained) things could be nested: expressions, statements, and, reluctantly, 

struct definitions.

In contrast, the Pascal language was fabulously more nested and recursive. Almost everything 

could be nested. Notably, functions could be embedded within functions, arbitrarily deep. Al-

though C and Pascal were roughly equivalent in power, and Pascal had a bit of a head start and 

was by far the most popular in university courses, C eventually won. Why? There are many con-

tributing factors that might explain why C won out over Pascal. One factor might be that nesting 

functions adds complexity without adding much value.

Because C won, many modern mainstream languages (I am thinking especially of C++ and Java 

here) started almost flat. But over time, they have added more and more nesting. Why is this? 

Perhaps it is natural for programming languages to add features over time until they are very 

complex. Niklaus Wirth saw this coming and advocated for a return to smallness and simplicity 

in software, but his pleas largely fell on deaf ears, and his languages support lots of nesting too.
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What is the practical upshot for you, as a budding language designer? Don’t over-engineer your 

language. Keep it as simple as possible. Don’t nest things unless they need to be nested. And be 

prepared to pay (as a language implementor) every time you ignore this advice!

Now, it’s time to draw a few programming language design examples from Jzero and Unicon. 

In the case of Jzero, since it is a subset of Java, the design is either a big nothingburger (we use 

Java’s design) or it is subtractive: what do we take away from Java to make Jzero, and what will 

that look and feel like? Despite early efforts to keep it small, Java is a large language. If, as part 

of our design, we make a list of everything that is in Java that is not in Jzero, it will be a long list.

Due to the constraints of page space and programming time, Jzero must be a tiny subset of Java. 

However, ideally, any legal Java program that is input to Jzero would not fail embarrassingly – 

it would either compile and run correctly, or it would print a useful explanatory message that 

conveys what Java feature(s) are being used that Jzero does not support. So that you can easily 

understand the rest of this book, as well as to help keep your expectations to a manageable size, 

the next section will cover additional details regarding what is in Jzero and what is not.

Completing the Jzero language definition
In the previous chapter, we listed the requirements for the language that will be implemented in 

this book, and the previous section elaborated on some of its design considerations. For reference 

purposes, this section will describe additional details regarding the Jzero language. If you find 

any discrepancies between this section and our Jzero compiler, then they are bugs. Programming 

language designers use more precise formal tools to define various aspects of a language; nota-

tions to describe lexical and syntax rules will be presented in the next two chapters. This section 

will describe the language in layman’s terms.

A Jzero program consists of a single class in a single file. This class may consist of multiple meth-

ods and variables, but all of them are static. A Jzero program starts by executing a static method 

called main(), which is required. The kinds of statements that are allowed in Jzero are assignment 

statements, if statements, while statements, and the invocation of void methods. The kinds of 

expressions that are allowed in a Jzero program include arithmetic, relational, and Boolean logic 

operators, as well as the invocation of non-void methods.

The Jzero language supports the bool, char, int, and long atomic types. The int and long types 

are equivalent to 64-bit integer data types.
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Jzero also supports arrays. Jzero supports the String, InputStream, and PrintStream class types 

as built-ins, along with subsets of their usual functionality. Jzero’s String type supports the con-

catenation operator and the charAt(), equals(), length(), and substring(b,e) methods. The 

String class’s valueOf() static method is also supported. Jzero’s InputStream type supports the 

read() and close() methods, while Jzero’s PrintStream type supports the print(), println(), 

and close() methods.

With that, we have defined the minimal features necessary to write basic computations in a toy 

language resembling Java. It is not intended to be a real language. However, you are encouraged 

to extend the Jzero language with additional features that we didn’t have room for in this book, 

such as floating-point types and user-defined classes with non-static class variables. Now, let’s 

see what we can observe about language design by looking at one aspect of the Unicon language.

Case study – designing graphics facilities in Unicon
Unicon’s 2D and 3D graphics are built-in and non-trivial in size. The design of Unicon’s graphics 

facilities is a real-world example that illustrates some of the trade-offs in programming language 

design. Most programming languages don’t feature built-in graphics (or any built-in input/out-

put), instead relegating all input/output to libraries. The C language, for example, performs input/

output via libraries, and Unicon’s graphics facilities are built on top of C language APIs. When it 

comes to libraries, many languages emulate the lower-level language they are implemented in 

(such as C or Java) and attempt to provide an exact 1:1 translation of the APIs of the implementa-

tion language. When higher-level languages are implemented on top of lower-level languages, 

this approach provides full access to the underlying API, at the cost of lowering the language 

level when using those facilities.

This wasn’t an option for Unicon; Unicon’s design emphasizes ease of programming and porta-

bility, both of which preclude providing a 1:1 mapping of complex C graphics libraries such as Xlib 

or OpenGL. Instead, Unicon’s graphics were added via two separate large additions to the lan-

guage: first 2D, and then 3D. We will consider the design issues pertaining to 2D and 3D graphics 

separately in the following sections. The next section describes Unicon’s 2D graphics facilities.

Language support for 2D graphics
Unicon’s 2D graphics facility was the last major feature to be introduced to the Icon language 

before it was frozen. The public motivation to add graphics to Icon was to support the rapid exper-

imentation and development of software visualization tools. I did not mention to my Ph.D. advisor 

that I also wanted to be able to use these graphics capabilities to write video games more easily.
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Icon was almost frozen at the time its graphics facilities were created. The design of the graphics 

facilities minimized the changes to the language syntax because a large change would have been 

rejected. The only surface changes were the addition of 19 keywords denoting special values in 

the graphics system. Keywords in Icon and Unicon look like variable names with an ampersand 

preceding them.

All but one of the keywords are devoted to simplifying the processing of input mouse and keyboard 

events. The primary keyword addition is &window. All graphics functions use this window unless 

another window value is supplied as an optional first argument.

The requirement mentioned in the previous chapter, to preserve what people love about Icon, 

extends to new features added to the language. For this reason, the graphics facility’s design is 

consistent with Icon’s existing input and output features. Icon’s input and output facilities include 

a file type and built-in functions and operators that perform input and output.

For Unicon, a single new type (“window”) was introduced as a subtype (and extension) of Icon’s 

file data type. A window is a single, simple thing for a Unicon programmer to create and draw on. 

All the existing (text) input/output operations on files were made to work on windows, and then 

graphics output capabilities were added.

Graphics output capabilities in Unicon are comprised of a set of 40 or so built-in functions to 

draw different graphics primitives. The design decisions for these functions involved selecting 

a minimal set of non-overlapping graphics features, and designing their parameters and return 

values to be as simple and flexible as possible. These design goals are achieved by extensive pa-

rameter defaults, and designing functions to handle an arbitrary number of graphics primitives, 

by accepting an arbitrary number of parameters, wherever that is possible.

Control structures and program organization are major factors when designing language features. 

When writing graphics programs in most languages, a programmer is immediately taught (and 

forced) to give up the control flow to the library and organize their programs as a set of callback 

functions. These are functions that are called when various events occur. In Unicon, the program 

is allowed to retain control, and instead, the language runtime system checks for graphics events 

every so often, handles common tasks such as repainting the window’s contents from the back-

ing store, and queues other events for later processing at the Unicon language level, when the 

application control flow requests it.

After several years, 3D graphics hardware support became ubiquitous. The next section describes 

the design issues surrounding the addition of 3D graphics in Unicon.
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Adding support for 3D graphics
2D graphics were added to Icon (and Unicon) as an extension of the file data type and supported 

normal file operations such as open, close, read, and write. The associated window in which 

individual pixels and other graphics primitives could be manipulated was a bonus. Similarly, 3D 

graphics were added as an extension of 2D graphics. The 3D windows support camera viewing 

primitives in a 3D space, but they support the same attributes, such as color and fonts in the 

same notation as the 2D facilities, with appropriate extensions. The 3D windows also provide 

the same input capabilities as 2D windows, along with additional graphics output primitives.

A 2D window’s canvas is a 2D array of pixels that can be read and written, but a 3D window’s 

canvas includes a display list that is redrawn for each frame. In Unicon, the display list can be 

manipulated directly to cause various animation effects, such as changing the size or position of 

individual 3D objects. The display list is central to both level of detail (LOD) management and 

3D object selection. A control structure was added to mark and name sections of the display list, 

which can then be enabled/disabled or selected for user input.

This discussion of the design of Unicon’s graphics facilities is necessarily incomplete due to space 

limitations. Initially, in the 2D facilities, the design was intentionally minimalist. Although the 

result was successful, you can argue that Unicon’s graphics facilities should do more. It might be 

possible, for example, to invent new control structures that simplify graphics output operations 

even further. In any case, this design discussion has given you an idea of some of the issues that 

may come up when adding support for a new domain to an existing language.

Summary
This chapter presented some of the issues involved in language design. The skills you acquired 

from this chapter include those surrounding lexical design, including creating literal constant 

notations for data types; syntax design, including operators and control structures; and program 

organization, including deciding how and where to start execution.

The reason you should spend some time on your design is that you will need a good idea of what 

your programming language will be capable of, in order to implement it. If you defer design de-

cisions until you need to implement them, mistakes will cost you more at that point. Designing 

your language includes what data types it supports, ways to declare variables and introduce 

values, control structures, and the syntax needed to support code at different levels of granular-

ity, from individual instructions to whole programs. Once you have finished or think you have 

finished, it is time to code, beginning with a function for reading the source code, which is the 

focus of the next chapter.



Chapter 2 31

Questions
1.	 Some programming languages do not have any reserved words at all, but most popular 

mainstream languages have several dozen. What are the advantages and disadvantages 

of adding more reserved words to a language?

2.	 The lexical rules for literal constants are often the largest and most complex rules in a 

programming language’s lexical specification. Give examples of how even something 

as simple as integer literals can become quite a challenge to the language implementor.

3.	 Semicolons are often used to either terminate statements or separate adjacent statements 

from each other. In many popular mainstream languages, the single most common syntax 

error is a missing semicolon. Describe one or more ways that semicolons can be made 

unnecessary in a programming language’s syntax.

4.	 Many programming languages define a program as starting from a function named main(). 

Java is unusual in that, although execution starts from main(), every class may have its 

own main() procedure, which is another way to start the program. Is there any value to 

this odd program organization?

5.	 Most languages feature automatic, pre-opened files for standard input, standard output, 

and error messages. On modern computers, however, these pre-opened files may have 

no meaningful mapping, and a program is more likely to utilize the pre-opened standard 

network, database, or graphics window resources. Should we add pre-opened networks, 

databases, or windows to programming languages? Explain whether this proposition is 

practical and why.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw
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Scanning Source Code
The first step in any programming language is reading the individual characters of the input 

source code and figuring out which characters are grouped together. In a natural language, this 

would include looking at the adjacent sequences of letters to identify the words. In a programming 

language, clusters of characters form variable names, reserved words, or sometimes operators or 

punctuation marks that are several characters long. This chapter will teach you how to read source 

code and identify the words and punctuation from the raw characters using pattern matching.

In this chapter, we’re going to cover the following main topics:

•	 Lexemes, lexical categories, and tokens

•	 Regular expressions

•	 Using UFlex and JFlex

•	 Writing a scanner for Jzero

•	 Regular expressions are not always enough

First, let’s look at the several kinds of words that appear in program source code. A natural lan-

guage reader must distinguish the nouns from the verbs and adjectives to understand what a 

sentence means. In the same way, your programming language must categorize each entity in 

the source code to determine how it is to be interpreted.

Technical requirements
This chapter will take you through some real technical content. You can download this book’s 

examples from our GitHub repository: https://github.com/PacktPublishing/Build-Your-

Own-Programming-Language-Second-Editon/tree/master/ch3. The Code in Action video for 

the chapter can be found here: https://bit.ly/3Fnn2c2.

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Editon/tree/master/ch3
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Editon/tree/master/ch3
https://bit.ly/3Fnn2c2
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To follow along, you will need to install some tools and download the examples. Let’s start by 

looking at how to install UFlex and JFlex. UFlex comes with Unicon and requires no separate 

installation.

For JFlex, download jflex-1.9.1.tar.gz (or newer) from http://jflex.de/download.html. 

Depending on your version of the tar(1) program, you may have to first decompress it with 

gunzip, converting the file from a .tar.gz file into a .tar file. You can get gunzip from places 

such as www.gzip.org/ or gnuwin32.sourceforge.net/packages/gzip.htm.

After that, you can then extract the files from the .tar file with tar. It will extract itself into a 

subdirectory under the directory where you run tar. Modern versions of tar may include gunzip 

capabilities built in. For example, you will see a subdirectory named jflex-1.9.1. On Windows, 

wherever you extract JFlex, if you do not move your JFlex installation into C:\JFLEX, you will need 

to set a JFLEX_HOME environment variable to where you install it, and you will also want to put 

your JFLEX\bin directory in your PATH. On Linux, you can add your JFLEX/bin directory to your 

PATH or create a symbolic link to the JFLEX\bin\jflex script.

If you unpacked JFlex in /home/myname/jflex-1.9.1, you can make a symbolic link from /usr/

bin/jflex to the untarred /home/myname/jflex-1.9.1/bin/jflex script:

sudo ln -s /home/myname/jflex-1.9.1/bin/jflex /usr/bin/jflex

Previously, we mentioned that the examples in this book will be delivered in both Unicon and 

Java in a parallel translation model. There is not enough horizontal space on a printed page to 

show the code side by side. Instead, the Unicon example will be given first, followed by the cor-

responding Java code. Usually, the Unicon code constitutes good executable pseudocode from 

which the Java implementation is derived. Once you have UFlex and/or JFlex installed and ready 

to go, it is time to discuss what we are doing. Then, we will talk about how to use UFlex and JFlex 

to generate the code for the lexical analyzer, also called a scanner.

Lexemes, lexical categories, and tokens
Programming languages read characters and group adjacent characters together when they are 

part of the same entity in the language. This can be a multi-character name or reserved word, a 

constant value, or an operator.

A lexeme is a string of adjacent characters that form a single entity. Most punctuation marks are 

lexemes unto themselves, in addition to separating what came before from what comes after 

them. In reasonable languages, whitespace characters such as spaces and tabs are ignored other 

than to separate lexemes. 

http://jflex.de/download.html
www.gzip.org/
gnuwin32.sourceforge.net/packages/gzip.htm
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Almost all languages also have a way of including comments in the source code, and comments 

are typically treated the same as whitespace: they can be the boundary that separates two lexemes, 

but they are discarded and not considered further.

Each lexeme has a lexical category. In natural languages, lexical categories are called parts of 

speech: nouns, verbs, and adjectives are examples. In a programming language implementation, 

the lexical category is generally represented by an integer code and used in parsing. Variable 

names are another lexical category. Constants are at least one category; in most languages, there 

are several different categories for different constant data types. Most reserved words get their 

own category because they are allowed in distinct places in the syntax; in a lot of grammars, all 

reserved words are given their own category, even though some of them are syntactically inter-

changeable. Similarly, operators usually get at least one category per precedence level, and often, 

each operator will be given its own category. A typical programming language has between 50 

and 100 different lexical categories, which is a lot more than the number of parts of speech most 

of us can name for natural languages.

The bundle of information that a programming language gathers for each lexeme that it reads 

in the source code is called a token. Tokens are typically represented by a struct (pointer) or an 

object. The fields in the token include the following:

•	 The lexeme (a string)

•	 The category (an integer)

•	 Filename (a string name of the file in which the lexeme occurred)

•	 Line number (an integer for the line within that file where the lexeme occurred)

•	 Possibly other data about the lexeme (column number, binary representation, etc.)

When reading books about programming languages, you may find that some authors will use 

the word “token” in various ways to mean the string (lexeme), the integer category, or the struct/

object, depending on context. With the vocabulary of lexemes, categories, and tokens in hand, it 

is time to look at the notation that is used to associate sets of lexemes with their corresponding 

categories. Patterns in this notation are called regular expressions.

Regular expressions
Regular expression (RE) notation is the most widely used way to describe patterns of symbols 

within files. They are formulated from very simple rules that are easy to understand. The set of 

symbols over which a set of regular expressions is written is called the alphabet. Our “alphabet” 

in this section will not be the colloquial A through Z of English but, instead, is closer to what is 

called the ASCII set.
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In some sets of input symbols, regular expressions are patterns that describe sets of strings using 

the members of the input symbol set and a few regular espression operators. Since they are a 

notation for sets, terms such as member, union, or intersection apply when talking about the 

sets of strings that regular expressions can match. We will look at the rules for building regular 

expressions in this section, followed by examples.

Regular expression rules
Over the years, many different tools have used regular expressions, featuring many non-standard 

extensions to the notation. This book will show only those regular expression operators that are 

needed for the examples given. This is a superset of the minimum set of operators that theory 

books say are required for regular expressions, while it avoids the overkill of seldom-used operators 

found in some tools’ regular expression implementations. The rules of regular expressions that we 

will consider are as follows. After the first rule, the rest are all about chaining regular expressions 

together into larger regular expressions that match more complicated patterns:

Any symbol, such as a from the alphabet, is a regular expression that matches that symbol. The 

escape symbol, the backslash (\), turns an RE operator into a regular expression that just matches 

that operator symbol.

Parentheses may be placed around a regular expression, (r), so that it matches the same thing 

as r. This is used to force operator precedence of the regular expression operators inside the 

parentheses so that they are applied before operators outside the parentheses.

When two regular expressions, re1  and re2, are adjacent, the resulting pattern,  

re1 re2, matches an instance of the left regular expression, followed by an instance of the right 

regular expression. This is called concatenation and it is sneaky because it is an invisible or 

implicit operator. An arbitrary string enclosed in double quotes is that sequence of characters, 

concatenated. Regular expression operators do not apply inside double quotes, and the usual 

escape sequences such as \n can be used.

Any two regular expressions, re1 and re2, can have a vertical bar placed between them to create 

a regular expression, re1 | re2, that matches a member of either re1 or re2. This is called alter-

nation because it allows either alternative. Square brackets are a special shorthand for regular 

expressions composed of lots of vertical bar operators separating individual character symbols: 

[abcd] is equivalent to (a|b|c|d), either a or b or c or d. The shorthand also has shorthand: the 

[a-d] regular expression is an even shorter equivalent of (a|b|c|d), while the [^abcd] regular 

expression means any one character that is neither a nor b nor c nor d. A useful shorthand for the 

shorthand of the shorthand is the period character, or dot (.). The period, or dot character, ., is 

equivalent to [^\n] and matches any one character except a newline.
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Any regular expression, re, can be followed by an asterisk, or star operator. The re* regular ex-

pression matches zero or more occurrences of the re regular expression. Similarly, any regular 

expression can be followed by a plus sign. The re+ regular expression matches one or more occur-

rences of the re regular expression. Lastly, any regular expression can be followed by a question 

mark. The re? regular expression matches zero or one occurrence of the re regular expression.

These rules do not say anything about whitespace in regular expressions, or comments. Program-

ming languages have these things, but they are not part of regular expression notation! If you 

need a space character as part of the pattern you are matching, sure, you can escape one, or put 

it in double quotes or square brackets. But if you see a comment or a space that is not escaped in 

a regular expression, it is a bug. If you want to insert whitespace into a regular expression just to 

make it more pretty, you can’t. If you need to write a comment to explain what a regular expression 

is doing, you are probably making your regular expression too complicated; regular expressions 

are supposed to be self-documenting. If yours are not, you should consider re-writing them.

Despite my argument of keeping things simple, the five simple rules for forming regular expres-

sions can be combined in various ways to form powerful patterns that match very interesting 

sets of strings. Before we dive into the lexical analyzer generator tools that use them, we’ll look 

at some additional examples that will give you a feel for some of the kinds of patterns that can 

be described by regular expressions.

Regular expression examples
Regular expressions are easy once you have written a few of them. Here are some that could 

conceivably be used in your scanner:

The regular expression while is a concatenation of five regular expressions, one for each letter: w, 

h, i, l, and e. It matches the "while" string, without the double quotes.

The regular expression "+"|"-"|"*"|"/" matches a string of length one that is either a plus, a 

minus, an asterisk, or a slash. Double quotes are used to ensure that none of these punctuation 

marks are interpreted as a regular expression operator. You could specify the same pattern as 

[+\-*/]. Regular expression operators such as * do not apply inside square brackets. Inside 

square brackets punctuation marks are just treated as symbols, with the exception of characters 

such as minus or caret that have special interpretations inside square brackets, which must be 

escaped with a backslash.
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The [0-9]*\.[0-9]* regular expression matches zero or more digits, followed by a period, fol-

lowed by zero or more digits. The dot is escaped because, otherwise, it would mean any character 

other than a newline. Although this pattern looks like a good effort at matching real numbers, it 

allows the dot to be there without any digits on either side! You will have to do better than this. 

It is pretty cumbersome, I admit, to say ([0-9]+\.[0-9]*|[0-9]*\.[0-9]+), but at least you 

know that token will be a number of some kind.

The "\""[^"]*"\"" regular expression matches a double quote character, followed by zero or 

more occurrences of any character that is not a double quote character, followed by a double quote 

character. This is a typical newbie attempt at a regular expression for string constants. One thing 

that is wrong with it is that it allows newlines in the middle of the string, which most programming 

languages do not allow. Another problem with it is that it has no way to put a double quote char-

acter inside a string constant. Most programming languages will provide an escape mechanism 

that allows this. Once you start allowing escaped characters, you must be very specific about them. 

To just allow escaped double quotes, you might write "\""([^"\\\n]|\\")*"\"". A more general 

version for a language such as C might look closer to "\""([^\\\n]|\\([abfnrtv\\?0]|[0-7]

[0-7][0-7]|x[0-9a-fA-F][0-9a-fA-F]))*"\"".

These examples show that regular expressions range from trivial to gigantic. Regular expressions 

are something of a write-only notation – much harder to read than to write. Sometimes, if you 

get your regular expression wrong, it may be easier to rewrite it from scratch than to try and 

debug it. Having looked at several examples of regular expressions, it is time to learn about the 

tools that use regular expression notation to generate scanners for reading source code – namely, 

UFlex and JFlex.

Using UFlex and JFlex
Writing a scanner by hand is an interesting task for a programmer who wants to know exactly 

how everything works, but it will slow down the development of your language and make it more 

difficult to maintain the code afterward.

Good news, everyone! A family of tools that originated as part of UNIX, known as lex, takes regular 

expressions and generates a scanner function for you. Lex-compatible tools are available for the 

most popular programming languages. For C/C++, the most widely used lex-compatible tool is 

Flex, hosted at https://github.com/westes/flex/. For Unicon, we use UFlex, while for Java, 

you can use JFlex. These tools have various custom extensions, but to the extent that they are 

compatible with UNIX lex, we can present them together as one language for writing scanners. 

This book’s examples have been crafted carefully so that we can even use the same input file for 

both the Unicon and Java implementation!

https://github.com/westes/flex/
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The input files for lex are often called (lex) specifications. Lex specifications use the extension .l 

and consist of several sections, separated by %%. This book refers generically to lex specifications, 

meaning the input file provided to either UFlex or JFlex, and, for the most part, those files would 

also be valid input for C Flex.

There are required sections in a lex specification: a header section followed by a regular expres-

sion section, and an optional helper functions section. JFlex adds an imports section to the 

front because Java needs imports and needs separate places to insert code fragments before the 

class and inside the class definition. The lex header section and the regular expression section 

are the sections you need to know about right now. We will start by looking at the header section.

Header section
Most Flex tools have options you can enable in the header section; they vary, and we will only 

cover them if we use them. You can also include bits of host language code there, such as variable 

declarations. However, the main purpose of the header section is to define named macros for 

patterns that may appear multiple times in the regular expression section. In lex, these named 

macros are on single lines of the following form:

name        regex

On a macro line, name is a sequence of letters, and then there are one or more spaces, and then there 

is a regular expression. Later, in the regular expressions section, these macros may be substituted 

into a regular expression by surrounding the name with curly braces – for example, {name}. The 

most common error that newbies make with lex macros is to try and insert a comment after the 

regular expression, so don’t do that. The lex language does not support comments on these lines 

and will try to interpret what you write as part of the regular expression.

In a kind of epic tragedy, JFlex breaks compatibility and requires an equals sign after the name, 

so its macros are like this:

name=regex

This incompatibility with UNIX lex is egregious enough that we elected not to use macros in this 

book. While writing this book, we extended UFlex to handle macros with either syntax. If you 

add some macros, then the code here can be shortened a little. Without macros, your header 

section will be almost empty, so let’s look at the next part of the lex specification: the regular 

expressions section.
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Regular expressions section
The primary section of a lex specification is the regular expression section. Each regular expres-

sion is given on a line by itself, followed by some whitespace, followed by a semantic action 
consisting of some host language code (in our case, Unicon or Java) to execute when that regular 
expression has been matched. Note that although each regular expression rule starts on a new 
line, if the semantic action uses curly braces to enclose a statement block in the usual way, it can 
span multiple lines of source code and lex will not start looking for the next regular expression 
until it finds the matching closing curly brace.

The most common mistake made by novices in the regular expression section is that they try 
to insert spaces or comments in the regular expression to improve readability. Don’t do that; 
inserting a space into the middle of the regular expression cuts off the regular expression at the 
space, and the rest of the regular expression is interpreted as being host language code. You can 
get some cryptic error messages when you do this.

When you run UNIX lex, which is a C tool, it generates a function called yylex() that returns an 
integer category for each lexeme; global variables are set with other useful bits of information. 
An integer called yychar holds the category; a string called yytext holds the characters that were 
matched for the lexeme; and yyleng tells us how many characters were matched. Lex tools vary 
in their compatibility with this public interface and some tools will compute more for you auto-
matically. For example, JFlex must generate the scanner within a class and provide yytext() using 
a member function. Programming languages will certainly want more details, such as what line 

number the token came from. Now, it is time to work our way through examples that get us there.

Writing a simple source code scanner
This example lets you check whether you can run UFlex and JFlex. It is short enough that you 

can try it out either by downloading the code from the book’s GitHub site or by typing in the ex-

amples as we go along. The example helps to establish the extent to which the use of UFlex and 

JFlex is similar. The example scanner just recognizes names and numbers and whitespace; the 

lex specification will be placed in a file named nnws.l. The first thing a programming language 

tool must do when reading source code is identify the category of each lexeme and return what 

category was found. This example returns a 1 for a name and a 2 for a number. Whitespace is 

discarded. Anything else is an error.

The body of nnws.l is given in this section. This specification will work as input for both UFlex and 

JFlex. After you download it or type it in, the book will show you how to build it for both Unicon 

and Java— you can do either or both. Since the semantic actions for UFlex are Unicon code and 

for JFlex they are Java code, this requires some restraint. 



Chapter 3 41

A semantic action will be legal in both Java and Unicon only if we limit the semantic action code 

to the syntax that is common to the two languages, such as method calls and return expressions. 

If you start inserting if statements or assignments and language-specific syntax, your lex spec-

ification will become specific to one host language, such as Unicon or Java.

Even this short example contains some ideas we will need later. The first two lines are for JFlex 

and are ignored by UFlex. The initial %% ends an empty JFlex import section. The second line is a 

JFlex option in the header section. By default, JFlex’s yylex() function returns an object of the 

Yytoken type; the %int option tells it to instead return a type of integer like C Flex and UFlex. The 

third line, which starts with %%, transitions us into the regular expressions section. On the fourth 

line, the [a-zA-Z]+ regular expression matches one or more lowercase or uppercase letters; it 

matches as many adjacent letters as it can find and returns a 1. As a by-product, the characters 

matched will be stored in the yytext variable. On the fifth line, the [0-9]+ regular expression 

matches as many digits as it can find and returns a 2. On the sixth line, whitespace is matched by 

the [ \t\r\n]+ regular expression, and nothing is returned; the scanner keeps on going into the 

input file looking for its next lexeme by matching some other regular expression. You probably 

know the other whitespace besides the actual space character inside the square brackets, but \t 

is a tab character, \r is a carriage return character, and \n is a newline. The dot (.) on the seventh 

line will match any character other than the newline, so it will catch any source code that was 

not allowed in any of the previous patterns and report an error in that case. Errors are reported 

using a function named lexErr() for reporting lexical errors, in an object named simple. We will 

need additional error reporting functions for later phases of our compiler:

%%

%int

%%

[a-zA-Z]+  { return 1; }

[0-9]+     { return 2; }

[ \t\r\n]+ {  }

.          { simple.lexErr("unrecognized character"); }

This specification will be called from a main() function, once for each word in the input. Each time 

it is called, it will match the current input against all the regular expressions (four, in this case) 

and select whichever regular expression will match the most characters at the current location. 

If two or more regular expressions tie for the longest match, whichever one appears first in the 

specification file wins.
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Various lex tools can provide a default main() function, but for full control, you should write your 

own. Writing our own main() function also allows the sample example to demonstrate how to 

call yylex() from a separate file. You will need to be able to do that to hook your scanner up to 

the parser in the next chapter.

The main() function varies by language. Unicon has a C++-style program organization model 

where main() starts outside of any object, while Java places main() functions inside of classes, 

but otherwise, the Unicon and Java code have many similarities.

The Unicon implementation of the main() function can be put in any filename with Unicon’s .icn 

extension; let’s call this one simple.icn. This file contains a main() procedure and a singleton 

class called simple that is only needed because in nnws.l, we called a lexical error helper function 

in a Java-compatible way – that is, simple.lexErr(). The main() procedure initializes the simple 

class by replacing the class constructor function with a single instance returned by that function. 

main() then opens the input file from a name given in the first command-line argument. The 

lexical analyzer is informed of what file to read by yyin. The code then calls yylex() in a loop 

until the scanner has finished:

procedure main(argv)

   simple := simple()

   yyin := open(argv[1])

   while i := yylex() do

      write(yytext, ": ", i)

end

class simple()

   method lexErr(s)

      stop(s, ": ", yytext)

   end

end

The corresponding Java main() function must be put in a class, and the filename must be the 

class name with a .java extension appended. We’ll call this one simple.java. It opens a file by 

creating a FileReader object and attaches it to the lexical analyzer by passing the FileReader 

object as a parameter when it creates a lexical analyzer Yylex object. Because FileReader can 

fail, we have to declare that main() throws an exception. After constructing the Yylex object, 

main() then calls yylex() over and over again until the input is exhausted, as denoted by the 

Yylex.YYEOF sentinel value returned from yylex(). 
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Despite being a bit longer, main() is doing the same thing as in the Unicon version. Compared 

to Unicon’s simple class, the Java version has an extra proxy method, yytext(), so that other 

functions in the simple class or the rest of the compiler can access the most recent lexeme string 

without having a reference to the simple class’s Yylex object:

import java.io.FileReader;

public class simple {

   static Yylex lex;

   public static void main(String argv[]) throws Exception {

      lex = new Yylex(new FileReader(argv[0]));

      int i;

      while ((i=lex.yylex()) != Yylex.YYEOF) 

         System.out.println("token "+ i +": "+ yytext());

   }

   public static String yytext() {

      return lex.yytext();

   }

   public static void lexErr(String s) {

      System.err.println(s + ": " + yytext());

      System.exit(1);

   }

}

We’ve now covered all the code for your first scanner: a lexical specification in a .l file from which 

a yylex() function is produced, plus a main() function in a .icn or a .java, that calls yylex() 

and checks its operation. This simple scanner is intended mainly to show you how the plumbing 

is all wired together. Whether you downloaded it or typed it in, you should now be ready to try 

it out in Unicon, Java, or both. To ensure that the plumbing works as intended, we had better 

run it and find out.

Running your scanner
Let’s run this example on the following (trivial) input file, named dorrie.in:

Dorrie is 1 fine puppy
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Before you can run this program, you must compile it. UFlex and JFlex write out Unicon and 

Java code that is called from the rest of your programming language, which is written either in 

Unicon or Java. If you are wondering what the compilation looks like, it is shown in the following 

diagram. In Unicon, the two source files are compiled and linked together into an executable file 

named simple. In Java, the two files are compiled into separate .class files; you run Java on the 

simple.class file where the main() method lives, and it loads others as needed:

Figure 3.1: nnws.l used to build both the Unicon (left) and Java (right) programs

You can compile and run the program in either Unicon or Java by using the left column or the 

right column, as shown here:

uflex nnws.l                 jflex nnws.l

unicon simple nnws           javac simple.java Yylex.java

simple dorrie.in             java simple dorrie.in

From either implementation, the output that you should see is the five lines shown here:

token 1: Dorrie

token 1: is
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token 2: 1

token 1: fine

token 1: puppy

So far, all the example does is categorize groups of input characters using a regular expression to 

identify what kind of lexeme has been found. For the rest of the compiler to work, we will need 

more information about that lexeme, which we will store in a token.

Tokens and lexical attributes
In addition to identifying what integer category each lexeme belongs to, the rest of the program-

ming language implementation (in our case, the compiler) requires the scanner to allocate an 

object that holds all the associated information about the lexeme. This object is called a token.

A token holds a group of named fields, called lexical attributes. The pieces of information that 

must be recorded pertaining to a given lexeme will depend on the language and implementation. 

Tokens will normally track the integer category, the string lexeme, and what line number the 

token came from. In a real compiler, tokens usually contain additional information about the 

lexeme. This is likely to include the filename and the column within the line where the lexeme 

occurred. For some tokens (literal constants), a compiler or interpreter may find it useful to store 

the actual binary value represented by that literal.

You might be wondering why you should store what column a token came from on a line. Given 

the lexeme text itself, you can usually see it easily enough by just looking at the line of source 

code, and most compilers only give line numbers when they report errors, not column numbers. 

In truth, not all programming language implementations store column numbers in their lexical 

attributes. The ones that do, however, can disambiguate errors when the same token appears 

more than once on a line: is the error at the first closing parenthesis, or the third? You can leave 

it to the human to guess, or you can record the extra details. Whether you elect to store column 

information or not might also depend on whether your lexical analyzer will be used in an IDE that 

jumps the cursor to the offending token when an error occurs. If that is among your requirements, 

you will need column information in order to implement that feature.

Expanding our example to construct tokens
Normally, a new token instance is allocated for each call to yylex(). In lex, tokens are transmitted 

to the parser by placing a pointer to the new instance in a global variable named yylval each time 

yylex() is called. As a transition toward a real programming language scanner, we will extend 

the example given previously so that it allocates these token objects. 
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The most elegant and portable way of doing that is to insert a function called scan() into the 

semantic actions; the scan() function allocates the token objects and then (usually) returns its 

parameter, which is the integer category code in the previous example.

A lex specification to do this can be found in the nnws-tok.l file. Fascinatingly, in JFlex, a carriage 

return character is neither part of a newline, nor part of the anything-but-newline dot operator, 

so if you use JFlex, you must account for carriage returns explicitly. In this example, they are 

optional in front of newlines:

%%

%int

%%

[a-zA-Z]+  { return simple2.scan(1); }

[0-9]+     { return simple2.scan(2); }

[ \t]+     {  }

\r?\n      { simple2.increment_lineno(); }

.          { simple2.lexErr("unrecognized character"); }

The revised main() procedure in Unicon is shown in the following file, named simple2.icn. The 

scan() function depends on a global variable called yylineno that is set from main() and updated 

in yylex() every time a newline is matched. As per the previous example, the simple2 class is a 

singleton class that is here so that the lex specification can work unchanged for both Unicon and 

Java. The representation of tokens is defined by a Unicon record type, which is like a struct in 

C/C++ or a class with no methods. So far, it only contains the integer category code, the lexeme 

string itself, and what line number it came from:

global yylineno, yylval
procedure main(argv)
   simple2 := simple2()
   yyin := open(argv[1]) | stop("usage: simple2 filename")
   yylineno := 1
   while i := yylex() do
      write("token ", i, " (line ",yylval.lineno, "): ", yytext)
end
class simple2()
   method lexErr(s)
      stop(s, ": line ", yylineno, ": ", yytext) 
   end
   method scan(cat)
      yylval := token(cat, yytext, yylineno)
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      return cat
   end
   method increment_yylineno()
      yylineno +:= 1
   end
end
record token(cat, text, lineno)

The corresponding Java main() in the simple2.java file looks like this:

import java.io.FileReader;

public class simple2 {

   static Yylex lex;

   public static int yylineno;

   public static token yylval;

   public static void main(String argv[]) throws Exception {

      lex = new Yylex(new FileReader(argv[0]));

      yylineno = 1;

      int i;

      while ((i=lex.yylex()) != Yylex.YYEOF) 

         System.out.println("token "+ i + 
                  " (line " +yylval.lineno + "): "+ yytext());

   }

   public static String yytext() {

      return lex.yytext();

   }

   public static void lexErr(String s) {

      System.err.println(s + ": line " + yylineno + 
           ": " + yytext());

      System.exit(1);

   }

   public static int scan(int cat) {

      yylval = new token(cat, yytext, yylineno);

      return cat;

   }

   public static void increment_lineno() {

      yylineno++;

   }

}
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Another Java file is required for the simple2 example. The token.java file contains our represen-

tation of the class token. This class token will be expanded in the next section:

public class token {

   public int cat;

   public String text;

   public int lineno;

   public token(int c, String s, int l) {

      cat = c; text = s; lineno = l;

   }

}

The following input file, dorrie2.in, has been extended to multiple lines and has a period added 

so that we can see the line number when unrecognized characters are reported:

Dorrie

is 1

fine puppy.

You can run the program in either Unicon or Java, as follows:

uflex nnws-tok.l              jflex nnws-tok.l

                              javac token.java

unicon simple2 nnws-tok       javac simple2.java Yylex.java

simple2 dorrie2.in            java simple2 dorrie2.in

From either implementation, the output that you should see is as follows:

token 1 (line 1): Dorrie

token 1 (line 2): is

token 2 (line 2): 1

token 1 (line 3): fine

token 1 (line 3): puppy

unrecognized character: line 3: .

The output from this example includes line numbers, and the input file includes an unrecognized 

character so that we can see that the error message includes a line number as well.
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Writing a scanner for Jzero
This section presents a larger example: a scanner for Jzero, our subset of the Java language. From 

here on out, the examples are large enough that most readers will want to download the code 

from the book’s GitHub site if they want to run it. This example extends the previous simple2 

example to a realistic language size and adds column information, as well as additional lexical 

attributes for literal constants. The big change is the introduction of many regular expressions for 

more complex patterns than what we’ve seen previously. The entire Java language is recognized, 

but a significant fraction of Java categories cause executions to terminate with an error so that our 

grammar in the next chapter, along with the rest of the compiler, does not have to consider them.

The Jzero flex specification
Compared to the previous examples, a real programming language lex specification will have a 

lot more, and more complicated, regular expressions. The following file is called javalex.l and 

it will be presented in several pieces.

The beginning of javalex.l includes the header and the regular expressions for comments and 

whitespace. These regular expressions match and consume characters from the source code with-

out returning integer code for them; they are invisible to the rest of the compiler. As a subset of 

Java, Jzero includes both C-style comments bounded by /* and */ as well as C++-style comments 

starting with // that go to the end of the line. The regular expression for C comments is a whop-

per; if your language has any patterns like this, it is very easy and common to get them wrong. It 

reads as follows: start with a /* and then eat chunks of non-asterisk characters or asterisks so 

long as they don’t end the comment, and finish when you find an asterisk(s) followed by a slash:

%%

%int

%%

"/*"([^*]|"*"+[^/*])*"*"+"/" { j0.comment(); }

"//".*\r?\n                  { j0.comment(); }

[ \t\r\f]+                   { j0.whitespace(); }

\n                           { j0.newline(); }

The next part of javalex.l contains the reserved words, whose regular expressions are trivial. 

Since these words are common in semantic actions, use double quotes to emphasize that they 

are just the characters themselves and that you are not accidentally looking at some semantic 

action code. 
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Many of the integer category codes here are accessed from the parser class, specified in a sepa-

rate file. In the remaining chapters of this book, the integer codes are specified by the parser. The 

lexical analyzer must use the parser’s codes for these two phases of the compiler to communicate 

successfully.

You might be wondering, why use a separate integer category code for each reserved word? You 

only need a separate category code for each unique role in the syntax. Reserved words that can be 

used in the same places may use the same integer category code. If you do so, your grammar will 

be shorter, but you defer their differences to later in semantic analysis and make your grammar 

a bit vague. An example of this would be true and false; they are syntactically the same kind of 

thing, so they are both returned as a BOOLLIT. We might find other reserved words, such as the 

names of types, where we could assign them the same category code. This is a design decision to 

consider. When in doubt, play it safe and be un-vague by giving each reserved word its own integer:

"break"                { return j0.scan(parser.BREAK); }

"double"               { return j0.scan(parser.DOUBLE); } 

"else"                 { return j0.scan(parser.ELSE); }

"false"                { return j0.scan(parser.BOOLLIT); }

"for"                  { return j0.scan(parser.FOR); }

"if"                   { return j0.scan(parser.IF); }

"int"                  { return j0.scan(parser.INT); }

"null"                 { return j0.scan(parser.NULLVAL); }

"return"               { return j0.scan(parser.RETURN); }

"string"               { return j0.scan(parser.STRING); }

"true"                 { return j0.scan(parser.BOOLLIT); }

"bool"                 { return j0.scan(parser.BOOL); }

"void"                 { return j0.scan(parser.VOID); }

"while"                { return j0.scan(parser.WHILE); }

"class"                { return j0.scan(parser.CLASS); }

"static"               { return j0.scan(parser.STATIC); }

"public"               { return j0.scan(parser.PUBLIC); }

The third part of javalex.l consists of the operators and punctuation marks. The regular ex-

pressions are quoted to indicate that they just mean the characters themselves. As with reserved 

words, in some cases, operators can be lumped together into a shared category code if they have 

the same operator precedence and associativity. This would make the grammar shorter at the 

expense of vagueness. 
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Another wrinkle compared to reserved words is that many operators and punctuation marks 

are only a single character. In that case, it is shorter and more readable to use their ASCII code 

as their integer category code, so we do. The j0.ord(s) function provides a way to do this that 

runs on both Unicon and Java. For multi-character operators, a parser constant is defined, as 

per the reserved words:

"("              { return j0.scan(j0.ord("(")); }
")"              { return j0.scan(j0.ord(")")); }
"["              { return j0.scan(j0.ord("[")); }
"]"              { return j0.scan(j0.ord("]")); }
"{"              { return j0.scan(j0.ord("{")); }
"}"              { return j0.scan(j0.ord("}")); }
";"              { return j0.scan(j0.ord(";")); }
":"              { return j0.scan(j0.ord(":")); }
"!"              { return j0.scan(j0.ord("!")); }
"*"              { return j0.scan(j0.ord("*")); }
"/"              { return j0.scan(j0.ord("/")); }
"%"              { return j0.scan(j0.ord("%")); }
"+"              { return j0.scan(j0.ord("+")); }
"-"              { return j0.scan(j0.ord("-")); }
"<"              { return j0.scan(j0.ord("<")); }
"<="             { return j0.scan(parser.LESSTHANOREQUAL);}
">"              { return j0.scan(j0.ord(">")); }
">="             { return j0.scan(parser.GREATERTHANOREQUAL);}
"=="             { return j0.scan(parser.ISEQUALTO); }
"!="             { return j0.scan(parser.NOTEQUALTO); }
"&&"             { return j0.scan(parser.LOGICALAND); }
"||"             { return j0.scan(parser.LOGICALOR); }
"="              { return j0.scan(j0.ord("=")); }
"+="             { return j0.scan(parser.INCREMENT); }
"-="             { return j0.scan(parser.DECREMENT); }
","              { return j0.scan(j0.ord(",")); }
"."              { return j0.scan(j0.ord(".")); }

The fourth and final part of javalex.l contains the more difficult regular expressions. The rule 

for variable names, whose integer category is IDENTIFIER, must come after all the reserved words. 

The regular expressions for the reserved words override the far more general identifier regular 

expression, but only because lex’s semantics break ties by picking whichever regular expression 

comes first in the lex specification.
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If it will make your code more readable, you can have as many regular expressions as you want, 

all returning the same integer category. This example uses multiple regular expressions for real 

numbers, which are numbers with either a decimal point, a scientific notation, or both. After the 

last regular expression, a catch-all pattern is used to generate a lexical error if some binary or 

other strange characters appear in the source code:

[a-zA-Z_][a-zA-Z0-9_]*{ return j0.scan(parser.IDENTIFIER);}

[0-9]+                { return j0.scan(parser.INTLIT); }

[0-9]+"."[0-9]*([eE][+-]?[0-9]+)? { return j0.scan (parser.DOUBLELIT);}

[0-9]*"."[0-9]+([eE][+-]?[0-9]+)? { return j0.scan (parser.DOUBLELIT);}

([0-9]+)([eE][+-]?([0-9]+))  {return j0.scan (parser.DOUBLELIT);}

\"([^\"])|(\\.)*\"    { return j0.scan(parser.STRINGLIT); }

.                   { j0.lexErr("unrecognized character");}

Although it has been split into four portions for presentation here, the javalex.l file is not very 

long, at around 58 lines of code. Since it works for both Unicon and Java, this is a lot of bang for 

your coding buck. The supporting Unicon and Java code is non-trivial, but we are letting lex (UFlex 

and JFlex) do most of the work here.

Unicon Jzero code
The Unicon implementation of the Jzero scanner resides in a file named j0.icn. Unicon has a 

pre-processor and normally introduces defined symbolic constants via $include files. To use the 

same lex specification in Unicon and Java, this Unicon scanner creates a parser object whose 

fields, such as parser.WHILE, contain the integer category code:

global yylineno, yycolno, yylval

procedure main(argv)

   j0 := j0()

   parser := parser(257,258,259,260,261,262,263,264,265,

                    266, 267,268,269,270,273,274,275,276,

                    277,278,280,298,300,301,302,303,304,

                    306,307,256)

   yyin := open(argv[1]) | stop("usage: simple2 filename")

   yylineno := yycolno := 1

   while i := yylex() do
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      write("token ", i, ":",yylval.lineno, " ", yytext)

end

The second part of j0.icn consists of the j0 class. Compared to the simple2 class from the pre-

vious simple2.icn example, additional methods have been added for the semantic actions to 

call when various whitespace and comments are encountered. This allows the current column 

number to be calculated in a global variable called yycolno:

class j0()

   method lexErr(s)

      stop(s, ": ", yytext) 

   end

   method scan(cat)

      yylval := token(cat, yytext, yylineno, yycolno)

      yycolno +:= *yytext

      return cat

   end

   method whitespace()

      yycolno +:= *yytext

   end

   method newline()

      yylineno +:= 1; yycolno := 1

   end

   method comment()

      yytext ? {

         while tab(find("\n")+1) do newline()

         yycolno +:= *tab(0)

      }

   end

   method ord(s)

      return proc("ord",0)(s[1])

   end

end

In the third part of j0.icn, the token type has been promoted from a record to a class, because 

now it has added complexity in its constructor, as well as a method for processing string escape 

characters and computing the binary representation of string literal constants. In Unicon, the 

constructor code comes at the end of the method in an initially section.
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The deEscape() method discards leading and trailing double-quote characters and then processes 

a string literal character by character using Unicon string scanning. Inside the string scanning 

control structure, s ? { … }, the s string is examined from left to right. The move(1) function 

grabs the next character from the string and moves the scanning position forward by 1. A longer 

explanation of string scanning is given in the Appendix, Unicon Essentials.

In the deEscape() method, normal characters are copied over from the sin input string to the 

sout output string. Escape characters cause one or more characters that follow to be interpreted 

differently. The Jzero subset only handles tabs and newlines; Java has a lot more escapes that 

you could add. There is something funny about turning a backslash followed by a "t" into a tab 

character, but every compiler that you have ever used has had to do something like that:

class token(cat, text, lineno, colno, ival, dval, sval)

   method deEscape(sin)

      local sout := ""

      sin := sin[2:-1]

      sin ? {

         while c := move(1) do {

            if c == "\\" then {

               if not (c := move(1)) then

                  j0.lexErr("malformed string literal")

               else case c of {

                  "t":{ sout ||:= "\t" }

                  "n":{ sout ||:= "\n" }

                  }

               }

            }

            else sout ||:= c

         }

      }

      return sout

   end

initially

   case cat of {

     parser.INTLIT:    { ival := integer(text) }

     parser.DOUBLELIT: { dval := real(text) }

     parser.STRINGLIT: { sval := deEscape(text) }

   }
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end

record parser(BREAK,PUBLIC,DOUBLE,ELSE,FOR,IF,INT,RETURN,VOID,

            WHILE,IDENTIFIER,CLASSNAME,CLASS,STATIC,STRING,

            BOOL,INTLIT,DOUBLELIT,STRINGLIT,BOOLLIT,

            NULLVAL,LESSTHANOREQUAL,GREATERTHANOREQUAL,

            ISEQUALTO,NOTEQUALTO,LOGICALAND,LOGICALOR,

            INCREMENT,DECREMENT,YYERRCODE)

The singleton parser record here looks rather silly to an experienced Unicon programmer who 

can just use $define for all these token category names and skip introducing a parser type. If you 

are a Unicon programmer, just remind yourself that this is for Java compatibility – specifically 

byacc/j compatibility.

Java Jzero code
The Java implementation of the Jzero scanner includes a main class in the j0.java file. It resembles 

the simple2.java example. It is presented here in four parts. The first part includes the main() 

function and should be familiar, other than the addition of extra variables such as the yycolno 

variable, which tracks the current column number:

import java.io.FileReader;

public class j0 {

   static Yylex lex;

   public static int yylineno, yycolno;

   public static token yylval;

   public static void main(String argv[]) throws Exception {

      lex = new Yylex(new FileReader(argv[0]));

      yylineno = yycolno = 1;

      int i;

      while ((i=lex.yylex()) != Yylex.YYEOF) {

         System.out.println("token " + i + ":" + yylineno + " " + 

             yytext());

      }

   }

The j0 class continues with several helper functions that were seen in previous examples:

   public static String yytext() {

      return lex.yytext();

   }
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   public static void lexErr(String s) {

      System.err.println(s + ": line " + yylineno + 
                             ": " + yytext());

      System.exit(1);

   }

   public static int scan(int cat) {

      last_token = yylval =

         new token(cat, yytext(), yylineno, yycolno);

      yycolno += yytext().length();

      return cat;

   }

   public static void whitespace() {

      yycolno += yytext().length();

      }

   public short ord(String s) {return(short)(s.charAt(0));}

The j0 class’s function for handling newline characters in the source code increments the line 

number and sets the column back to 1. The comment-handling method goes character by character 

through the comment to keep the line number and column number correct:

   public static void newline() {

      yylineno++; yycolno = 1;

   }

   public static void comment() {

      int i, len;

      String s = yytext();

      len = s.length();

      for(i=0; i<len; i++)

         if (s.charAt(i) == '\n') {

             yylineno++; yycolno=1;

         }

         else yycolno++;

   }

}
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There is a supporting module named parser.java. It provides a set of named constants, similar 

to an enumerated type, but it declares the constants directly as short integers so that they’re 

compatible with the iyacc parser, which will be discussed in the next chapter. The integers that 

are chosen start above 256 because that’s where iyacc starts them so that they don’t conflict with 

integer codes of single-byte lexemes that we produce via calls to j0.ord():

public class parser {

public final static short BREAK=257;

public final static short PUBLIC=258;

public final static short DOUBLE=259;

public final static short ELSE=260;

public final static short FOR=261;

public final static short IF=262;

public final static short INT=263;

public final static short RETURN=264;

public final static short VOID=265;

public final static short WHILE=266;

public final static short IDENTIFIER=267;

public final static short CLASSNAME=268;

public final static short CLASS=269;

public final static short STATIC=270;

public final static short STRING=273;

public final static short BOOL=274;

public final static short INTLIT=275;

public final static short DOUBLELIT=276;

public final static short STRINGLIT=277;

public final static short BOOLLIT=278;

public final static short NULLVAL=280;

public final static short LESSTHANOREQUAL=298;

public final static short GREATERTHANOREQUAL=300;

public final static short ISEQUALTO=301;

public final static short NOTEQUALTO=302;

public final static short LOGICALAND=303;

public final static short LOGICALOR=304;

public final static short INCREMENT=306;

public final static short DECREMENT=307;

public final static short YYERRCODE=256;

}
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There is also a supporting module named token.java that contains the token class. It has grown 

to include a column number, and for literal constants, their binary representation is stored in 

ival, sval, and dval for integers, strings, and doubles, respectively. The deEscape() method, 

which is used to construct the binary representation of string literals, was discussed in the Unicon 

implementation of this class. Once again, the algorithm goes character by character and just 

copies the character unless it is a backslash, in which case it grabs the following character and 

interprets it differently. You can see the efficacy of the Java String class by comparing this code 

with the Unicon version:

public class token {

   public int cat;

   public String text;

   public int lineno, colno, ival;

   String sval;

   double dval;

   private String deEscape(String sin) {

      String sout = "";

      sin = String.substring(sin,1,sin.length()-1);

      int i = 0;

      while (sin.length() > 0) {

         char c = sin.charAt(0);

         if (c == '\\') {

            sin = sin.substring(1);

            if (sin.length() < 1)

               j0.lexErr("malformed string literal");

            else {

               c = sin.charAt(0);

               switch(c) {

               case 't': sout = sout + "\t"; break;

               case 'n': sout = sout + "\n"; break;

               default: j0.lexErr("unrecognized escape");

               }

             }

         }

           else sout = sout + c;

         sin = sin.substring(1);

      }
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      return sout;

   }

   public token(int c, String s, int ln, int col) {

      cat = c; text = s; lineno = ln; colno = col;

      switch (cat) {

      case parser.INTLIT:

         ival = Integer.parseInt(s);

         break;

      case parser.DOUBLELIT:

         dval = Double.parseDouble(s);

         break;

      case parser.STRINGLIT:

         sval = deEscape(s);

         break;

      }

   }

}

The token constructor performs the same four assignments – that is, initializing the token fields 

for all tokens. It then uses a switch statement with branches for three categories of tokens. For 

literal constant values only, there is an extra lexical attribute that must be initialized. Using Java’s 

built-in Integer.parseInt() and Double.parseDouble() to convert the lexeme is a simplifica-

tion for Jzero – a real Java compiler would have to do some more work here. The sval string is 

constructed by the deEscape() method because no built-in converter in Java takes a Java source 

code string and builds the actual string value for you. There are third-party libraries that you can 

find, but for Jzero purposes, it is simpler to provide our own.

Running the Jzero scanner
You can run the program in either Unicon or Java, as follows. This time, let’s run the program on 

the following sample input file, named hello.java:

public class hello {

   public static void main(String argv[]) {

      System.out.println("hello, jzero!");

   }

}
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Remember that, to your scanner, this hello.java program is just a sequence of lexemes. The 

commands to compile and run the Jzero scanner are similar to those in earlier examples, with 

more Java files creeping in:

uflex javalex.l              jflex javalex.l

unicon j0 javalex            javac j0.java Yylex.java

                             javac token.java parser.java

j0 hello.java                java j0 hello.java

From either implementation, the output that you should see should look like this:

token 258:1 public

token 269:1 class

token 267:1 hello

token 123:1 {

token 258:2 public

token 270:2 static

token 265:2 void

token 267:2 main

token 40:2 (

token 267:2 String

token 267:2 argv

token 91:2 [

token 93:2 ]

token 41:2 )

token 123:2 {

token 267:3 System

token 46:3 .

token 267:3 out

token 46:3 .

token 267:3 println

token 40:3 (

token 277:3 "hello, jzero!"

token 41:3 )

token 59:3 ;

token 125:4 }

token 125:5 }
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The Jzero scanner will make a lot more sense in the next chapter when its output provides the 

parser’s input. Before we move on, though, we should remind you that regular expressions can’t 

do everything a programming language lexical analyzer might need. Sometimes, you must go 

beyond the lex scanning model. The next section is a real-world example of that.

Regular expressions are not always enough
If you take a theory of computation course, you’ll probably be treated to proof that regular expres-

sions cannot match some common patterns that occur in programming languages, particularly 

patterns that nest instances of the same pattern inside themselves. This section shows that regular 

expressions are not always enough in other aspects.

If regular expressions are not always able to handle every lexical analysis task in your language, 

what do you do? A lexical analyzer written by hand can handle weird cases that a lexical analyzer 

generated from regular expressions can’t handle, perhaps at the cost of an extra day, week, or 

month of your time. However, in almost all real programming languages, regular expressions can 

get you close enough to where you only need a few extra tricks to produce the finished scanner. 

Here is a small real-world example.

Unicon and Go are examples of languages that provide semicolon insertion. The language defines 

lexical rules under which semicolons are inserted so that programmers don’t have to worry about 

them for the most part. You may have noticed that the Unicon code examples tend to contain 

very few semicolons. Unfortunately, these semicolon insertion rules are not something that can 

be described with a regular expression.

In the case of the Go language, you can almost do it by remembering the previously returned 

token and doing some checks in the semantic action for a newline character; that newline can 

return as a semicolon if the checks are satisfied. But in Unicon, you must scan further forward and 

read the next token after the newline to decide whether a semicolon ought to be inserted! This 

allows Unicon semicolon insertion to be more precise and create fewer problems than in the Go 

language. As an example, in Go, you cannot format your code in classic C style:

func main()

{

   ...

}
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Instead, you must write the curly brace on the function header line:

func main() {

   ...

}

To avoid this laughable limitation, the lexical analyzer must provide one token of look ahead. It 

will have to read the first token on the next line to decide whether a semicolon should be inserted 

at a newline.

It would be very un-Javalike to implement semicolon insertion in our Jzero scanner. But if we 

were going to do that, we could do it the Go way, or we could do it the Unicon way. We will show 

you a subset of the Go way. For your reference, the Go definition of semicolon insertion semantics 

can be found at https://golang.org/ref/spec#Semicolons.

This example illustrates rule #1 from the Go semicolon insertion semantics. OK, so you see a 

newline – do you insert a semicolon? Let’s just remember the last token we saw, and if it is an 

identifier, a literal, a break, continue, return, ++, --, ), ], or }, then the newline itself should 

return a new dummy semicolon token. You can modify the newline() method so that it returns 

a Boolean true if a semicolon is to be inserted.

This defeats our strategy of using a common lex specification for both Unicon and Java. We need 

to write a conditional in the lex specification to say whether to return a semicolon or not, but 

the syntax is different in the two languages. In Unicon, our lex specification would have an if 

statement that might look like the following line:

\n         { if j0.newline() then return j0.semicolon() }

However, in Java, it would require parentheses and it would not say the then reserved word:

\n         { if (j0.newline()) return j0.semicolon(); }

The Unicon version of the modified j0 main module with semicolon insertion code has been pro-

vided in this book’s GitHub repository, in the j0go.icn file. It is j0.icn with a new global variable 

called last_token, a modification of the scan() and newline() methods, and the addition of a 

method called semicolon() that constructs an artificial token. Here are the changed methods. 

Checking whether the last token category is one of several that triggers a semicolon shows off 

Unicon’s generators. The !")]}" expression is a clever way of writing ")"|"]"|"}", which will 

be fed one at a time into ord() until all three are tried:

https://golang.org/ref/spec#Semicolons
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   method scan(cat)

      last_token := yylval := token(cat, yytext, yylineno)

      return cat

   end

   method newline()

      yylineno +:= 1

      if (\last_token).cat ===

           ( parser.IDENTIFIER|parser.INTLIT|

             parser.DOUBLELIT|parser.STRINGLIT|

             parser.BREAK|parser.RETURN|

             parser.INCREMENT|parser.DECREMENT|

             ord(!")]}") ) then return

   end

   method semicolon()

      yytext := ";"

      yylineno -:= 1

      return scan(parser.SEMICOLON)

   end

There are two fascinating things here. One is that a given element of source code – a newline 

character, which is just whitespace in most languages – will sometimes return an integer code 

(for an inserted semicolon) and sometimes not. That is why we introduced an if statement into 

the lex specification semantic actions for newlines. The other fascinating thing is the artificial 

token produced by the semicolon() method. It produces output that’s indistinguishable from if 

the programmer had typed a semicolon themselves into the source code input of your program-

ming language.

The Java implementation is provided in this book’s GitHub repository, in the j0go.java file. Here 

are the key parts of it. The Java implementation behaves the same as the Unicon version in j0go.

icn, with a new global variable called last_token, a modification of the scan() and newline() 

methods, and the addition of the semicolon() method, which constructs an artificial token. 

However, it is a bit longer. In the newline() method within the following block, a Java switch 

statement is being used to check if the last token’s category triggers a semicolon insertion:

   public static int scan(int cat) {

      last_token = yylval =

         new token(cat, yytext(), yylineno);

      return cat;

   }
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   public static boolean newline() {

      yylineno++;

      if (last_token != null)

         switch(last_token.cat) {

            case parser.IDENTIFIER: case parser.INTLIT:

            case parser.DOUBLELIT: case parser.STRINGLIT:

            case parser.BREAK: case parser.RETURN:

            case parser.INCREMENT: case parser.DECREMENT:

            case ')': case ']': case '}':

               return true;

         }

      return false;

   }

   public int semicolon() {

       yytext = ";";

       yylineno--;

       return scan(parser.SEMICOLON);

   }

The full Go semicolon insertion semantics are a bit more involved but inserting a semicolon when 

the scanner has seen the regular expression for a newline is rather easy. If you want to learn how 

Unicon does better semicolon insertion, check out the Unicon Implementation Compendium at 

http://www.unicon.org/book/ib.pdf.

Summary
In this chapter, you learned about the crucial technical skills and tools used in programming lan-

guages when they are reading the characters of program source code. Thanks to these skills, the 

rest of your programming language compiler or interpreter has a much smaller sequence of words/

tokens to deal with, instead of the enormous number of characters that were in the source file.

We covered a lot of ground in this chapter. You learned about what happens as input characters 

are read in: they are analyzed and grouped into lexemes. Lexemes are either discarded (in the case 

of comments and whitespace) or categorized for subsequent parsing purposes.

Besides categorizing lexemes, you learned how to make tokens from them. A token is an object 

instance that is created for each lexeme when it is categorized. The token is a record of that lexeme, 

its category, and where it came from.

http://www.unicon.org/book/ib.pdf
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The lexemes’ categories are the main input of the parsing algorithm described in the next chapter. 

During parsing, the tokens will eventually be inserted as leaves into an important data structure 

called a syntax tree.

You are now ready to start stringing together the words into phrases in your source code. The 

next chapter will cover parsing, which checks whether the phrases make sense according to the 

grammar of the language.

Questions
1.	 Write a regular expression to match dates in dd/mm/yyyy format. Is it possible to write 

this regular expression so that it only allows legal dates?

2.	 Explain the difference between the return value that yylex() returns to the caller, the 

lexeme that yylex() leaves in yytext, and the token value that yylex() leaves in yylval.

3.	 Not all the yylex() regular expressions return an integer category after they match. When 

a regular expression does not return a value, what happens?

4.	 Lexical analysis has to deal with ambiguity, and it is entirely possible to write several regu-

lar expressions that all can match at a given point in the input. Describe Flex’s tie-breaking 

rules for when more than one regular expression can match at the same place.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw




4
Parsing

In this chapter, you will learn how to take individual words and punctuation, lexemes, and group 

them into larger programming constructs, such as expressions, statements, functions, classes, 

and packages. This task is called parsing. The code module is called a parser. You will make a 

parser by specifying syntax rules using grammars, and then using a parser generator tool that 

takes your language grammar and generates a parser for you. We will also look at writing useful 

syntax error messages.

This chapter covers the following main topics: 

•	 Syntax analysis

•	 Context-free grammars

•	 Using iyacc and BYACC/J

•	 Writing a parser for Jzero

•	 Improving syntax error messages

We will review the technical requirements for this chapter, and then it will be time to refine your 

ideas of syntax and syntax analysis.

Technical requirements
In this chapter, you will need the following tools:

•	 Iyacc, a parser generator for Unicon. Iyacc comes with all recent Unicon builds, so you 

should already have it.
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•	 BYACC/J, a parser generator for Java. BYACC/J is descended from Berkeley YACC, an open 

source YACC implementation. You can get the BYACC/J source code from SourceForge.net. 

Instructions are given below.

You can download this chapter’s code from our GitHub repository: https://github.com/

PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch4.

The Code in Action video for the chapter can be found here: https://bit.ly/3ClVCSf.

At the time of writing, the BYACC/J source distribution on GitHub contains a command-line 

option that we will use that is not in the binary distributions or other source .zip distributions 

on that site. To obtain a copy of BYACC/J, first clone the Git via a command such as the following:

git clone https://git.code.sf.net/p/byaccj/git byaccj-git

Change into the newly created byaccj-git directory and go into its src/ directory. Type make to 

build a yacc executable, and note its name, such as yacc.linux. Rename it yacc, or else modify 

all references to yacc in this book to whatever your BYACC/J is named. Add the BYACC/J src/ 

directory containing this yacc executable to your path.

For both iyacc and BYACC/J, you will want to verify that they have been added to your path by 

opening a new Command Prompt or Terminal window and trying the iyacc and yacc commands. 

Note that you may already have a different program on your computer named yacc! In this case, 

we recommend renaming the BYACC/J executable that you install for this book as byaccj or 

byaccj.exe instead of yacc or yacc.exe. If you do this, everywhere in this book that it says to 

use yacc, you should type byaccj instead. To use this book successfully, you will have to keep 

your yaccs straight! You have been warned!

There is one additional technical requirement for this chapter. You must set your CLASSPATH en-

vironment variable. If you are working with the examples in this chapter in C:\users\Alfrede 

Newmann\ch4, you may need to set CLASSPATH to point at the Alfrede Newmann directory above the 

ch4 directory. On Windows, it is best to set this once and for all in the Control Panel or Settings, 

but you can set it manually if you have to with a command such as this one:

set CLASSPATH=".;c:\users\Alfrede Newmann"

Adding the directory above on CLASSPATH can be achieved with .. on Linux, while you must 

supply the full path of the parent directory on Windows. On Linux, this is best set in ~/.bashrc 

or similar, but on the command line, it looks like this:

export CLASSPATH=.:..

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch4
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch4
https://bit.ly/3ClVCSf


Chapter 4 69

In the Linux-like shell that comes with MSYS2 Mingw64, I found I had to write:

export CLASSPATH=/c/users/clint/books/byopl2

Before we get into the nuts and bolts of yacc, let’s look at the bigger picture of what we are trying 

to accomplish by parsing, which is to analyze the syntax of the source code for a program written 

in the programming language that we are building.

Syntax analysis
As a programmer, you are probably already familiar with syntax error messages and the general 

idea of syntax, which is to understand what kinds of words or lexemes must appear, in what 

order, for a given communication to be well formed, which is to say grammatically correct, in a 

language. Most human languages are picky about this, while a few are very flexible about word 

order. Most programming languages are far simpler and more restrictive than natural human 

languages about what constitutes a legal input.

The input for syntax analysis consists of the output of the previous chapter on lexical analysis. 

Communication, such as a message or a program, is broken down into a sequence of component 

words and punctuation. This could be an array or list of token objects, although for parsing, all 

the algorithm requires is the sequence of integer codes returned from calls to yylex(), one after 

another. It is the job of syntax analysis to determine whether the communication, in a given lan-

guage such as English or Java, is correct or not. The result of syntax analysis is a simple Boolean 

true or false. In practice, in order to interpret or translate the message, more is needed than a 

Boolean value that tells us whether its syntax is correct. In the next chapter, you will learn how 

to build a syntax tree that forms the basis for the subsequent translation of a program into code. 

But first, we must check the syntax, so let’s look at how programming language syntax is specified, 

in a format that is called context-free grammar notation.

Context-free grammars
In this section, we will define a notation used by programming language inventors to describe the 

syntax of their language. You will be able to use what you learn in this section to supply syntax 

rules as input to the parser generators used in the next section. Let’s begin by understanding 

what context-free grammars are.
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Context-free grammars are the most widely used notation for describing the syntax allowed in 

a programming language in terms of patterns of lexemes. They are formulated from very simple 

rules that are easy to understand. Context-free grammars are built from the following components:

•	 Terminal symbols: A set of input symbols are called terminal symbols. Terminal symbols 

in a grammar are read in from a scanner such as the one we produced in the last chapter. 

Although they are referred to as symbols, terminal symbols correspond to an entire word, 

operator, or punctuation mark; a terminal symbol identifies the category of a lexeme. As 

you saw in the previous chapter, these symbols’ categories are represented by integer 

codes that are usually given mnemonic names such as IDENTIFIER, INTCONST, or WHILE. 

In our grammars, we will also use character literal notation for the more trivial terminal 

symbols; a single character inside apostrophes is just a terminal symbol that consists 

of that character itself. For example, ';' is the terminal symbol that consists of just a 

semi-colon and literally denotes the integer 59, which is the ASCII code for a semi-colon.

•	 Non-terminal symbols: Unlike regular expressions, context-free grammar rules utilize 

a second set of symbols called non-terminal symbols. Non-terminal symbols refer to 

sequences of symbols that make sense together, such as noun phrases or sentences (in 

natural languages), function or class definitions, or entire programs (in programming 

languages). One special non-terminal symbol is designated as the start symbol of the 

entire grammar. In a programming language grammar, the start symbol denotes an entire 

well-formed source file.

•	 Production rules: A set of rules called production rules explains how to form non-ter-

minal symbols from smaller words and component phrases. Each production rule spec-

ifies how one non-terminal symbol can be constructed from a sequence of zero or more 

terminal or non-terminal symbols. Because the production rules control what terminal 

and non-terminal symbols are used, it is common to give the grammar by just listing all 

of its production rules.

Now it is time to look in more detail at the rules for building context-free grammars, followed 

by examples.

Writing context-free grammar rules
Production rules, also called context-free grammar rules, are patterns that describe legal se-

quences of lexemes using terminal symbols and additional non-terminal symbols that represent 

other sequences of zero or more symbols. In this book, we will use yacc notation for writing 

context-free grammars. 
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Each production rule consists of a single non-terminal symbol, followed by a colon, followed by 

zero or more terminal and non-terminal symbols, ending with a semi-colon, as shown in the 

following notation:

X : symbols ; 

There is only one symbol to the left of the colon and, by definition, it is non-terminal because the 

meaning of the grammar rule is as follows: a non-terminal X can be constructed from a sequence 

of terminals and non-terminals that appear on the right-hand side of a production rule.

A context-free grammar can have as many such rules as desired, including many rules that build 

the same non-terminal with different combinations of symbols on the right-hand side. In fact, 

giving multiple rules for the same non-terminal is so common that it has its own shorthand 

consisting of a vertical bar. You can see an example of a vertical bar in the following code:

X : symbols | other_symbols ; 

When the vertical bar (read as or) is used in a grammar, it indicates that there are multiple ways to 

build a non-terminal X. Using the vertical bar is optional because you could write the same rules 

as separate statements of the non-terminal, colon, right-hand side, and semicolon. For example, 

here are three different ways to build an X:

X : A | B | C ; 

This line is equivalent to the following three lines:

X : A ;

X : B ;

X : C ;

The preceding two cases describe the same three production rules. The vertical bar is just a short-

hand notation for writing multiple production rules.

So, what does a production rule mean, anyhow? It can be read and used either forward or back-

ward. If you start from the start symbol and replace a non-terminal with one of its production 

rules’ right-hand sides (called a derivation step), you work your way down from the top. If you 

repeat this process and eventually get to a sequence of terminal symbols with no non-terminals 

remaining, you have generated a legal instance of that grammar.
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On the other hand, checking the syntax of a program written in a programming language starts 

from the other end. Executed on some input, the scanner from the last chapter will produce a 

sequence of terminal symbols. Given a sequence of terminal symbols, can you find within it the 

right side of a production rule, and replace it with its non-terminal? If you can do that repeatedly 

and make your way back to the start symbol, you have proved that the input source program is 

legal according to the grammar. This is called parsing.

Now it is time to look at some simple grammar examples. Some of the most intuitive grammars 

that we can suggest come from natural (human) languages. Other simple examples show how 

context-free grammars apply to programming language syntax.

Writing rules for programming constructs
Context-free grammars are easy once you have written a few of them. You should start with the 

simplest rules you can think of and work your way up one tiny bit at a time. The simplest val-

ues in a language are its literal constants. Suppose we have two kinds of values in our language, 

Booleans and integers:

literal : INTLIT | BOOLLIT ;

The preceding production rule says that there are two kinds of literal values: integers and Booleans. 

Some language constructs, such as addition, may be defined only for certain types, while other 

constructs, such as assignment, are defined for all types. It is often best to feature a common syntax 

for all types, and then ensure that types are correct later, during semantic analysis. We will cover 

that in Chapter 7, Checking Base Types, and Chapter 8, Checking Types on Arrays, Method Calls, and 

Structure Accesses. Now consider a grammar rule that allows either variables or literal constants:

simple_expr : IDENTIFIER | literal ;

Recursion: Are you on top of your recursion? In math and computer science, recur-

sion is when something is defined in terms of a simpler version of itself; see https://

en.wikipedia.org/wiki/Recursion if you need a refresher. You will need that 

concept to build your programming language syntax. In context-free grammars, a 

non-terminal X is often used on the right side of a production rule that builds an X. 

This is a form of recursion. The one logical rule that you must learn when you use 

recursion is this: there must be another grammar rule (a basis case) that is not re-

cursive. Otherwise, the recursion never ends, and your grammar doesn’t make sense.

https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Recursion
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As you saw in Chapter 3, Scanning Source Code, IDENTIFIER denotes a name. The preceding pro-

duction rule says that both variables and literals are allowed in simple expressions. Complex 

expressions are constructed by applying operators or functions to simple expressions:

expr : expr '+' expr | expr '-' expr | simple_expr ;

The preceding three production rules present a common design question. The first two rules are 

recursive, multiple times over. They are also ambiguous. When multiple operators are chained 

together, the grammar does not specify which operator is applied first.

There are a lot more operators in real languages, and there is the issue of operator precedence to 

consider. You can look at these topics in the Writing a parser for Jzero section in this chapter. For 

now, let’s briefly explore larger language structures, such as statements. A simple representation 

of an assignment statement is given here:

statement : IDENTIFIER '=' expr ';' ;

This version of assignment allows only a name on the left side of the equals sign. The right side can 

take any expression. There are several other fundamental kinds of statements found in many lan-

guages. Of these, consider the two most common ones, the IF statement and the WHILE statement:

statement : IF '(' expr ')' statement ;

statement : WHILE '(' expr ')' statement ;

These statements contain other (sub)statements. Grammars build larger constructs from smaller 

ones using recursive rules such as this. IF and WHILE statements have almost identical syntax. 

After an identifying terminal symbol reserved word, they both precede a statement with a con-

ditional expression in parentheses. Now consider an example production rule for a sequence of 

one or more statements:

statements : statements statement | statement ;

Ambiguity: When a grammar can accept the same string in two or more different 

ways, the grammar is ambiguous. In the preceding example, 1 + 2 – 3 could be parsed 

by applying the production rule for the plus sign first, and then the subtraction, or 

vice versa. Ambiguity can sometimes force you to rewrite your grammar so there is 

only one way to parse the input.
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Multiple statements can be accepted by repeated application of the first rule in this grammar. 

Good language designers write recursive rules all the time in order to repeat a construct. In the 

case of languages such as Java, semi-colons do not appear in this grammar rule as a statement 

separator, but they appear as terminators at the ends of various grammar rules, like the previous 

rules for assignment statements.

In this section, you saw that grammar rules for a programming language use reserved words and 

punctuation marks as building blocks. Larger expressions and statements are composed of small-

er ones using recursion. Now it is time to learn about some tools that use context-free grammar 

notation to generate parsers for reading source code, namely iyacc and BYACC/J.

Using iyacc and BYACC/J
The name yacc stands for yet another compiler-compiler. This category of tools takes a con-

text-free grammar as input and generates a parser from it. Yacc-compatible tools are available 

for most popular programming languages.

In this book, for Unicon, we use iyacc (short for Icon yacc) and for Java, you can use BYACC/J 

(short for Berkeley YACC extended for Java). They are highly compatible with UNIX yacc and 

we can present them together as one language for writing parsers. In the rest of this chapter, we 

will just say yacc when we mean both iyacc and BYACC/J. Complete compatibility required a bit 

of a Kobayashi Maru solution, mostly when it came to the semantic actions, which are written 

in native Unicon and Java, respectively.

Yacc files are often called (yacc) specifications. They use the extension .y and consist of several 

sections, separated by %%. This book refers generically to yacc specifications, meaning the input 

file provided to either iyacc or BYACC/J and, for the most part, those files would also be valid 

input for C yacc.

There are required sections in a yacc specification: a header section followed by a context-free 

grammar section, and an optional helper functions section. The yacc header section and the 

context-free grammar section are the sections you need to know about for this book. In the fol-

lowing section, you will learn how to declare your terminal symbols in the yacc header section. 

Some versions of yacc require these declarations.

Kobayashi Maru: A Kobayashi Maru scenario is a no-win situation where the 

best answer is to change the rules of the game. In this case, I modified iyacc and 

BYACC/J a bit so that our no-win situation was winnable. For more information, 

see en.wikipedia.org/wiki/Kobayashi_Maru.

en.wikipedia.org/wiki/Kobayashi_Maru
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Declaring symbols in the header section
Most yacc tools have options that you can enable in the header section; they vary, and we will 

only cover them if we use them. You can also include bits of host language code there, such as 

variable declarations, inside %{ … %} blocks. The main purpose of the header section is to declare 

the terminal and non-terminal symbols in the grammar. In the context-free grammar section, 

these symbols are used in production rules.

Whether a symbol is terminal or non-terminal can be inferred from how the symbol is used in a 

grammar, but unless they are ASCII codes, you must declare all your terminal symbols anyhow. 

Terminal symbols are declared in the header section using a line beginning with %token, followed 

by as many terminal symbol names as you want, separated by spaces. Non-terminals may be de-

clared by a similar %nonterm line. Non-terminal declarations are not mandatory, perhaps because 

non-terminals can be inferred from their presence on the left-hand side of one or more grammar 

rules. Among other things, yacc uses terminal symbol declarations to generate a file that assigns 

integer constants to those names, for use in your scanner.

Advanced yacc declarations
There are other declarations that can be placed in the yacc header section beyond those used 

in this book. If you don’t want to place your starting non-terminal at the top of your grammar, 

you can put it anywhere and then identify it explicitly in the header via the %start declaration 

for some non-terminal symbol. Also, instead of just declaring tokens with %token, you can use 

%left, %right, and %nonassoc to specify operator precedence and associativity in increasing order.

Now that we have learned about the header section, let’s have a look at the context-free grammar 

section.

Putting together the yacc context-free grammar section
The primary section of a yacc specification is the context-free grammar section. Each production 

rule of the context-free grammar is given, followed by an optional semantic action consisting of 

some host language code (in our case, Unicon or Java) to execute when that production rule has 

been matched. The yacc syntax is typically like the following example:

X : symbols { semantic action code } ; 

It is also legal to place semantic actions before or in between symbols in addition to the end of the 

rule, but if you do that, you are really declaring a new non-terminal with an empty production 

rule that just contains that semantic action. We will not do that in this book, as it is a frequent 

source of bugs.
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Yacc is less picky about whitespace than lex was. The following example shows three equivalent 

ways to format production rules with different whitespace. Which you prefer depends on what 

you think is best for readability:

A : B | C;

A : B |
    C ;

A : B
  | C
  ;

Although each production rule starts on a new line, it can span multiple lines and is terminated 

by one of the following: a semi-colon, a vertical bar indicating another production rule for the 

same non-terminal, a %% indicating the start of the helper functions section, or an end-of-file. 

Like in lex, if the semantic action uses curly braces to enclose a statement block in the usual way, 

the semantic action can span multiple lines of source code. Yacc will not start looking for the 

next production rule until it finds the matching closing curly brace to finish the semantic action, 

and then goes on to find one of the terminators listed earlier, such as a semi-colon or vertical bar 

that ends the production rule.

A common mistake that newbies make in the context-free grammar section is trying to insert 

comments in the production rules to improve readability. Don’t do that; you can get some very 

cryptic error messages when you do this.

When you run classic UNIX yacc, which is a C tool, it generates a function called yyparse() that 

returns whether the input sequence of terminal symbols returned from yylex() was legal accord-

ing to the grammar. Global variables may be set with other useful bits of information. You can 

use such global variables to store anything you want, such as the root of your syntax tree. Before 

we progress to some larger examples, first, let’s look at how yacc parsers work. You will need to 

know this to debug your parser when things do not go according to plan.

Understanding yacc parsers
The algorithm of the parser generated by yacc is called LALR(1). It comes from a family of parsing 

algorithms invented by Donald Knuth of Stanford and made practical by Frank DeRemer of UC 

Santa Cruz and others. 
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If you are interested in the theory, you should check out the Wikipedia page for the LALR parser 

at https://en.wikipedia.org/wiki/LALR_parser or consult a serious compiler construction 

book, such as Douglas Thain’s Introduction to Compilers and Language Design, from https://www3.

nd.edu/~dthain/compilerbook/.

For our purposes, you need to know that the generated algorithm consists of a long while loop. 

In each iteration of the loop, the parser takes one tiny step forward. The algorithm uses a stack 

of integers to keep track of what it has seen. Each element on the parse stack is an integer code 

called a parse state that encodes the terminal and non-terminal symbols seen up to that point. 

The parse state on top of the stack and the current input symbol, which is an integer terminal 

symbol obtained from the yylex() function, are the two pieces of information used to decide what 

to do at each step. For no intrinsic reason, it is common to visualize this like a horizontal piece of 

string, with a string of beads on the right being slid left onto a stack that is depicted horizontally. 

Figure 4.1 illustrates the yacc parse stack on the left and its input on the right.

Figure 4.1: yacc’s parse stack and its input

The dollar sign on the left denotes the bottom of the stack, while the dollar sign on the right 

denotes end-of-file. Yacc generates two big tables, computed from the grammar, called the ac-

tion table and the goto table. These tables encode what to do at each step. The primary table is 

an action table that looks up the parse state and current input and returns one of the following 

possibilities:

•	 The top elements on the stack contain a production rule that can be used to get us (even-

tually) back to the starting non-terminal. This is called a reduce.

•	 The algorithm needs to look at the next input symbol. Place the current input onto the 

parse stack, and read the next one using yylex(). This is called a shift.

•	 If neither a shift nor a reduce will work, a syntax error is reported by calling the yyerror() 

function that you must write.

https://en.wikipedia.org/wiki/LALR_parser
https://www3.nd.edu/~dthain/compilerbook/
https://www3.nd.edu/~dthain/compilerbook/
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•	 If we are looking at the starting non-terminal on the top of the stack and there is no more 

input pending, you win! yyparse() returns the code that says there were no errors.

The following example shows the yacc parsing algorithm in pseudocode form. In this code, there 

are several key variables and operations, described here:

•	 parsestk is the parse stack, an array of integer finite automaton parse states.

•	 index top tracks the subscript of the top of the parse stack.

•	 current is the current input symbol.

•	 shift_n means to move the input from the right to the left, pushing parse state n onto 

the stack and moving current to the next input symbol.

•	 reduce_m means to apply production rule m by popping the number of parse states equal 

to the right side of production rule m and pushing the new parse state corresponding to 

the non-terminal on the left side of production rule m. The goto table tells what the new 

parse state is that the reduce is to push.

Here is the parsing algorithm in pseudocode form:

repeat:

     x = action_table[parsestk[top], current]

     if x == shift_n then {

        push(state_n, parsestk)

        current = next

        }

     else if x == reduce_m then {

       pop(parsestk) |m| times

       push(goto_table[parsestk[top],m], parsestk)

       }

    else if x == accept then return 0 // no errors

    else { yyerror("syntax error") }

This pseudocode is a direct embodiment of the preceding bulleted list. A large percentage of the 

world’s programming languages perform their syntax analysis with this method. You may find 

it interesting to compare this pseudocode with the generated .icn or .java file output by iyacc 

or BYACC/J. Importantly, because this parsing algorithm is just a loop with a couple of table 

lookups, it runs quite fast.
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The point of the yacc tool is to just supply the context-free grammar and get a parser without 

having to worry about how it works; yacc is thus a special-purpose declarative language for cre-

ating parsers. The algorithm works, and you don’t have to know a lot about it, but if you change 

a grammar or use the yacc tool to create a parser for a new language that you have invented, you 

might have to know about these shifts and reduce operations in order to debug your context-free 

grammar if your parser isn’t doing what you want. The most common way that a yacc programmer 

encounters this is when you run yacc and it reports conflicts that you may need to fix.

Fixing conflicts in yacc parsers
Earlier in this chapter, in the section titled Writing rules for programming constructs, you learned 

that grammars can be ambiguous. When a grammar is ambiguous, yacc will have more than one 

possible action that it can encode for a given (parse state or current input) lookup in the action 

table. Yacc reports this as a problem but produces a parser anyhow, and in that case, the generated 

parser will use only one of the possible interpretations of the ambiguity. There are two kinds of 

conflicts that yacc reports:

•	 A shift/reduce is when one production rule says it can shift the current input at this point, 

but another production rule says it is all finished and ready to reduce. In this case, yacc 

will only shift and you are in trouble if you need it to reduce.

•	 A reduce/reduce is even worse. Different production rules are saying they want to reduce 

at this point. Which one is correct? Yacc will arbitrarily pick whichever one appears earlier 

in your .y file, which is correct 50% of the time.

For shift/reduce conflicts, the default rule is usually correct. I have seen production language 

grammars with literally hundreds of shift/reduce conflicts that are ignored with seemingly no 

ill effects – they are asymptomatic. But once in a blue moon, and I have seen it in real life, the 

default on a shift/reduce conflict is not what the language needs.

For reduce/reduce conflicts, the default rule is almost surely wrong at least part of the time. Part 

of your grammar will never be used. In any reduce/reduce situation, or if you determine a shift/

reduce conflict is a problem, you will need to modify your grammar to eliminate the conflict. 

Modifying your grammar to avoid conflicts is beyond the scope of this book, but it usually involves 

refactoring to eliminate redundant bits of grammar or creating new non-terminals and making 

production rules pickier. Now we will explore what happens when the parser encounters an error.
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Syntax error recovery
Syntax error recovery is when your parser continues after reporting a syntax error. If recovery 

is successful, the compiler can go on to find the rest of the errors, if any. In the days of batch 

processing, it was important to recover well and show as many distinct errors from a compila-

tion as possible. However, error recovery is known for its spectacular failures! Compilers tend to 

give numerous cascading error messages after the first one because the attempt to recover and 

continue parsing is often based on wild guesses as to whether tokens were missing, extra tokens 

were present, or the wrong token was used unintentionally… there are just too many possibilities. 

For this reason, we will stick to minimal error recovery in this book.

A yacc parser tries to recover if extra production rules are added to the grammar that depict likely 

locations of errors using a special token named error where a syntax error is expected. When an 

actual syntax error occurs, the shift/reduce parser throws away parse states from its parse stack 

and tokens from its input, until it finds a state that has a rule that allows it to proceed forward 

on an error. In the Jzero language, we might have a rule that throws away a syntax error within 

statements and discards tokens until it sees a semi-colon. There might be one or two higher-level 

locations in the grammar where an error token skips to the end of a function body or a declara-

tion, and that is it.

Although we are only just touching on the topic, if your programming language becomes famous 

and popular, you should probably eventually learn how to recover from at least the simplest and 

most common errors. Since errors are inevitable, besides recovering and continuing parsing, you 

need to think about reporting error messages. Error reporting is covered in the Improving syntax 

error messages section at the end of this chapter. Now let’s put together some working parsers 

using the scanners developed in the previous chapter.

Putting together a toy example
This example lets you check whether you have installed and can run iyacc and BYACC/J. The ex-

ample parser just parses sequences of alternating names and numbers. The filename ns.y (“name 

sequence”) will be used for the yacc specification. The code generated by yacc from this specifi-

cation will use two helper functions: the yylex() method from the lexer class and yyerror() 

from the yyerror class.

The yylex() and yyerror() methods are placed in different classes and source files instead of the 

helper functions section of the .y file because they will be different in Unicon and Java. Another 

reason is that yylex() and yyerror() may be generated by separate tools. 
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The yylex() function is commonly generated by uflex and jflex from the preceding chapter, and 

yyerror() can be generated by the Merr tool described later in this chapter. Unfortunately, Java 

cannot utilize these static methods without placing these classes and methods inside a package. 

The package is named ch4 because this chapter’s code is in a directory named ch4, and Java re-

quires package names and directory names to match. Thanks to packages, some of the code from 

Chapter 3, Scanning Source Code, must be altered slightly, and you also can look forward to tricky 

CLASSPATH issues and cryptic error messages.

The current version of BYACC/J on GitHub has command-line options for static imports that are 

required. This allows the ns.y file to work unmodified as input for both Unicon and Java projects.

In the following ns.y example, there is no semantic action code (this chapter focuses solely on 

syntax analysis – the next chapter deals with semantic actions extensively):

%token NAME NUMBER

%%

sequence : pair sequence | ;

pair : NAME NUMBER ;

From this specification, yacc will produce a function, yyparse(). It executes the LALR parsing 

algorithm with a net effect described as follows:

1.	 yyparse() is called from a main() function.

2.	 yyparse() calls yylex() to get a terminal symbol.

3.	 yyparse() matches each terminal symbol returned from yylex() against all possible 

parses using all possible combinations of production rules.

4.	 Parsing eventually selects whichever production rule is correct at the current location 

and executes its semantic action (if any).

Steps 2–4 repeat until the entire input is parsed or a syntax error is found. The yylex() function 

is generated from the following lex specification:

package ch4;

%%

%int

%%

[a-zA-Z]+   { return Parser.NAME; }

[0-9]+      { return Parser.NUMBER; }

[ \t\n]+    { }

.           { lexer.lexErr("unrecognized character"); }
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This is the nnws.l file from the previous chapter, modified in order to be used with this yacc-gen-

erated parser. For one thing, in Java, it must be made a part of the ch4 package. For another 

thing, it must return the integers that yacc uses for NAME and NUMBER. As you may recall from the 

previous chapter, the Java-compatible way to access those integers by name is through a Parser 

object that contains them. The BYACC/J tool generates this Parser object automatically for Java. 

For Unicon, iyacc’s traditional -d option generates macro definitions in an include file (for ns.y, 

it would be in ns_tab.icn) à la classic UNIX C yacc. For this book, iyacc was extended with a 

command-line option, -dd, that instead generates a Java-compatible Parser object that contains 

the names and their values.

The main() function necessarily varies by language. By the time you add the yacc yyparse() 

module into the program, things start to get complicated. For this reason, the previous chap-

ter’s main() functionality is tweaked to pull out lexical analyzer initialization and lexical error 

handling in separate files. We will discuss the main() function first. After initialization, main() 

calls yyparse() to check the syntax of the source code. Here is the Unicon version of the main 

module, in the trivial.icn file:

procedure main(argv)

   yyin := open(argv[1]) | stop("usage: trivial file")

   lexer := lexer()

   Parser := Parser()

   if yyparse() = 0 then write("no errors")

end

procedure yyerror(s)

   stop(s)

end

class lexer()

   method lexErr(s)

      stop("lexical error: ", s)

   end

end

This Unicon implementation of main() opens the input file from a name given in the first com-

mand-line argument. The lexical analyzer is informed what file to read from via an assignment 

to the yyin variable. Lexical analyzer and Parser objects are initialized; they are here just for the 

Java compatibility of our flex specification. The code then calls yyparse() to parse the input file. 

The following Java code in the trivial.java file contains a main() function that corresponds 

with the previous Unicon example:
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package ch4;

public class trivial {

   static ch4.j0p par;

   public static void main(String argv[]) throws Exception

   {

      ch4.lexer.init(argv[0]);

      par = new ch4.Parser();

      int i = par.yyparse();

      if (i == 0)

         System.out.println("no errors");

   }

}

This main module is shorter than the simple class in the previous chapter. All it does is initialize 

lexical analysis, initialize the parser, and then call yyparse() to see if the input is legal. In order to 

call the yylex() function from yyparse() without a reference to the Yylex object and without a 

circular reference back to the main trivial class, the Yylex object and its initialization have been 

pulled out into a wrapper class named lexer. The following lexer.java file contains that code:

package ch4;

import java.io.FileReader;

public class lexer {

   public static Yylex yylexer;

   public static void init(String s) throws Exception {

       yylexer = new Yylex(new FileReader(s));

   }

   public static int YYEOF() { return Yylex.YYEOF; }

   public static int yylex() {

      int rv = 0;

      try {

        rv = yylexer.yylex();

      } catch(java.io.IOException ioException) {

        rv = -1;

      }

      return rv;

   }

   public static String yytext() {

      return yylexer.yytext();

   }



Parsing84

   public static void lexErr(String s) {

      System.err.println(s);

      System.exit(1);

   }

}

The init() method instantiates a Yylex object for later use by a static method, yylex(), which 

is callable from yyparse(). The yylex() here is just a proxy that turns around and calls yylexer.

yylex().

There is one more piece to the puzzle: yyparse() calls a function named yyerror() when it 

encounters a syntax error. The yyerror.java file contains a yyerror class that has a yyerror() 

static method, shown here:

package ch4;

public class yyerror {

    public static void yyerror(String s) {

      System.err.println(s);

      System.exit(1);

    }

}

This version of the yyerror() function just calls println() and exits, but we can modify it as 

needed. Although you might be willing to do this just for the sake of sharing a yacc specification 

file across both Unicon and Java, it will also pay off when we improve our syntax error messages 

in the next section.

Now it is time to run our toy program and see what it does. Run it with the following input file, 

dorrie3.in:

Dorrie 1 Clint 0

You can build and run the program in either Unicon or Java as follows. The sequence of commands 

to execute under Unicon looks like this:

uflex nnws.l 

iyacc -dd ns.y

unicon trivial nnws ns ns_tab

trivial dorrie3.in
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The sequence of commands to execute under Java is as follows:

jflex nnws.l
yacc -Jpackage=ch4 -Jyylex=ch4.lexer.yylex \
                   -Jyyerror=ch4.yyerror.yyerror ns.y
javac trivial.java Yylex.java Parser.java lexer.java \
        yyerror.java ParserVal.java
java ch4.trivial dorrie3.in

From either implementation, the output that you should see is as follows:

no errors

So far, all the example does is categorize groups of input characters using a regular expression to 
identify what kind of lexeme has been found. For the rest of the compiler to work, we will need 
more information about that lexeme, which we will store in a token.

In this section, you learned how to integrate a yacc-generated parser with a lex-generated scanner 
from the previous chapter. The same lex and yacc specifications were used for Unicon and Java, 
after some slight tweaks to iyacc and BYACC/J. The main challenges encountered were in inte-
grating these declarative languages into Java, which involved writing and importing two static 
methods from helper classes. Happily, we were able to make these tools work on a toy example. 

Now it is time to use them on an actual programming language.

Writing a parser for Jzero
The next example is a parser for Jzero, our subset of the Java language. This extends the previous 

chapter’s Jzero example. The big change is the introduction of many context-free grammar rules 

for more complex syntax constructs than have been seen up to this point. If you wrote a new 

language not based on an existing one, you would have to come up with a context-free grammar 

from scratch. For Jzero, this is not the case. The grammar we use for Jzero was adapted from a 

Java dialect named Godiva. To work from a real Java grammar, you can look at https://docs.

oracle.com/javase/specs/.

The Jzero lex specification
The Jzero lex specification is as given in the previous chapter, with a one-line package declaration 
added to the top. The parser must be generated before the scanner is compiled. This is because 
yacc turns j0gram.y into a parser class whose constant values are referenced from the scanner. 
Because the static import of yylex() entails using packages, you must add the following line to 
the top of javalex.l from the previous chapter:

package ch4;

https://docs.oracle.com/javase/specs/
https://docs.oracle.com/javase/specs/
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In order to be compatible with the previous chapter’s javalex.l, the module called lexer in the 

trivial parser earlier in this chapter is called j0 in the Jzero parser.

With the understanding of this slight change to the Jzero lexical specification in order to call it 

from the parser, let’s move on to the next section to learn about the Jzero yacc specification.

The Jzero yacc specification
Compared with the previous examples, a real(ish) programming language yacc specification has 

a lot more (and more complicated) production rules. The following file is called j0gram.y and it 

is presented in several parts.

The first section of j0gram.y includes the header and declarations of terminal symbols. These 

declarations are the source of the symbolic constants in the parser class used in the previous 

chapter. It is not enough for the names to match in the scanner and parser; the integer codes 

must be identical for the two tools to talk. The scanner must return the parser’s integer codes 

for its terminal symbols. Per the preceding description of the yacc header section, declarations 

of terminal symbols are made by giving their name on a line beginning with %token. Jzero de-

clares approximately 27 symbols for reserved words, different kinds of literal constants, and 

multi-character operators:

%token BREAK DOUBLE ELSE FOR IF INT RETURN VOID WHILE

%token IDENTIFIER CLASSNAME CLASS STRING BOOL

%token INTLIT DOUBLELIT STRINGLIT BOOLLIT NULLVAL

%token LESSTHANOREQUAL GREATERTHANOREQUAL

%token ISEQUALTO NOTEQUALTO LOGICALAND LOGICALOR

%token INCREMENT DECREMENT PUBLIC STATIC

%%

After the %% are the production rules for the context-free grammar of the language we are speci-

fying. By default, the non-terminal on the first rule listed is the starting non-terminal, which, in 

Jzero, denotes one whole source file, module, or compilation unit. In Jzero, this is just one class; 

this is a severe simplification of Java where there are usually several declarations such as imports 

before the class in each source file.

A class declaration consists of the word class followed by an identifier giving the class name, 

followed by a body. The identifier that follows the word class becomes the name of a type:

ClassDecl:      PUBLIC CLASS IDENTIFIER ClassBody ;
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A class body is a sequence of declarations for fields, methods, and constructors. Notice how the 

production rules for ClassBody allow for zero or more occurrences of declarations within the 

curly braces: one rule requires a list of one or more ClassBodyDecls, while a second rule explicitly 

allows the unusual but legal case of an empty class:

ClassBody:      '{' ClassBodyDecls '}' | '{' '}' ;

ClassBodyDecls: ClassBodyDecl | ClassBodyDecls ClassBodyDecl;

ClassBodyDecl:  FieldDecl | MethodDecl | ConstructorDecl ;

Field declarations consist of a type followed by a comma-separated list of variables. Some lan-

guage implementations make the lexical analyzer report a different integer category code for an 

identifier once it has become a type name instead of a variable name; Jzero does not:

FieldDecl:      Type VarDecls ';' ;

Type:           INT | DOUBLE | BOOL | STRING | Name ;

Name:           IDENTIFIER | QualifiedName ;

QualifiedName:  Name '.' IDENTIFIER ;

VarDecls:       VarDeclarator | VarDecls ',' VarDeclarator;

VarDeclarator:  IDENTIFIER | VarDeclarator '[' ']' ;

The next part of j0gram.y consists of the syntax rules for the other two kinds of things that can 

be declared within a class, which use function syntax: methods and constructors. To begin with, 

they have slightly different headers followed by a block of statements:

MethodDecl: MethodHeader Block ;

ConstructorDecl: ConstructorDeclarator Block ;

Method headers have a return type, but otherwise, methods and constructors have a similar 

syntax:

MethodHeader: PUBLIC STATIC MethodReturnVal MethodDeclarator ;

MethodReturnVal: Type | VOID ;

A method’s name (or in the case of a constructor, the class name) is followed by a parenthesized 

list of parameters:

MethodDeclarator: IDENTIFIER '(' FormalParmListOpt ')' ;
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A parameter list is zero or more parameters. Non-terminal FormalParmListOpt has two production 

rules: either there is a (non-empty) FormalParmList or there isn’t. The suffix Opt in the name is 

intended to indicate that the construct is optional. The empty production after the vertical bar 

is called an epsilon rule:

FormalParmListOpt: FormalParmList | ;

A formal parameter list is a comma-separated list where each formal parameter consists of a type 

and a variable name:

FormalParmList: FormalParm | FormalParmList ',' FormalParm;

FormalParm: Type VarDeclarator ;

The next part of j0gram.y contains the statement grammar. A statement is a chunk of code that 

does not provide a value for use by the surrounding code. Jzero has several kinds of statements. A 

Block (such as the body of a method) is a statement consisting of a sequence of (sub)statements 

enclosed in curly braces, {}:

Block: '{' BlockStmtsOpt '}' ;

Since a Block may contain zero substatements, a non-terminal with an epsilon rule is used:

BlockStmtsOpt:    BlockStmts | ;

Having dispensed with the optional case, BlockStmts are chained together using recursion:

BlockStmts:       BlockStmt | BlockStmts BlockStmt ;

The kinds of statements allowed within a Block include variable declarations and ordinary ex-

ecutable statements:

BlockStmt:        LocalVarDeclStmt | Stmt ;

Local variable declarations consist of a type followed by a comma-separated list of variable names 

ending with a semi-colon. Non-terminal VarDecls was presented where it was previously used 

in class variable declarations:

LocalVarDeclStmt: LocalVarDecl ';' ;

LocalVarDecl:     Type VarDecls ;

There are many kinds of ordinary executable statements, including expressions, break and return 

statements, if statements, and while and for loops:

Stmt:   Block | ';' | ExprStmt | BreakStmt | ReturnStmt
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      | IfThenStmt | IfThenElseStmt | IfThenElseIfStmt

      | WhileStmt | ForStmt ;

Most expressions produce a value that must be used in a surrounding expression. Three kinds of 

expressions can be turned into a statement by following them with a semi-colon:

ExprStmt:  StmtExpr ';' ;

StmtExpr:  Assignment | MethodCall | InstantiationExpr ;

Several forms of if statements are provided, allowing for chains of else statements. If they seem 

excessive, it is because the Jzero subset of Java generally requires bodies of conditional and loop 

constructs to use curly braces, avoiding a common source of bugs:

IfThenStmt:       IF '(' Expr ')' Block ;

IfThenElseStmt:   IF '(' Expr ')' Block ELSE Block ;

IfThenElseIfStmt: IF '(' Expr ')' Block ElseIfSequence

       |  IF '(' Expr ')' Block ElseIfSequence ELSE Block ;

ElseIfSequence:   ElseIfStmt | ElseIfSequence ElseIfStmt ;

ElseIfStmt:       ELSE IfThenStmt ;

WHILE loops have a simple syntax similar to IF statements:

WhileStmt:        WHILE '(' Expr ')' Block ;

FOR loops, on the other hand, are quite involved:

ForStmt: FOR '(' ForInit ';' ExprOpt ';' ForUpdate ')' Block ;

ForInit:          StmtExprList | LocalVarDecl | ;

ExprOpt:          Expr |  ;

ForUpdate:        StmtExprList | ;

StmtExprList:     StmtExpr | StmtExprList ',' StmtExpr ;

The BREAK and RETURN statements are very simple, the only difference in their syntax being that  

RETURN can have an optional expression after it. VOID methods return without this expression, 

while non-VOID methods must include it; this must be checked during semantic analysis:

BreakStmt:        BREAK ';' ;

ReturnStmt:       RETURN ExprOpt ';' ;

The next part of j0gram.y contains the expression grammar. An expression is a chunk of code 

that computes a value, typically for use in a surrounding expression. This expression grammar 

uses one non-terminal symbol per level of operator precedence. 
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For example, the way that multiplication is forced to be higher precedence than addition is that 

all multiplications are performed on a MulExpr non-terminal and then MulExpr instances are 

chained together using plus (or minus) operators in the AddExpr production rules:

Primary: Literal | '(' Expr ')' | FieldAccess | MethodCall;

Literal:  INTLIT | DOUBLELIT | BOOLLIT | STRINGLIT | NULLVAL;

InstantiationExpr: Name '(' ArgListOpt ')' ;

ArgListOpt:  ArgList | ;

ArgList: Expr | ArgList ',' Expr ;

FieldAccess: Primary '.' IDENTIFIER ;

MethodCall: Name '(' ArgListOpt ')'

    | Name '{' ArgListOpt '}'

    | Primary '.' IDENTIFIER '(' ArgListOpt ')'

    | Primary '.' IDENTIFIER '{' ArgListOpt '}' ;

PostFixExpr: Primary | Name ;

UnaryExpr:  '-' UnaryExpr | '!' UnaryExpr | PostFixExpr ;

MulExpr: UnaryExpr | MulExpr '*' UnaryExpr

    | MulExpr '/' UnaryExpr | MulExpr '%' UnaryExpr ;

AddExpr: MulExpr | AddExpr '+' MulExpr | AddExpr '-' MulExpr ;

RelOp: LESSTHANOREQUAL | GREATERTHANOREQUAL | '<' | '>' ;

RelExpr: AddExpr | RelExpr RelOp AddExpr ;

EqExpr: RelExpr | EqExpr ISEQUALTO RelExpr | EqExpr 

NOTEQUALTO RelExpr ;

CondAndExpr: EqExpr | CondAndExpr LOGICALAND EqExpr ;

CondOrExpr: CondAndExpr | CondOrExpr LOGICALOR CondAndExpr;

Expr: CondOrExpr | Assignment ;

Assignment: LeftHandSide AssignOp Expr ;

LeftHandSide: Name | FieldAccess ;

AssignOp: '=' | INCREMENT | DECREMENT ;

Although it is split into five portions for presentation here, the j0gram.y file is not very long: 

around 120 lines of code. Since it works for both Unicon and Java, this is a lot of bang for your 

coding buck. The supporting Unicon and Java code is non-trivial, but we are letting yacc (iyacc 

and BYACC/J) do most of the work here. The j0gram.y file will get longer in the next chapter when 

we extend the parser to build syntax trees.

Now it is time to look at the supporting Unicon Jzero code that invokes and works with the Jzero 

yacc grammar.
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Unicon Jzero code
The Unicon implementation of the Jzero parser uses almost the same organization as in the 

previous chapter, starting in a file named j0.icn. Instead of calling yylex() in a loop, in a yacc-

based program, the main() procedure calls yyparse(), which calls yylex() every time it does a 

shift operation.

As was mentioned in the last chapter, the Unicon scanner uses a Parser object whose fields, such 

as parser.WHILE, contain the integer category codes. The Parser object is no longer in j0.icn; 

it is now generated by iyacc in a j0gram.icn file that is enormous and will not be shown here:

global yylineno, yycolno, yylval, parser

procedure main(argv)

   j0 := j0()

   parser := Parser()

   yyin := open(argv[1]) | stop("usage: j0 filename")

   yylineno := yycolno := 1

   if yyparse()=0 then

      write("no errors, ", j0.count, " tokens parsed")

end

The second part of j0.icn consists of the j0 class. See the explanations in Chapter 3, Scanning 

Source Code, in the Unicon Jzero code section:

class j0(count)

   method lexErr(s)

      stop(s, ": ", yytext) 

   end

   method scan(cat)

      yylval := token(cat, yytext, yylineno, yycolno)

      yycolno +:= *yytext

      count +:= 1

      return cat

   end

   method whitespace()

      yycolno +:= *yytext

   end

   method newline()

      yylineno +:= 1; yycolno := 1
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   end

   method comment()

      yytext ? {

         while tab(find("\n")+1) do newline()

         yycolno +:= *tab(0)

      }

   end

   method ord(s)

      return proc("ord",0)(s[1])

   end

initially

   count := 0

end

In the third part of j0.icn, the token type with its deEscape() method has been preserved from 

the previous chapter:

class token(cat, text, lineno, olon, ival, dval, sval)

   method deEscape(sin)

      local sout := ""

      sin := sin[2:-1]

      sin ? {

         while c := move(1) do {

            if c == "\\" then {

               if not (c := move(1)) then

                  j0.lexErr("malformed string literal")

               else case c of {

                  "t":{ sout ||:= "\t" }

                  "n":{ sout ||:= "\n" }

                  }

               }

            }

            else sout ||:= c

         }

      }

      return sout

   end

initially
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   case cat of {

     parser.INTLIT:    { ival := integer(text) }

     parser.DOUBLELIT: { dval := real(text) }

     parser.STRINGLIT: { sval := deEscape(text) }

   }

end

You might notice that the Unicon Jzero code got a bit shorter in this chapter compared with the 

last, thanks to yacc doing some of the work for us. Now let’s look at the corresponding code in Java.

Java Jzero parser code
The Java implementation of the Jzero parser includes a main class in the j0.java file. It resembles 

the same file in the previous chapter, except its main() function calls yyparse():

package ch4;

import java.io.FileReader;

public class j0 {

   public static Yylex yylexer;

   public static parser par;

   public static int yylineno, yycolno, count;

   public static void main(String argv[]) throws Exception

   {

       init(argv[0]);

      par = new parser();

      yylineno = yycolno = 1;

      count = 0;

      int I = par.yyparse();

      if (i == 0) {

         System.out.println""no errors,"" + j0.count +

                            " tokens parsed");

      }

   }

   public static void init(String s) throws Exception {

     yylexer = new Yylex(new FileReader(s));

   }

   // rest of j0.java methods are the same as in Chapter 3.

}
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To run the program, you will also have to compile the module named Parser.java, which is 

generated by yacc from our input j0gram.y file. That module provides the yyparse() function 

along with a set of named constants declared directly as short integers. While this book lists 

j0gram.y instead of the Parser.java file that is generated from it, you can run yacc and look at 

its output yourself.

There is also a supporting module named token.java that contains the token class. It is identical 

to that presented in the previous chapter, so we will not duplicate it here.

If you like to plan ahead, it may interest you to know that the instances of the class token contain 

exactly the information that you need in the leaves of the syntax tree that you will build in the 

next chapter. There are different ways that a person could wire up this lexical information into 

the tree leaves. We will deal with that in Chapter 5, Syntax Trees.

Running the Jzero parser
You can run the program in either Unicon or Java as follows. This time, let’s run the program on 

the following sample input file, named hello.java:

public class hello {

   public static void main(String argv[]) {

      System.out.println("hello, jzero!");

   }

}

Remember, to your parser, this hello.java program is a sequence of lexemes that must be checked 

to see if it follows the grammar of the Jzero language that we gave earlier. The commands to com-

pile and run the Jzero parser resemble earlier examples, with more files creeping in. The Unicon 

commands look like the following example:

uflex javalex.l

iyacc -dd j0gram.y 

unicon j0 javalex j0gram j0gram_tab yyerror

j0 hello.java

The machine-generated code output by uflex for javalex.l contains a single function that is 

large enough to cause earlier versions of Unicon’s code generator (icont) to fail with its own 

parse stack overflow! I had to modify the icont yacc grammar to use a larger stack to run this 

example. You need a new or recent version of Unicon to compile the lexical analyzers produced 

by uflex from large lexical specifications.
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In the next to last line in the preceding list of commands, compiling the j0 executable with a single 

invocation to perform compilation plus linking is a lazy presentation choice on Unicon. On Java, 

there is enough of a circular dependency between the lexical analyzer (which uses parser integer 

constants) and the parser (which calls yylex()) that you will find it necessary to continually 

resort to the big inhale model of compilation. While this is a sad state of affairs, if that’s what it 

takes for Java to smoothly combine jflex and BYACC/J, let’s just relax and enjoy it.

The Java commands to build and run the j0 parser are as follows:

jflex javalex.l

yacc -Jclass=parser -Jpackage=ch4 -Jyylex=ch4.j0.yylex\

     -Jyyerror=ch4.yyerror.yyerror j0gram.y

javac parser.java Yylex.java j0.java parserVal.java \

         token.java yyerror.java 

java ch4.j0 hello.java

From either the Unicon or the Java implementation, you should see the output like this:

no errors, 26 tokens parsed

Not a very interesting output. The Jzero parser will become a lot more useful in the next chap-

ter when you learn how to construct a data structure that is a record of the complete syntactic 

structure of the input source program. That data structure is the fundamental skeleton upon 

which any interpreter or compiler implementation of a programming language is based. In the 

meantime, what if we give an input file that is missing some required punctuation, or uses some 

Java constructs that are not in Jzero? We expect an error message. 

Big inhale model: All serious programming languages, especially object-oriented 

ones, allow modules to be compiled separately and, in fact, encourage modules to 

be small, such that a build consists of many tiny module compilations. When some 

code is changed, only a small portion of the whole program needs to be recompiled. 

Unfortunately, many programming language features – in this case, classes that 

use each other’s static members – can cause you to need to compile several or many 

modules at once under Java (highly ironic for a language that eschews linking). 

Sometimes you can tease out a sequence of single compilations that will work in 

Java, and sometimes not. When you must submit many or all the Java source files on 

the command line at once, behavior that would be unwise for a C/C++ programmer 

becomes routine and necessary for a Java programmer. Don’t sweat it. That’s what 

fast CPUs, multiple cores, and overengineered IDEs are for.
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The following example input file named helloerror.java serves to motivate our next section:

public class hello {

   public static void main(String argv[]) {

      System.out.println("hello, jzero!")

   }

}

Can you see the error? It is the oldest and most common syntax error of all. A semi-colon is missing 

at the end of the println() statement.

Based on the parser written so far, running j0 helloerror.java prints the following yacc default 

error message and exits:

syntax error

While no errors was uninteresting, saying syntax error when there is a problem is not us-

er-friendly at all. It is time to consider syntax error reporting and recovery.

Improving syntax error messages
Earlier, we saw a bit about the yacc syntax error reporting mechanism. Yacc just calls a function 

named yyerror(s). Very rarely, this function can be called for an internal error such as a parse 

stack overflow, but usually, when it is called, it is passed the string "parse error" or "syntax 

error" as its parameter. Neither is adequate for helping programmers find and fix their errors in 

the real world. If you write a function called yyerror() yourself, you can produce a better error 

message. The key is to have extra information available that the programmer can use. Usually, that 

extra information will have to be placed in a global or public static variable in order for yyerror() 

to access it. Let’s look at how to write a better yyerror() function in Unicon, and then in Java.

Adding detail to Unicon syntax error messages
In the Putting together a toy example section earlier in this chapter, you saw a Unicon implemen-

tation of yyerror(s) that just consisted of calling stop(s). It is easy to do better than this, espe-

cially if we have global variables such as yylineno available. In Unicon, your yyerror() function 

might look like the following:

procedure yyerror(s)

   write(&errout, "line ", yylineno, " column ", yycolno,

                  ", lexeme \"", yytext, "\": ", s)

end
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This prints the line and column numbers, as well as the current lexeme at the time that the syn-

tax error was discovered. Because yylineno, yycolno, and yytext are global variables, it is no 

problem to access them from the yyerror() helper procedure. The main thing that you might 

want to do even better than this is figure out how to produce a message that’s more helpful than 

just saying parse error.

Adding detail to Java syntax error messages
The corresponding Java yyerror() function is given below. In BYACC/J, you could place this 

method in the helper functions section of j0gram.y, where it will be included within the Parser 

class where it is called from. Unfortunately, if you do this, you give up Unicon/Java portability 

in the yacc specification file. So instead, we place the yyerror() function in its own class and its 

own file. This example shows the degree of pathos inflicted by Java’s semi-pure object-oriented 

model, where everything must be in a class, even when it is inane to do so:

public class yyerror {

   public static void yyerror(String s) {

      System.err.println("line "+ j0.yylineno +

                    " column "+ j0.yycolno +

                    ", lexeme \"" + j0.yytext()+ "\": " + s);

   }

}

As we saw earlier in this chapter, using this yyerror() from another file from within a parser class 

generated by BYACC/J requires an import static declaration for which we added -Jyylex=… and 

-Jyyerror=… command-line options to BYACC/J.

With either the Unicon or the Java implementation, when you link this yyerror() into your j0 

parser and run j0 helloerror.java, you should see output that looks like the following:

line 4 column 1, lexeme "end": parse error

Until recently, this was as good as many production compilers such as GCC managed to do. For 

an expert programmer, it is enough. Looking before and after the point of failure, an expert will 

see a missing semi-colon. But for a novice or an intermediate programmer having a bad day, 

even the line number, column, and token at which an error is discovered are not enough. Good 

programming language tools must be able to deliver better error messages.
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Using Merr to generate better syntax error messages
How do we write a better message that clearly indicates a parse error? The parsing algorithm was 

looking at two integers when it realized there was an error: a parse state and a current input 

symbol. If you can map those two integers to a set of better error messages, you win. Unfortu-

nately, it is not trivial to figure out what the integer parse states mean. You can do it by painful 

trial and error, but every time you change the grammar, those numbers change.

A tool was created just to solve this problem, called Merr (for Meta error). Merr lives at http://

unicon.org/merr. It takes as input the name of your compiler, a makefile for building it, and a 

meta.err specification file that contains a list of error fragments and their corresponding error 

messages. In order to generate yyerror(), Merr builds your compiler and runs it in a mode that 

causes it to print out the parse state and current input token on each of the fragment errors. It 

then writes out a yyerror() that contains a table showing, for each parse state and error frag-

ment, what the associated error message is. A sample meta.err file for a few errors, including 

the missing semi-colon error shown earlier, is as follows:

public {

::: class expected 

public class {

::: missing class name 

public class h public

::: { expected 

public class h{public static void m(S a[]){S.o.p("h")}}

::: semi-colon expected

You invoke the Merr tool by telling it the name of the compiler you are building; it uses this name 

as a target argument when it calls make to build your compiler. Various command-line options 

let you specify what yacc version you have and other important details. The following command 

lines invoke merr on Unicon (left) or Java (right):

merr -u j0                   merr -j j0.class

This command grinds for a while. Merr rebuilds your compiler with a modified yyerror() function 

to report the parse state and input token at the time of each error. Merr then runs your compiler 

on each of the error fragments and records what parse states they die in. Finally, merr writes out 

a yyerror() containing a table mapping parse states to error messages.

http://unicon.org/merr
http://unicon.org/merr
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As you saw in both the Unicon and Java cases, writing an error message that includes line num-

bers or the current input symbol when a syntax error is found is easy. On the other hand, saying 

something more helpful about it can be challenging.

Summary
In this chapter, you learned about the crucial technical skills and tools used in programming 

languages when they are parsing the sequence of lexemes from the program source code to check 

its organization and structure.

You learned how to write context-free grammars and how to use the iyacc and BYACC/J tools to 

take your context-free grammar and generate a parser for it.

When input fails to follow the rules, an error reporting function, yyerror(), is called. You learned 

some basics about this error-handling mechanism.

You learned how to call a generated parser from a main() function. The parser that yacc generates 

is called via the yyparse() function.

You are now ready to learn how to build the syntax tree data structure that reflects the structure 

of the input source code. The next chapter will cover the construction of syntax trees in detail.

Questions
1.	 What does it really mean to say a grammar symbol is terminal? Is it dying or something?

2.	 YACC parsers are called shift/reduce parsers. What exactly is a shift? What is a reduce?

3.	 Does the semantic action code in a YACC grammar execute when the parser performs a 

shift, a reduce, or both?

4.	 How does syntax analysis make use of the lexical analysis described in the previous chap-

ter?
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Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw


5
Syntax Trees

The preceding two chapters covered lexical and syntax analysis, the first two phases of a compil-

er. Next, we will need to perform semantic analysis and code generation, but those phases will 

need some information to work from. The parser we constructed in the last chapter can detect 

and report syntax errors, which is a big, important job. When there is no syntax error, you need 

to build a data structure during parsing that represents the whole program logically. This data 

structure is based on how the different tokens and larger pieces of the program are grouped to-

gether. A syntax tree is a tree data structure that records the branching structure of the grammar 

rules used by the parsing algorithm to check the syntax of an input source file. A branch occurs 

whenever two or more symbols are grouped together on the right-hand side of a grammar rule 

to build a non-terminal symbol. This chapter will show you how to build syntax trees, which 

are the central data structures for your programming language implementation. A syntax tree is 

what the parser produces and passes along to the semantic analysis and code generation phases.

This chapter covers the following main topics: 

•	 Learning about trees

•	 Creating leaves from terminal symbols

•	 Building internal nodes from production rules

•	 Forming syntax trees for the Jzero language

•	 Debugging and testing your syntax tree

We will learn about tree data structures and how to build them. But first, let’s learn about some 

new tools that will make building your language easier for the rest of this book.
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Technical requirements
There are two tools for you to install for this chapter, as follows:

•	 Dot is part of a package called Graphviz that can be downloaded from http://graphviz.

org. After successfully installing Graphviz, you should have an executable named dot (or 

dot.exe) on your path. We will use dot to check our work after we finish building the 

syntax tree. Dot will generate a graphic image of the tree for us, but first, we will have to 

build the tree. For this reason, we will cover the dot tool and our use of it at the end of 

the chapter.

•	 GNU’s Not Unix (GNU) Make is a tool to help manage large programming projects that 

supports both Unicon and Java. It is available for Windows from http://gnuwin32.

sourceforge.net/packages/make.htm. Most programmers probably get it along with 

their C/C++ compiler or with a development suite such as MSYS2 or Cygwin. On Linux, 

you typically get Make from a C development suite, although it is often also a separate 

package you can install.

•	 You can download this book’s examples from our GitHub repository: https://github.
com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/

master/ch5.

The Code in Action video for the chapter can be found here: https://bit.ly/3DgRcgC.

While our use of dot can wait until we build our syntax trees, our use of Make will be pervasive. 

For this reason, before we dive into the main topics of this chapter, let’s explore the basics of how 

to use GNU Make and why you need it for developing your language.

Using GNU Make
Command lines are growing longer and longer, and you will get very tired of typing the commands 

required to build a programming language. We are already using Unicon, Java, uflex, jflex, iyacc, 

and BYACC/J. Few tools for building large programs are multi-platform and multi-language 

enough for this toolset. We will use the ultimate multi-platform, multi-language software build 

tool: GNU Make.

Once the Make program is installed on your path, you can store the build rules for Unicon or Java, 

or both, in a file named a makefile (or Makefile), and then just run Make whenever you have 

changed the code and need to rebuild. A full treatment of Make is beyond the scope of this book, 

but here are the key points.

http://graphviz.org
http://graphviz.org
http://gnuwin32.sourceforge.net/packages/make.htm
http://gnuwin32.sourceforge.net/packages/make.htm
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch5
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch5
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch5
https://bit.ly/3DgRcgC
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A makefile is like a lex or yacc specification, except instead of recognizing patterns of strings, 

a makefile specifies a graph of build dependencies between files. For each file, the makefile 

contains the source files it depends on as well as a list of one or more command lines needed to 

build that file. The makefile header just consists of macros defined by NAME= strings that are used 

in later lines by writing $(NAME) to replace a name with its definition. The rest of the makefile 

lines are dependencies written in the following format:

file: source_file(s)

    build rule

In the first line, file is an output file you want to build, also called a target. The first line specifies 

that the target depends on current versions of the source file(s). These files are required to make 

the target. build rule is the command line that you execute to make that output file from those 

source file(s).

The following example makefile will build both Unicon and Java if you just say make. If you run 

make unicon or make java, then it only builds one or the other. Added to the commands from the 

last chapter is a new module (tree.icn or tree.java) for this chapter. The makefile is presented 

in two halves, for the Unicon and then the Java build, respectively.

The target named all specifies what to build if Make is invoked without an argument saying 

what to build. The rest of the first half of the makefile is concerned with building the Unicon 

implementation of our compiler. The U macros (and IYU for iyacc ucode) list the Unicon modules 

that are separately compiled into a machine code format called ucode. The strange %.u:%.icn 

dependency is called a suffix rule. It says that all .u files are built from .icn files by running unicon 

-c on the .icn file. The executable named j0 is built from the ucode files by running unicon on all 

the .u files to link them together. 

Don’t forget the tab! The make program supports multiple lines of build rules. Each 

build rule line must start with a tab. The most common newbie mistake in writing 

a makefile is that the build rule line(s) must begin with an American Standard 

Code for Information Interchange (ASCII) Ctrl-I, also known as a tab character. 

Some text editors will totally blow this, replacing the tab character with a sequence 

of space characters. If your build rule lines don’t start with a tab, make will probably 

give you some confusing error message. If that is happening to you, switch to a real 

code editor and don’t forget the tab.
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The javalex.icn and j0gram.icn files are built using uflex and iyacc, respectively. Let’s look at 

the first half of our makefile for this chapter, as follows:

all: unicon java

LYU=javalex.u j0gram.u j0gram_tab.u

U=j0.u token.u tree.u serial.u yyerror.u $(LYU)

unicon: j0

%.u : %.icn

    unicon -c $<

j0: $(U)

    unicon $(U)

javalex.icn: javalex.l

    uflex javalex.l

j0gram.icn j0gram_tab.icn: j0gram.y

    iyacc -dd j0gram.y

The Java build rules occupy the second half of our makefile. The JSRC macro gives the names of 

all the Java files to be compiled. BYSRC macros for BYACC/J-generated sources, BYJOPTS for BYAC-

C/J options, and IMP and BYJIMPS for BYACC/J static imports serve to shorten later lines in the 

makefile so that they fit within this book’s formatting constraints. We are sticking carefully to a 

makefile that will run on both Windows and Linux. As a reminder, the Java rules of our makefile 

depend on a CLASSPATH environment variable, and the syntax for that varies with your operating 

system and its Command Prompt (or shell) syntax. On Windows, you might say the following:

set CLASSPATH=".;c:\users\username\byopl"

Here, username is your username, while on Linux, you might instead say the following:

export CLASSPATH=..
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In any case, here is the second half of our makefile:

BYSRC=parser.java parserVal.java Yylex.java

JSRC=j0.java tree.java token.java yyerror.java serial.java $(BYSRC)

BYJOPTS= -Jclass=parser -Jpackage=ch5

BYJIMPS= -Jyylex=ch5.j0.yylex -Jyyerror=ch5.yyerror.yyerror

java: j0.class

j: java

    java ch5.j0 hello.java

    dot -Tpng hello.java.dot >hello.png

j0.class: $(JSRC)

    javac $(JSRC)

parser.java parserVal.java: j0gram.y

    yacc $(BYJOPTS) $(BYJIMPS) j0gram.y

Yylex.java: javalex.l

    jflex javalex.l

In addition to the rules for compiling the Java code, the Java part of the makefile has an artificial 

target, make j, that runs the compiler and invokes the dot program to generate a Portable Net-

work Graphic (PNG) image of your syntax tree. We will look at the dot program and the images 

of tree data structures that it generates at the end of this chapter, after we have shown you how 

to construct syntax trees during parsing.

If you find makefiles strange and scary-looking, don’t worry—you are in good company. This 

is a red pill/blue pill moment. You can close your eyes and just type make at the command line. 

Alternatively, you can dig in and take ownership of this universal multi-language software devel-

opment build tool. If you want to read more about make, you might want to check out GNU Make: 

A Program for Directing Compilation, by Stallman and McGrath, or one of the other fine books on 

make. Now, it’s time to get on with syntax trees, but first, you must know what a tree is and how 

to define a tree data type for use in a programming language.



Syntax Trees106

Learning about trees
Mathematically, a tree is a kind of graph structure; it consists of nodes and edges that connect 

those nodes. All the nodes in a tree are connected. A single node at the top is called the root. Tree 

nodes can have zero or more children, and at most one parent. A tree node with zero children is 

called a leaf; most trees have a lot of leaves. A tree node that is not a leaf has one or more chil-

dren and is called an internal node. Figure 5.1 shows an example tree with a root, two additional 

internal nodes, and five leaves:

Figure 5.1: A tree with a root, internal nodes, and leaves

Trees have a property called arity that specifies the maximum number of children that occur for 

any node in the tree. An arity of 1 would give you a linked list. Perhaps the most common kinds 

of trees are binary trees (arity = 2). The kind of trees we need has as many children as there are 

symbols on the right-hand side of the rules in our grammar; these are so-called n-ary trees. While 

there is no arity bound for arbitrary context-free grammars, for any grammar we can just look 

and see which production rule has the most symbols on its right-hand side, and code our tree 

arity to that number if needed. In j0gram.y from the last chapter, the arity of Jzero is 9, although 

most non-leaf nodes will have two to four children. In the following subsections, we will dive 

deeper and learn how to define syntax trees and understand the difference between a parse tree 

and a syntax tree.

Defining a syntax tree type
Every node in a tree has several pieces of information that need to be represented in the class or 

data type used for tree nodes. This includes the following information:

•	 Labels or integer codes that uniquely identify the node and tell you what kind of node it is

•	 A data payload consisting of whatever information is associated with that node
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•	 Information about that node’s children, including how many children it has and references 

to those children (if any)

We use a class for this information in order to keep the mapping between Unicon and Java as 

simple as possible. Here is an outline of the tree class with its fields and constructor code in 

Unicon; the methods will be presented in the sections that follow within this chapter. The tree 

information can be represented in Unicon in a file named tree.icn, as follows:

class tree(id, sym, rule, nkids, tok, kids)

   … tree methods, to be presented later

initially(s,r,x[])

   id := serial.getid(); sym := s; rule := r

   if type(x[1]) == "token__state" then {

      nkids:=0; tok := x[1]

   } else {

      nkids := *x

     kids := x

   }

end

The tree class has the following fields:

•	 The id field is a unique integer identity or serial number that is used to distinguish tree 

nodes from each other. It is initialized by calling a getid() method in a singleton class 

named serial, which will be presented later in this section.

•	 The sym string is a human-readable description for debugging purposes.

•	 The member named rule holds the production rule (or, in the case of a leaf, the integer 

category) that the node represents. Yacc does not provide a numeric encoding for pro-

duction rules, so you will have to make your own, whether you just count rules starting 

from 1 or get fancier. If you start at 1,000 or use negative numbers, you will never confuse 

a production rule number for a terminal symbol code.

•	 The member named nkids holds the number of child nodes underneath this node. Usually, 

it will be 0, indicating a leaf, or a number 2 or higher, indicating an internal node.

•	 The member named tok holds the lexical attributes of a leaf node, which comes to us 

via the yylex() function setting the parser’s yylval variable, as discussed in Chapter 2, 

Programming Language Design.

•	 The member named kids is an array of tree objects holding references to the children of 

this tree node, if there are any.
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The corresponding Java code looks like the following class tree in a file named tree.java. Its 

members match the fields in the Unicon tree class given previously: 

package ch5;

class tree {

  int id;

  String sym;

  int rule;

  int nkids;

  token tok;

  tree kids[]; 

The tree.java file continues with class tree methods, which will be shown later, followed by two 

constructors for the tree class: one for leaves, which takes a token object as an argument, and 

one for internal nodes, which takes children. These can be seen in the following code snippet:

  … tree methods, to be presented later

  public tree(String s, int r, token t) {

    id = serial.getid();

    sym = s; rule = r; tok = t;

  }

  public tree(String s, int r, tree[] t) {

    id = serial.getid();

    sym = s; rule = r; nkids = t.length;

    kids = t;

  }

}

The previous pair of constructors initialize a tree’s fields in an obvious way. You may be curious 

about the identifiers initialized from a serial class. These are used to give each node a unique 

identity required by the tool that draws the syntax trees for us graphically at the end of this 

chapter. Before we proceed with using these constructors, let’s consider two different mindsets 

regarding the trees we are constructing.

Parse trees versus syntax trees
A parse tree is what you get when you allocate an internal node for each and every production 

rule used during the parsing of an input, even ones that introduce no branching. In contrast 

with syntax trees, which only introduce internal nodes when branching occurs, parse trees are a 

complete transcript of how the parser matched the input using the grammar. 
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They are unwieldy to use in practice. In real programming languages, there are lots and lots of 

non-terminal rules that build a non-terminal from a single non-terminal on their right-hand side. 

This results in a weeping tree appearance. Figure 5.2 shows the height and shape of a parse tree for 

a trivial “Hello World” program. Solid boxes depict internal nodes, and boxes drawn with dashed 

lines depict leaf nodes. If you build a full parse tree, the unnecessary extra nodes will substantially 

slow down the rest of your compiler:

Figure 5.2: A parse tree for a “Hello World” program (67 nodes, height 27)
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A syntax tree has an internal node whenever a production rule has two or more children on the 

right-hand side and the tree needs to branch out. Figure 5.3 shows a syntax tree for the same hello.

java program. Once again, solid boxes depict internal nodes, and boxes drawn with dashed lines 

depict leaf nodes. Note the differences in size and shape compared with the parse tree shown in 

Figure 5.2:

Figure 5.3: A syntax tree for a “Hello World” program (20 nodes, height 8)

While a parse tree may be useful for studying or debugging a parsing algorithm, a programming 

language implementation uses a much simpler tree. You will see this especially when we present 

the rules for building tree nodes for our example language, in the Forming syntax trees for the Jzero 

language section. Before we get there, let’s consider what may be the trickiest part, creating leaves 

containing lexical analysis information and making them available to the parser.
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Creating leaves from terminal symbols
Leaves make up a large percentage of the nodes in a syntax tree. The leaves in a syntax tree built 
by yacc come from the lexical analyzer. For this reason, this section discusses modifications to the 
code from Chapter 2, Programming Language Design. After you create leaves in the lexical analyzer, 
the parsing algorithm must pick them up somehow and plug them into the tree that it builds. 
This section describes that process in detail. First, you will learn how to embed token structures 
into tree leaves, and you will then learn how these leaves are picked up by the parser in its value 
stack. For Java, you will need to know about an extra type that is needed to work with the value 
stack. Lastly, the section provides some guidance as to which leaves are necessary and which can 

be safely omitted. Here is how to create leaves containing token information.

Wrapping tokens in leaves
The tree type presented earlier contains a field that is a reference to the token type introduced 

in Chapter 2, Programming Language Design. Every leaf will get a corresponding token and vice 

versa. Think of this as wrapping up the token inside a tree leaf. Figure 5.4 is a Unified Modeling 

Language (UML) diagram that depicts each tree leaf containing a token:

Figure 5.4: Diagram of a leaf containing a token

You could instead add the token type’s member fields directly into the tree type. However, the 

strategy of allocating a token object, and then a separate tree node that contains a pointer to 

that token object, is reasonably clean and easy to understand. In Unicon, the code to create a 

leaf looks like this:

yylval := tree("token",cat, token(cat, yytext, yylineno))

In Java, the creation of a leaf node containing a token looks like the following code:

yylval = new tree("token",cat, new token(cat, yytext(), yylineno));

You could put this code within the j0.scan() method that is called for each token in the lexical 

analyzer. In Unicon, we are good at this point. In statically typed languages such as Java, what 

data type is yylval? In Chapter 2, Programming Language Design, yylval was of the type token; 

now, it looks like the type tree. But yylval is declared in the generated parser, and yacc doesn’t 

know anything about your token or tree types. For a Java implementation, you must know the 

data type that the code generated by yacc uses for leaves, but first, you need to learn about the 

value stack.
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Working with YACC’s value stack
BYACC/J does not know about your tree class. For this reason, it generates its value stack as an 

array of objects whose type is named parserVal. If you rename BYACC/J’s parser class to some-

thing else, such as myparse, using the -Jclass= command-line option, the value stack class will 

also automatically be renamed to myparseVal.

The yylval variable is part of the public interface of yacc. Every time yacc shifts the next termi-

nal symbol onto its parse stack, it copies the contents of yylval onto a stack that it manages in 

parallel with the parse stack, called the value stack. BYACC/J declares the value stack elements 

as well as yylval in the parser class to be of the type parserVal.

Since a parse stack is managed in parallel with a value stack, whenever a new state is pushed 

on the parse stack, the value stack sees a corresponding push; the same goes for pop operations. 

Value stack entries whose parse state was produced by a shift operation hold tree leaves. Value 

stack entries whose parse state was produced by a reduce operation hold internal syntax tree 

nodes. Figure 5.5 depicts a value stack in parallel with a parse stack:

Figure 5.5: A parse stack and a value stack

In Figure 5.5, the dollar symbol $ on the left edge represents the bottom of the two stacks, which 

grow toward the right when values are pushed on the stack. The right side of the diagram de-

picts the sequence of terminal symbols whose tokens are produced by lexical analysis. Tokens 

are processed from left to right, with $ at the right edge of the screen representing the end of the 

file, also depicted as EOF. The ellipses (…) on the left side represent the room on the two stacks 

to process additional push operations during parsing, while those on the right side represent 

whatever additional input symbols remain after those that are depicted.
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The parserVal type was briefly mentioned in Chapter 4, Parsing. To build syntax trees in BYACC/J, 

we must understand this type in detail. Here is the parserVal type, as defined by BYACC/J:

public class parserVal {
  public int ival;
  public double dval;
  public String sval;
  public Object obj;
  public parserVal() { }
  public parserVal(int val){ ival=val; }
  public parserVal(double val) { dval=val; }
  public parserVal(String val) { sval=val; }
  public parserVal(Object val) { obj=val; }

parserVal is a container that holds an int, a double, a String, and an Object, which can be a 

reference to any class instance at all. Having four fields here is a waste of memory for us since we 

will only use the obj field, but yacc is a generic tool. In any case, let’s look at wrapping tree leaves 

within a parserVal object in order to place them in yylval.

Wrapping leaves for the parser’s value stack
In terms of mechanics, parserVal is a third data type in the code that builds our syntax tree. 

BYACC/J requires that we use this type for the lexical analyzer to communicate tokens to the 

parser. For this reason, for the Java implementation, this chapter’s class, j0, has a scan() method 

that looks like this:

   public static int scan(int cat) {
      ch5.j0.par.yylval =
         new parserVal(
            new tree("token",0,
               new token(cat, yytext(), yylineno)));
      return cat;
   }

In Unicon, scan() allocates two objects, as shown previously in Figure 5.4. In Java, each call to 

scan() allocates three objects, as shown in Figure 5.6:

Figure 5.6: The three allocated objects: parserVal, tree (leaf), and token
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OK—we wrapped tokens inside of tree nodes in order to represent leaf information, and then for 

Java, we wrapped leaf nodes inside parserVal in order to put them onto the value stack. Let’s 

consider what putting a leaf on the value stack looks like in more detail. We will tell the story as it 

occurs in Java, recognizing that in Unicon it is a little bit simpler. Suppose you are at the beginning 

of your parse, and your first token is the reserved word PUBLIC. The scenario is shown in Figure 

5.7. See the description of Figure 5.5 if you need a refresher on how this diagram is organized:

Figure 5.7: The parse stack state at the start of parsing

The first operation is a shift. An integer finite automaton state that encodes the fact that we 

saw PUBLIC is pushed onto the stack. yylex() calls scan(), which allocates a leaf wrapped in a 

parserVal instance and assigns yylval a reference to it, which yylex() pushes onto the value 

stack. The stacks are in lock-step, as shown in Figure 5.8:

Figure 5.8: The parse and value stack state after a shift operation

Another of these wrapped leaves gets added to the value stack each time a shift occurs. Now, it’s 

time to consider how all these leaves get placed into the internal nodes, and how internal nodes 

get assembled into higher-level nodes until you get back to the root. This all happens one node 

at a time when a production rule in the grammar is matched.
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Determining which leaves you need
In most languages, punctuation marks such as semicolons and parentheses are only necessary 

for syntax analysis. They may help with human readability, force operator precedence, or make 

the grammar parse unambiguously. Once you successfully parse the input, you will never again 

need those leaves in your syntax tree for semantic analysis or code generation.

You can omit unnecessary leaves from the tree, or you can leave them in so that their source 

line number and filename information are in the tree in case these are needed for error message 

reporting. I usually omit them by default but add in specific punctuation leaves if I determine 

that the compiler needs a particular punctuation token’s location in order to give a sufficiently 

precise error message.

The flip side of this equation is this: any leaf that contains a value, a name, or another semantic 

meaning of some kind in the language needs to be kept around in the syntax tree. This includes 

literal constants, IDs, and other reserved words or operators. Now, let’s look at how and when 

to build internal nodes for your syntax tree.

Building internal nodes from production rules
In this section, we will learn how to construct the tree, one node at a time, during parsing. The 

internal nodes of your syntax tree, all the way back up to the root, are built from the bottom up, 

following the sequence of reduce operations with which production rules are recognized during 

the parse. The tree nodes used during the construction are accessed from the value stack.

Accessing tree nodes on the value stack
For every production rule in the grammar, there is a chance to execute some code called a seman-

tic action when that production rule is used during a parse. As you saw in Chapter 4, Parsing, in 

the Putting together the yacc context-free grammar section, semantic action code comes at the end 

of a grammar rule, before the semicolon or vertical bar that ends a rule and starts the next one.

You can put any code you want in a semantic action. For us, the main purpose of a semantic action 

is to build a syntax tree node. Use the value stack entries corresponding to the right side of the 

production rule to construct the tree node for the symbol on the left side of the production rule. 

The left-side non-terminal that has been matched gets a new entry pushed into the value stack 

that can hold the newly constructed tree node.
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For this purpose, yacc provides macros that refer to each position on the value stack during a 

reduce operation. $1, $2, … $N refer to the current value-stack contents corresponding to the 

grammar rule’s right-hand symbols 1 through N. By the time the semantic action code executes, 

these symbols have already been matched at some point in the recent past. They are the top N 

symbols on the value stack, and during the reduce operation they will be popped and a new val-

ue-stack entry will be pushed in their place. The new value-stack entry is whatever you assign to 

$$. By default, it will just be whatever is in $1; the default semantic action of yacc is $$=$1, and 

that semantic action is correct for production rules with one symbol (terminal or non-terminal) 

that is being reduced to the non-terminal on the left-hand side of the rule.

All of this is a lot to unpack. Here is a specific example. Suppose you are just finishing up parsing 

the hello.java input shown earlier, at the point where it is time to reduce the reserved words 

PUBLIC and CLASS, the class name, and the class body. The grammar rule that applies at this point 

is ClassDecl: PUBLIC CLASS IDENTIFIER ClassBody.

The preceding rule has four symbols on the right-hand side. The first three are terminal symbols, 

which means that on the value stack, their tree nodes will be leaves. The fourth symbol on the 

right side is a non-terminal, whose value stack entry will be an internal node, a subtree, which in 

this case happens to have three children. When it is time to reduce all that down to a ClassDecl 

production rule, we are going to allocate a new internal node. Since we are finishing parsing, in 

this case, it happens to be the root, but in any case, it will correspond to the class declaration 

that we have found, and it will have four children. Figure 5.9 shows the contents of the parse 

stack and the value stack at the time of the reduce operation when the entire class is finally to be 

connected as one big tree:



Chapter 5 117

Figure 5.9: Parse and value stack right before a reduce operation
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The mission of the semantic action for the ClassDecl production rule will be to create a new node, 

initialize its four children from $1, $2, $3, and $4, and assign it to $$. Figure 5.10 shows how this 

looks after constructing the ClassDecl rule:

Figure 5.10: Subtrees are combined on the value stack during reduce operations

The entire tree is constructed very gradually, one node at a time, and the parserVal objects are 

removed at the point at which children get removed from the value stack and inserted into their 

parent node.

Using the tree node factory method
The tree class contains an important factory method named node(). A factory method is a method 

that allocates and returns an object. It is like a constructor, but it allocates an object of a different 

type from whatever class it is within. Factory methods are used heavily in certain design patterns.
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In our case, the node() method takes a string describing the node, a production rule number, and 

any number of children, and returns an internal node to represent the production rule that was 

matched. The Unicon code for the node() method is shown in the following snippet:

  method node(s,r,p[])

    return tree ! ([s,r] ||| p)

  end

The Java code for the node() method is more complex due to the wrapping and unwrapping of 

the parserVal types. Wrapping a newly constructed internal node in a parserVal object is easy 

enough with a call to create a new parserVal object. The code is shown in the following snippet:

  public static parserVal node(String s, int r, parserVal...p) {

     tree[] t = new tree[p.length];

     for(int i = 0; i < t.length; i++)

        t[i] = (tree)(p[i].obj);

     return new parserVal((Object)new tree(s,r,t));

  }

The preceding Java code takes a variable number of arguments, unwraps them, and passes them 

into the constructor of the tree class. The unwrapping consists of selecting the obj field of the 

parserVal object and casting it to be of type tree.

Since the semantic actions for iyacc are Unicon code and for BYACC/J they are Java code, this re-

quires some cheating. A semantic action is allowed in both Java and Unicon only if you limit it to 

common syntax such as method calls. If you start inserting other things in the semantic actions, 

such as if statements and other language-specific syntax, your yacc specification will become 

specific to one host language, such as Unicon or Java.

However, it was not quite possible for this book’s examples to be crafted to use the same input 

file for both iyacc and BYACC/J as is. The reason for this is that semantic actions in yacc typically 

assign a value (a reference to a parse tree node) to a special variable named $$, and Unicon uses a 

:= operator for assignment while Java uses =. This was addressed during the writing of this book 

by modifying iyacc so that semantic actions that start with $$= are accepted as a special operator 

that generates the Unicon equivalent assignment of $$:=. 

The strategies that you need for building internal nodes in your syntax tree are simple: for every 

production rule, count how many children are either one of the following:

•	 A non-terminal

•	 A terminal that is not a punctuation mark
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If the number of such children is more than 1, call the node() factory method to allocate a tree 

node, and assign it to be the value stack entry for the production rule. Now, it’s time to demon-

strate syntax tree construction in a non-trivial example: the Jzero language.

Forming syntax trees for the Jzero language
This section shows you how to build syntax trees for the Jzero language. The full j0gram.y file for 

this chapter is available on the book’s GitHub site. The header is omitted here since the %token 

declarations are unchanged from how they appeared in the section titled The Jzero Yacc specification 

in the previous chapter. Although we are again presenting many of the grammar rules shown 

in the last chapter, the focus now is on the construction of new tree nodes associated with each 

production rule, if any.

As described earlier, the tree’s internal nodes are constructed in semantic actions that are added 

at the ends of production rules. For each production rule that builds a new node, the new node 

is assigned to $$, the yacc value stack entry that corresponds to the new non-terminal symbol 

built by that production rule.

The starting non-terminal, which in the case of Jzero is a single class declaration, is the point at 

which the root of the entire tree is constructed. Its semantic action has extra work after assigning 

the constructed node to $$. At this top level, in this chapter, the code prints out the tree by calling 

the print() method in order to allow you to check whether it is correct. Subsequent chapters may 

assign the topmost tree node to a global variable named root for subsequent processing or call 

a different method here to translate the tree to machine code, or to execute the program directly 

by interpreting the statements in the tree.

The code is illustrated in the following snippet:

%%

ClassDecl: PUBLIC CLASS IDENTIFIER ClassBody {

  $$=j0.node("ClassDecl",1000,$3,$4);

  j0.print($$);

} ;

The non-terminal ClassBody consists of a pair of curly brackets that contains declarations 

(ClassBodyDecls) or is empty. In the empty case, it is an interesting question whether to assign 

an explicit leaf node indicating an empty ClassBody, as is done in the following code snippet, or 

whether the code should just say $$=null. Since the null value is different in Unicon and Java, it 

is simplest to create leaves to represent the empty parts of the tree.
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ClassBody: '{' ClassBodyDecls '}' {

              $$=j0.node("ClassBody",1010,$2); }

              | '{' '}' { $$=j0.node("ClassBody",1011); };

The non-terminal ClassBodyDecls chains together as many fields, methods, and constructors as 

occur within the class. The first production rule terminates the recursions in the second produc-

tion rule with a single ClassBodyDecl. Since there is no semantic action in the first production 

rule, it executes the default action, $$=$1; the subtree for ClassBodyDecl is promoted instead of 

creating a node for the parent. The code is illustrated in the following snippet:

ClassBodyDecls: ClassBodyDecl

              | ClassBodyDecls ClassBodyDecl {

              $$=j0.node("ClassBodyDecls",1020,$1,$2); };

There are three kinds of ClassBodyDecl to choose from. No extra tree node is allocated at this level 

as it can be inferred which kind of ClassBodyDecl each subtree is. The code is illustrated here:

ClassBodyDecl: FieldDecl | MethodDecl | ConstructorDecl ;

A field, or member variable, is declared with a base type followed by a list of variable declarations, 

as illustrated in the following code snippet:

FieldDecl: Type VarDecls ';' {

             $$=j0.node("FieldDecl",1030,$1,$2); };

The types in Jzero are very simple and include four built-in type names and a generic rule for names 

of classes, as illustrated in the following code snippet. No production rule has two children, so no 

new internal nodes are needed at this level. Arguably, String could be handled as a predefined 

Name and needn’t be a special case:

Type: INT | DOUBLE | BOOL | STRING | Name ;

A name is either a single token called IDENTIFIER or a name with one or more periods in it, called 

QualifiedName, as illustrated in the following code snippet:

Name: IDENTIFIER | QualifiedName ;

QualifiedName: Name '.' IDENTIFIER {

                 $$=j0.node("QualifiedName",1040,$1,$3);};
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Variable declarations are a comma-separated list of one or more variable declarators. In Jzero, 

VarDeclarator is just IDENTIFIER unless it has square brackets following it that denote an array 

type. As the VarDeclarator internal node implies a set of square brackets, they are not represented 

explicitly in the tree. The code is illustrated in the following snippet:

VarDecls: VarDeclarator | VarDecls ',' VarDeclarator {

            $$=j0.node("VarDecls",1050,$1,$3); };

VarDeclarator: IDENTIFIER | VarDeclarator '[' ']' {

            $$=j0.node("VarDeclarator",1060,$1); };

In Jzero, a method can return a value of some return type, or it can return VOID, as illustrated in 

the following code snippet:

MethodReturnVal : Type | VOID ;

A method is declared by providing a method header followed by a block of code. All methods are 

public static methods. After the return value, the guts of a method header consisting of the meth-

od’s name and parameters are MethodDeclarator, as illustrated in the following code snippet:

MethodDecl: MethodHeader Block {

              $$=j0.node("MethodDecl",1380,$1,$2); };

MethodHeader: PUBLIC STATIC MethodReturnVal 

                 MethodDeclarator {

              $$=j0.node("MethodHeader",1070,$3,$4); };

MethodDeclarator: IDENTIFIER '(' FormalParmListOpt ')' {

              $$=j0.node("MethodDeclarator",1080,$1,$3); };

An optional formal parameter list is either a non-empty FormalParmList or an empty production 

rule, the so-called epsilon rule, with no terminal or non-terminal symbols between the vertical 

bar and the semicolon. Epsilon rules are very handy but often require extra care to avoid problems, 

for correct parsing as well as correct syntax tree construction; this is discussed in the section titled 

Avoiding common syntax tree bugs later in this chapter. The production rule for optional formal 

parameter list looks like this.

FormalParmListOpt: FormalParmList | ;
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A formal parameter list is a comma-separated list of formal parameters. This is a non-empty list, 

and the recursion is terminated by a lone formal parameter. Each formal parameter has a type 

followed by a variable name, possibly including square brackets for array types, as illustrated in 

the following code snippet:

FormalParmList: FormalParm | FormalParmList ',' FormalParm {

               $$=j0.node("FormalParmList",1090,$1,$3); };

FormalParm: Type VarDeclarator {

               $$=j0.node("FormalParm",1100,$1,$2); };

Constructors are declared similarly to methods, although they have no return type and do not 

use the public static prefix, as illustrated in the following code snippet:

ConstructorDecl: MethodDeclarator Block {

               $$=j0.node("ConstructorDecl",1110,$1,$2); };

A Block is a sequence of zero or more statements enclosed in curly braces. Although many of the 

tree nodes introduce the branching of two or more children, a few tree nodes have only one child 

because surrounding punctuation is unnecessary. Such nodes might themselves be unnecessary, 

but they may also make it easier to understand and process the tree. You can see an example in 

the following code snippet:

Block: '{' BlockStmtsOpt '}' {$$=j0.node("Block",1200,$2);};

BlockStmtsOpt: BlockStmts | ;

BlockStmts:  BlockStmt | BlockStmts BlockStmt {

                    $$=j0.node("BlockStmts",1130,$1,$2); };

BlockStmt:   LocalVarDeclStmt | Stmt ;

Block statements can be either local variable declarations or statements. The syntax of 

LocalVarDeclStmt is indistinguishable from a FieldDecl rule. It may, in fact, be better to elimi-

nate duplication by default. Whether you use another set of identical production rules or factor the 

common elements of the grammar, this may depend on whether it will be easier for you to write 

code that does the correct thing with various trees if they have recognizably different tree node 

labels and production rule numbers, or whether the differences will be recognized and handled 

properly due to the surrounding tree context. An example is given in the following code snippet:

LocalVarDeclStmt: LocalVarDecl ';' ;

LocalVarDecl: Type VarDecls {

                $$=j0.node("LocalVarDecl",1140,$1,$2); };
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In the preceding case, a LocalVarDecl node is created, making it easy to distinguish local variables 

from class member variables in the syntax tree.

The many kinds of statements each result in their own unique tree nodes. Since they are one-

child production rules, introducing another tree node here is unnecessary. The following code 

snippet illustrates this:

Stmt: Block | ';' | ExprStmt | BreakStmt | ReturnStmt |

      | IfThenStmt | IfThenElseStmt | IfThenElseIfStmt

      | WhileStmt | ForStmt ;

ExprStmt: StmtExpr ';' ;

StmtExpr: Assignment | MethodCall ;

Several non-terminals in Jzero exist to support common variations of if statements. Blocks are 

required for bodies of conditionals and loops in Jzero. This avoids a common ambiguity when 

conditionals are nested. The following code shows the tree nodes constructed for various forms 

of if statements in j0:

IfThenStmt: IF '(' Expr ')' Block {

     $$=j0.node("IfThenStmt",1150,$3,$5); };

IfThenElseStmt: IF '(' Expr ')' Block ELSE Block {

     $$=j0.node("IfThenElseStmt",1160,$3,$5,$7); };

IfThenElseIfStmt: IF '(' Expr ')' Block ElseIfSequence {

     $$=j0.node("IfThenElseIfStmt",1170,$3,$5,$6); }

|  IF '(' Expr ')' Block ElseIfSequence ELSE Block {

     $$=j0.node("IfThenElseIfStmt",1171,$3,$5,$6,$8); };

ElseIfSequence: ElseIfStmt | ElseIfSequence ElseIfStmt {

     $$=j0.node("ElseIfSequence",1180,$1,$2); };

ElseIfStmt: ELSE IfThenStmt {

     $$=j0.node("ElseIfStmt",1190,$2); };

Tree nodes are generally created for these control structures, and they often introduce branching 

into the tree. Although while loops require only a child for the condition and a child for the loop 

body, the node for a for loop has four children. Did the language designers do that on purpose? 

You can see an example in the following code snippet:

WhileStmt: WHILE '(' Expr ')' Stmt {

     $$=j0.node("WhileStmt",1210,$3,$5); };

ForStmt: FOR '(' ForInit ';' ExprOpt ';' ForUpdate ')'  Block {

     $$=j0.node("ForStmt",1220,$3,$5,$7,$9); };
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ForInit: StmtExprList | LocalVarDecl | ;

ExprOpt: Expr |  ;

ForUpdate: StmtExprList | ;

StmtExprList: StmtExpr | StmtExprList ',' StmtExpr {

     $$=j0.node("StmtExprList",1230,$1,$3); };

A break statement is adequately represented by the leaf that says BREAK, as illustrated here:

BreakStmt: BREAK ';' ;

ReturnStmt: RETURN ExprOpt ';' {

     $$=j0.node("ReturnStmt",1250,$2); }; 

A return statement needs a tree node, since it may have an optional expression.

Primary expressions, including literals, do not introduce an additional layer of tree nodes above 

the content of their child. The only interesting action here is for parenthesized expressions, which 

discard the parentheses that were used for operator precedence and promote the second child 

without the need for an additional tree node at this level. Here is an example of this:

Primary:  Literal | FieldAccess | MethodCall |

          '(' Expr ')' { $$=$2; };

Literal: INTLIT | DOUBLELIT | BOOLLIT | STRINGLIT | NULLVAL ;

An argument list is one or more expressions, separated by commas. To allow zero expressions, a 

separate non-terminal is used, as illustrated in the following code snippet:

ArgList: Expr | ArgList ',' Expr {

                  $$=j0.node("ArgList",1270,$1,$3); };

ArgListOpt:  ArgList | ;

Field accesses may be chained together since their left child, a Primary, can be another field ac-

cess. When one non-terminal has a production rule that derives another non-terminal that has a 

production rule that derives the first non-terminal, the situation is called mutual recursion and 

it is normal and healthy. You can see an example of this in the following code snippet:

FieldAccess: Primary '.' IDENTIFIER {

               $$=j0.node("FieldAccess",1280,$1,$3); };
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A method call has a defining syntax consisting of a method followed by a parenthesized list of 

zero or more arguments. Usually, this is a simple binary node in which the left child is pretty 

simple (a method name) and the right child may contain a large subtree of arguments…or it may 

be empty. Here is an example of this:

MethodCall: Name '(' ArgListOpt ')' {

              $$=j0.node("MethodCall",1290,$1,$3); }

  | Primary '.' IDENTIFIER '(' ArgListOpt ')' {

    $$=j0.node("MethodCall",1291,$1,$3,$5); } ;

As seen in the previous chapter, the expression grammar in Jzero has many recursive levels of 

non-terminals that are not all shown here. You should consult the book’s website to see the full 

grammar with syntax tree construction. In the following code snippet, each operator introduces 

a tree node. After the tree is constructed, a simple walk of the tree will allow correct calculation 

(or correct code generation) of the expression:

PostFixExpr: Primary | Name ;
UnaryExpr: '-' UnaryExpr {$$=j0.node("UnaryExpr",1300,$1,$2);}
    | '!' UnaryExpr { $$=j0.node("UnaryExpr",1301,$1,$2); }
    | PostFixExpr ;
MulExpr: UnaryExpr
    | MulExpr '*' UnaryExpr {
      $$=j0.node("MulExpr",1310,$1,$3); }
    | MulExpr '/' UnaryExpr {
      $$=j0.node("MulExpr",1311,$1,$3); }
    | MulExpr '%' UnaryExpr {
      $$=j0.node("MulExpr",1312,$1,$3); };
AddExpr: MulExpr
    | AddExpr '+' MulExpr {$$=j0.node("AddExpr",1320,$1,$3); }
    | AddExpr '-' MulExpr {$$=j0.node("AddExpr",1321,$1,$3); };

In classic C language grammar, comparison operators, also called relational operators, are just 

another level of precedence for integer expressions. Java and Jzero are a bit more interesting in 

that the Boolean type is separate from integers and type-checked as such, but this distinction is 

covered in the chapters that follow, on semantic analysis and type checking. For the code shown 

in the following snippet, there are four relational operators. LESSTHANOREQUAL is the integer code 

that the lexical analyzer reports for <=, while GREATERTHANOREQUAL is returned for >=. For the < 

and > operators, the lexical analyzer returns their ASCII codes:

RelOp: LESSTHANOREQUAL | GREATERTHANOREQUAL | '<' | '>' ;
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The relational operators are at a slightly higher level of precedence than the comparisons of 

whether values are equal or not equal to each other:

RelExpr: AddExpr | RelExpr RelOp AddExpr {

  $$=j0.node("RelExpr",1330,$1,$2,$3); };

EqExpr: RelExpr

      | EqExpr ISEQUALTO RelExpr {

        $$=j0.node("EqExpr",1340,$1,$3); }

      | EqExpr NOTEQUALTO RelExpr {

        $$=j0.node("EqExpr",1341,$1,$3); };

Below the relational and comparison operators, the && and || Boolean operators operate at dif-

ferent levels of precedence, as illustrated in the following code snippet:

CondAndExpr: EqExpr | CondAndExpr LOGICALAND EqExpr {

  $$=j0.node("CondAndExpr", 1350, $1, $3); };

CondOrExpr: CondAndExpr | CondOrExpr LOGICALOR CondAndExpr {

  $$=j0.node("CondOrExpr", 1360, $1, $3); };

The lowest level of precedence in many languages, as with Jzero, is the assignment operators. 

Jzero has += and -= but not ++ and --, which are deemed to be a can of worms for novice pro-

grammers and do not add a lot of value for teaching compiler construction. You can see these 

operators in use here:

Expr: CondOrExpr | Assignment ;

Assignment: LeftHandSide AssignOp Expr {

   $$=j0.node("Assignment",1370, $1, $2, $3); };

LeftHandSide: Name | FieldAccess ;

AssignOp: '=' | INCREMENT | DECREMENT ;

This section presented the highlights of Jzero syntax tree construction. Many production rules 

require the construction of a new internal node that serves as the parent of several children on the 

right-hand side of a production rule. However, the grammar has many cases where a non-terminal 

is constructed from only one symbol on the right-hand side, in which case the allocation of an 

extra internal node can usually be avoided. Now, let’s look at how to check your tree afterward 

to make sure that it was assembled correctly.
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Debugging and testing your syntax tree
The trees that you build must be rock solid. What this spectacular mixed metaphor means is if 

your syntax tree structure is not built correctly, you can’t expect to be able to build the rest of 

your programming language. The most direct way of testing that the tree has been constructed 

correctly is to walk back through it and look at the tree that you have built. Actually, you need to 

do that for all possible trees!

This section contains two examples of traversing and printing the structure of syntax trees. You 

will print your tree first in a human-readable (more or less) ASCII text format, then you will learn 

how to print it out in a format that is easily rendered graphically using the popular open source 

Graphviz package, commonly accessed through PlantUML or the classic command-line tool called 

dot. First, consider some of the most common causes of problems in syntax trees.

Avoiding common syntax tree bugs
The most common problems with syntax trees result in program crashes when you print the 

tree out. Each tree node may hold references (pointers) to other objects, and when these refer-

ences are not initialized correctly: boom! Debugging problems with references is difficult, even 

in higher-level languages.

The first major case is this: are your leaves being constructed and picked up by the parser? Suppose 

you have a lex rule like the one shown here:

";"                    { return 59; }

The ASCII code is correct. The parse will succeed but your syntax tree will be broken. You must 

create a leaf and assign it to yylval whenever you return an integer code in one of your Flex ac-

tions. If you do not, yacc will have garbage sitting around in yylval when yyparse() puts it on 

the value stack for later insertion into your tree. You should check that every semantic action that 

returns an integer code in your lex file also allocates a new leaf and assigns it to yylval. You can 

check each leaf to ensure it is valid on the receiving end by printing its contents when you first 

access it as a $1 or $2 rule, or whatever, in the semantic actions for the production rules of yacc.

The second major case is: are you constructing internal nodes correctly for all the production rules 

that have two or more children that are significant (and not just punctuation marks, for example)? 

If you are paranoid, you can print out each subtree to make sure it is valid before creating a new 

parent that stores pointers to the child subtrees. Then, you can print out the new parent that 

you’ve created, including its children, to make sure it was assembled correctly.
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One weird special case that comes up in syntax tree construction has to do with epsilon rules: 

production rules where a non-terminal is constructed from an empty right-hand side. An example 

would be the following rule from the j0gram.y file:

FormalParmListOpt: FormalParmList | ;

For the second production rule in this example, there are no children. The default rule of yacc, 

$$=$1, does not look good since there is no $1 rule. You may construct a new leaf here, as in the 

following solution:

FormalParmListOpt: FormalParmList | { $$=

                     j0.node("FormalParamListOpt",1095); }

This leaf is different from normal since it has no associated token. Code that traverses the tree 

afterward had better not assume that all leaves have tokens. In practice, some people might just 

use a null pointer to represent an epsilon rule instead. If you use a null pointer, you may have 

to add checks for null pointers everywhere in your later tree traversal code, including the tree 

printers in the following subsections. If you allocate a leaf for every epsilon rule, your tree will 

be bigger without really adding any new information. Memory is cheap, so if it simplifies your 

code, it is probably OK to do this.

To sum up, and as a final warning: you may not discover fatal flaws in your tree construction code 

unless you write test cases that use every single production rule in your grammar! Such grammar 

coverage may be required for any serious language implementation project. Now, let’s look at the 

actual methods to verify tree correctness by printing them.

Printing your tree in a text format
One way to test your syntax tree is to print out the tree structure as ASCII text. This is done via a 

tree traversal in which each node results in one or more lines of text output. The following print() 

method in the j0 class just asks the tree to print itself:

   method print(root)

      root.print()

   end

The equivalent code in Java must unpack the parserVal object and cast the object to a tree in 

order to ask it to print itself, as illustrated in the following code snippet:

   public static void print(parserVal root) {

       ((tree)root.obj).print();

   }
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Trees generally print themselves recursively. A leaf just prints itself out, while an internal node 

prints itself and then asks its children to print themselves. For a text printout, indentation is used 

to indicate the nesting level or distance of a node from the root. The indentation level is passed 

as a parameter and incremented for each level deeper within the tree. The Unicon version of a 

tree class’s print() method is shown in the following code snippet:

method print(level:0)

  writes(repl(" ",level))

  if \tok then

    write(id, "  ", tok.text, " (",tok.cat,         "): ",tok.lineno)

  else write(id, "  ", sym, " (", rule, "): ", nkids)

  every (!kids).print(level+1);

end

The preceding method indents some number of spaces given in a parameter and then writes a 

line of text describing the tree node. It then calls itself recursively, with one higher nesting level, 

on each of the node’s children, if there are any. The equivalent Java code for the tree class text 

printout looks like this:

  public void print(int level) {

    int i;

    for(i=0;i<level;i++) System.out.print(" ");

    if (tok != null)

      System.out.println(id + "   " + tok.text +

                         " (" + tok.cat + "): "+tok.lineno);

    else

      System.out.println(id + "   " + sym +

            " (" + rule + "): "+nkids);

    for(i=0; i<nkids; i++)

      kids[i].print(level+1);

  }

  public void print() {

    print(0);

  }

The build and run commands were spelled out manually in a section in the previous chapter, but 

from this chapter on, we are relying on the make tool. To compile, use a terminal or Command 

Prompt window and type make, or on Windows:
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make -f makefile.win

To run the j0 command, use either the command on the left (for Unicon builds) or the command 

on the right, for Java builds:

j0 filename.java                  java ch5.j0 filename.java

where filename.java is replaced with whatever j0 program you are providing as input. Note 

that on some Java versions and CLASSPATH settings, the correct command to run the Java version 

might be java j0 filename.java.

When you run the j0 command on the hello.java file with this tree print function in place, it 

produces the following output:

63   ClassDecl (1000): 2

6   hello (266): 1

62   ClassBody (1010): 1

  59   MethodDecl (1380): 2

   32   MethodHeader (1070): 2

    14   void (264): 2

    31   MethodDeclarator (1080): 2

     16   main (266): 2

     30   FormalParm (1100): 2

      20   String (266): 2

      27   VarDeclarator (1060): 1

       22   argv (266): 2

   58   Block (1200): 1

    53   MethodCall (1290): 2

     46   QualifiedName (1040): 2

      41   QualifiedName (1040): 2

       36   System (266): 3

       40   out (266): 3

      45   println (266): 3

     50   "hello, jzero!" (273): 3

no errors

Although the tree structure can be deciphered from studying this output, it is not exactly easy to 

understand. The next section shows a graphic way to depict the tree.
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Printing your tree using dot
A more fun way to test your syntax tree is to print out the tree in a graphical form. As mentioned in 

the Technical requirements section, a tool called dot will draw syntax trees for us. Writing our tree 

in the input format of dot is done via another tree traversal in which each node results in one or 

more lines of text output. To draw a graphic version of the tree, change the j0.print() method 

to call the tree class’s print_graph() method. In Unicon, this is trivial. The code is illustrated 

in the following snippet:

   method print(root)

      root.print_graph(yyfilename || ".dot")

   end

The equivalent code in Java must unpack the parserVal object and cast the object to a tree in 

order to ask it to print itself, as illustrated in the following snippet:

   public static void print(parserVal root) {

       ((tree)root.obj).print_graph(yyfilename + ".dot");

   }

As was true for a text-only printout, trees print themselves recursively. The Unicon version of a 

tree class’s print_graph() method is shown in the following code snippet:

  method print_graph(fw)

    if type(filename) == "string" then {

      fw := open(filename,  "w") |

        stop("can't open ", image(filename), " for writing")

      write(fw, "digraph {")

      print_graph(fw)

      write(fw, "}")

      close(fw)

    }

    else if \tok then print_leaf(fw)

    else { 

      print_branch(fw)

      every i := 1 to nkids do

        if \kids[i] then {

          write(fw, "N",id," -> N",kids[i].id,";")

          kids[i].print_graph(fw)

        } else {
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          write(fw, "N",id," -> N",id,"_",j,";")

          write(fw, "N", id, "_", j,

                    " [label=\"Empty rule\"];")

          j +:= 1

        }

    }

  end

The Java implementation of print_graph() consists of two methods. The first is a public meth-

od that takes a filename, opens that file for writing, and writes the whole graph to that file, as 

illustrated in the following code snippet:

  void print_graph(String filename){

    try {

      PrintWriter pw = new PrintWriter(

        new BufferedWriter(new FileWriter(filename)));

      pw.printf("digraph {\n");

      j = 0;

      print_graph(pw);

      pw.printf("}\n");

      pw.close();

      }

    catch (java.io.IOException ioException) {

      System.err.println("printgraph exception");

      System.exit(1);

      }

  }

In Java, function overloading allows public and private parts of print_graph() to have the same 

name. The two methods are distinguished by their different parameters. The public print_graph() 

above takes a String filename, opens the file, and passes the file as a parameter into the following 

method. This version of print_graph() prints a line or two about the current node, and calls 

itself recursively on each child:

  void print_graph(PrintWriter pw) {

  int i;

    if (tok != null) {

      print_leaf(pw);

      return;
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    }

    print_branch(pw);

    for(i=0; i<nkids; i++) {

        if (kids[i] != null) {

          pw.printf("N%d -> N%d;\n", id, kids[i].id);

          kids[i].print_graph(pw);

        } else {

          pw.printf("N%d -> N%d%d;\n", id, kids[i].id, j);

          pw.printf("N%d%d [label=\"%s\"];\n", id, j, "Empty rule");

        j++;

        }

    }

  }

The print_graph() method calls a couple of helper functions: print_leaf() for leaves and print_

branch() for internal nodes. The print_leaf() method prints a dotted outline box containing the 

characteristics of a terminal symbol. The Unicon implementation of print_leaf() is shown here:

  method print_leaf(pw)

    local s := parser.yyname[tok.cat]

    print_branch(pw)

    write(pw,"N",id,

          " [shape=box style=dotted label=\" ",s," \\n ")

    write(pw,"text = ",escape(tok.text),

             " \\l lineno = ", tok.lineno," \\l\"];\n")

  end

The integer code for the token’s terminal symbol is used as a subscript in an array of strings in 

the parser named yyname. This is generated by iyacc. The Java implementation of print_leaf() 

is similar to the Unicon version, as illustrated in the following code snippet:

  void print_leaf(PrintWriter pw) {

    String s = parser.yyname[tok.cat];

    print_branch(pw);

    pw.printf("N%d [shape=box style=dotted label=\" %s \\n", id, s);

    pw.printf("text = %s \\l lineno = %d \\l\"];\n", escape(tok.text),

             tok.lineno);

  }
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The print_branch() method prints a solid box for internal nodes, including the name of the 

non-terminal represented by that node. The Unicon implementation of print_branch() is shown 

here:

  method print_branch(pw)

    write(pw, "N",id," [shape=box label=\"",

          pretty_print_name(),"\"];\n");

  end

The Java implementation of print_branch() is similar to its Unicon counterpart, as illustrated 

in the following code snippet:

  void print_branch(PrintWriter pw) {

    pw.printf("N%d [shape=box label=\"%s\"];\n",

              id, pretty_print_name());

  }

The escape() method adds escape characters when needed before double quotes so that dot will 

print the double quote marks. The Unicon implementation of escape() consists of the following 

code:

  method escape(s)

    if s[1] == "\"" then

      return "\\" || s[1:-1] || "\\\""

    else return s

  end

The Java implementation of escape() is shown here:

  public String escape(String s) {

    if (s.charAt(0) == '\"')

      return "\\"+s.substring(0, s.length()-1)+"\\\"";

    else return s;

  }
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The pretty_print_name() method prints out the best human-readable name for a given node. 

For an internal node, that is its string label, along with a serial number to distinguish multiple 

occurrences of the same label. For a terminal symbol, it includes the lexeme that was matched. 

The code is illustrated in the following snippet:

  method pretty_print_name() {

    if /tok then return sym || "#" || (rule%10)

    else return escape(tok.text) || ":" || tok.cat

  end

The Java implementation of pretty_print_name() looks similar to the preceding code, as we 

can see here:

  public String pretty_print_name() {

    if (tok == null) return sym +"#"+(rule%10);

    else return escape(tok.text)+":"+tok.cat;

  }

After noting the code to generate the .dot file, you can invoke the make command as described in 

the previous section and then run this program again on the sample hello.java input file with 

the command in the left column for the Unicon implementation, and the command in the right 

column for the Java implementation:

j0 hello.java                  java ch5.j0 hello.java

The j0 program writes out a hello.java.dot file that is valid input for the dot program. Run the 

dot program with the following command to generate a PNG image:

dot -Tpng -Gdpi=300 hello.java.dot >hello.png
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The following diagram shows a syntax tree for hello.java, as written to hello.png:

Figure 5.11: A diagram of the syntax tree for hello.java

If you do not write your tree construction code correctly, the program will crash when you run 

it, or the tree will be obviously bogus when you inspect the image. To test your lexical, parsing, 

and syntax tree construction code, you should run it on a wide variety of input programs and 

examine the resulting trees carefully.
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In this section, you saw that only a few lines of code were needed to generate textual and graphical 

depictions of your syntax trees using tree traversals. The graphical rendering was provided by an 

external tool called dot. Tree traversals are a simple but powerful programming technique that 

will dominate the next several chapters of this book.

Summary
In this chapter, you learned about the crucial technical skills and tools needed to build a syntax 

tree while the input program is being parsed. A syntax tree is the main data structure used to 

represent source code internally to a compiler or interpreter.

You learned how to develop code that identifies which production rule was used to build each 

internal node so that we can tell what we are looking at later on. You learned how to add tree 

node constructors for each rule in the scanner. You learned how to connect tree leaves from the 

scanner to the tree built in the parser. You also learned how to check your trees and debug com-

mon tree construction problems.

You are done synthesizing the input source code to construct a data structure that you can use. 

Now, it is time to start analyzing the meaning of the program source code so that you can deter-

mine what computations it specifies. This is done by walking through the parse tree using tree 

traversals to perform semantic analysis.

The next chapter will start us off on that journey by walking the tree to build symbol tables that 

will enable you to track all the variables in the program and figure out where they were declared.

Questions
1.	 Where do the leaves of the syntax tree come from?

2.	 How are the internal nodes of a syntax tree created?

3.	 Where are leaves and internal nodes stored while a tree is being constructed?

4.	 Why are values wrapped and unwrapped when they are pushed and popped on the value 

stack?
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Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw




Section II
Syntax Tree Traversals

The heart of a compiler is the tree traversals. Upon completion of this section, you will have a 

compiler that performs semantic analysis and code generation.

This section comprises the following chapters:

•	 Chapter 6, Symbol Tables

•	 Chapter 7, Checking Base Types

•	 Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses

•	 Chapter 9, Intermediate Code Generation

•	 Chapter 10, Syntax Coloring in an IDE
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Symbol Tables

To understand the uses of names in program source code, your compiler must figure out what each 

use of a name refers to. If the program is reading from or writing to a variable, which variable is 

it? A local variable? A global variable? Or maybe a class member? You can look up symbols at each 

location they are used by using table data structures that are auxiliary to the syntax tree, called 

symbol tables. Performing operations to construct and then use symbol tables is the first step 

of semantic analysis. Semantic analysis is where the compiler studies the meaning of the input 

source code. Chapter 7 and Chapter 8 will build on this chapter and round out our discussion of 

semantic analysis.

Context-free grammars, explored in the preceding two chapters of this book, have terminal sym-

bols and non-terminal symbols, and those are represented in tree nodes and token structures. 

When talking about a program’s source code and its semantics, the word symbol is used for 

something very different from grammar symbols. In this and later chapters, a symbol refers to a 

name in the program source code. For example, a symbol can be the name of a variable, function, 

class, or package. In this book, the words symbol, name, and identifier are used interchangeably. 

The word variable refers to a subcategory of symbols whose values can be changed while the 

program executes.

This chapter will show you how to construct symbol tables, insert symbols into them, and use 

symbol tables to identify two kinds of semantic errors: undeclared and (illegally) redeclared vari-

ables. In later chapters, you will use symbol tables to check the types and store memory addresses 

assigned to symbols that will be used to generate code for the input program.
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The examples in this chapter demonstrate how to use symbol tables by building them for the 

Jzero subset of Java that was described in Chapters 1 and 2. Symbol tables are important to be 

able to check types and generate code for your programming language. In this and the next few 

chapters, the main skill you will be learning is the art of recursion by writing many selective and 

specialized tree traversal functions.

This chapter covers the following main topics: 

•	 Establishing the groundwork for symbol tables

•	 Creating and populating symbol tables for each scope

•	 Checking for undeclared variables

•	 Finding redeclared variables

•	 Handling package and class scopes in Unicon

It is time to learn about symbol tables and how to build them. First, however, you need to learn 

about some conceptual foundations required to do this work.

Technical requirements
The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-

Your-Own-Programming-Language-Second-Edition/tree/master/ch6

The Code in Action video for the chapter can be found here: https://bit.ly/3ccYTZv

Establishing the groundwork for symbol tables
In software engineering, you must go through requirements analysis and design before you start 

coding. Similarly, to build symbol tables, you first need to understand what they are for and how 

to go about writing the syntax tree traversals that do the work. For starters, you should review 

what kinds of information your compiler must store and recall different kinds of variables. The 

information will be stored in symbol tables from declarations in the program code, so let’s look 

at those.

Declarations and scopes
The meaning of a computer program boils down to the meaning of the information being com-

puted, and the actual computations to be performed. Symbol tables are all about the first part: 

defining what information the program is manipulating. We will begin by identifying what names 

are being used, what they are referring to, and how they are being used.

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch6
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch6
https://bit.ly/3ccYTZv
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Consider a simple assignment statement such as the following:

x = y + 5;

In most languages, names such as x or y must be declared before they are used. A declaration 

specifies a name that will be used in the program and usually includes type information. An ex-

ample declaration for x might look like this:

int x;

Each variable declaration has a scope that describes the region in the program where that variable 

is visible. In Jzero the user-defined scopes are the class scope and the local (method) scope. Jzero 

also must support scopes associated with a few predefined system packages, which is a small 

subset of the package scope functionality required of a full Java compiler. These predefined pack-

ages are discussed in the section titled Creating symbol tables. Other languages have additional, 

different kinds of scopes to deal with.

The example program shown below, which can be found in the xy5.java file at https://github.
com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/

master/ch6, expands the preceding example to illustrate scopes. The light gray class scope sur-

rounds the darker gray local scope:

public class xy5 {

   static double y = 5.0;

   public static void main(String argv[]) {

       int x;

       x = (int)y + 5;

      System.out.println("y + 5 = " + x);

   }

}

For any symbol, such as x or y, the same symbol may be declared in both scopes. A name that is 

declared within an inner scope overrides and hides the same name declared in an outer scope. Such 

nested scoping requires that a programming language creates multiple symbol tables. A common 

rookie error is to try and build your whole language with only a single symbol table because a 

symbol table sounds big and scary, and compiler books often talk about the symbol table instead 

of symbol tables. To avoid this mistake, plan on supporting multiple symbol tables from the start, 

and search for symbols by starting from the innermost applicable symbol table and working 

outward to enclosing tables. Now, let’s think about the two basic ways that variables are used in 

programs to interact with a computer’s memory: assignment and dereferencing.

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch6
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch6
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch6
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Assigning and dereferencing variables
Variables are names for memory locations, and memory can be read or written. Writing a value 

to a memory location is called assignment. Reading a value from a memory location is called 

dereferencing. Most programmers have a rock-solid understanding of assignment. Assignment 

is one of the first things they learn about in programming; for example, the x=0 statement is an 

assignment to x. A lot of programmers are a bit fuzzy about dereferencing. Programmers write 

code that does dereferencing all the time, but they may not have heard of the term before. For 

example, the statement y=x+1 dereferences x to obtain its value before using that value when 

it performs the addition. Similarly, a call such as System.out.println(x) deferences x in the 

process of passing it into the println() method.

Both assignment and dereferencing are acts that use a memory address. They come into play 

in semantic analysis and code generation. But under what circumstances do assignment and 

dereferencing affect whether each particular use of a variable is legal? Assignments are not legal 

for things that were declared to be const, including names of methods. Are there any symbols 

that cannot be dereferenced? In most languages, undeclared variables cannot be dereferenced; 

they cannot be assigned, either. Anything else? Before we can generate code for an assignment 

or a dereference, we must be able to understand what memory location is used, and whether the 

requested operation is legal and defined in the language we are implementing.

So far, we have reviewed the concepts of assignment and dereferencing. Checking whether each 

assignment or dereference is legal requires storing and retrieving information about the names 

used in a program, and that is what symbol tables are for. There is one more bit of conceptual 

groundwork you need, and then you will be ready to build your symbol tables. You will be using 

a lot of syntax tree traversal functions in this and the next few chapters. Let’s consider some of 

the varieties of tree traversal at your disposal.

Choosing the right tree traversal for the job
In the previous chapter, you printed out syntax trees using tree traversals where work at the 

current node was done, followed by recursively calling the traversal function on each child. This 

is called a pre-order traversal. The pseudocode template for this is as follows:

method preorder()

   do_work_at_this_node()

   every child := !kids do child.preorder()

end
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Some examples in this chapter will visit the children and have them do their work first, and then 

use what they calculate to do the work at the current node. This is called post-order traversal. 

The pseudocode template for post-order traversal looks like this:

method postorder()
   every child := !kids do child.postorder()
   do_work_at_this_node()
end

Other traversals exist where the method does some work for the current node in between each 

child call – these are known as in-order traversals. Lastly, it is common to write a tree traversal 

consisting of several methods that work together and call each other as needed, possibly as many 

as one method for each kind of tree node. Although we will try to keep our tree traversals as simple 

as possible, the examples in this book will use the best tool for the job.

In a compiler, the best tool for the job is very often a post-order traversal. The reason for this is 

simple: the work it leaves is simple, and the work by parents often uses the information found 

in the children. Occasionally, however, traversals are more interesting. We will try to point out 

when we need to do something that is atypical.

In this section, you learned about several important concepts that will be used in the code examples 

in this and the following chapters. These included nested scopes, assignment and dereferencing, 

and different kinds of tree traversals. Now, it’s time to use these concepts to create symbol tables. 

After that, you can consider how to populate your symbol tables by inserting symbols into them.

Creating and populating symbol tables for each 
scope
A symbol table contains a record of all the names that are declared for a scope. There is one sym-

bol table for each scope. A symbol table provides a means of looking up symbols by their name 

to obtain information about them. If a variable was declared, the symbol table lookup returns a 

structure with all the information known about that variable: where it was declared, what its data 

type is, whether it is public or private, and so on. All this information can be found in the syntax 

tree. If we also place it in a table, the goal is to access the information directly, from anywhere 

else that information is needed.

The traditional implementation of a symbol table is a hash table, which provides a very fast in-

formation lookup. Your compiler could use any data structure that allows you to store or retrieve 

information associated with a symbol, even a linked list. But hash tables are the best for this, and 

they are standard in Unicon and Java, so we will use hash tables in this chapter.
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Unicon provides hash tables with a built-in data type called a table. See Appendix, Unicon Essentials, 

for a description. Insertion and lookup in the table can be performed by subscripting, using a 

syntax similar to accessing elements in an array. For example, symtable[sym] looks up informa-

tion associated with a symbol named sym, while symtable[sym] := x associates information 

contained in x with sym.

Java provides hash tables in standard library classes. We will use the Java library class known 

as HashMap for this. Information is retrieved from a HashMap with a method call such as  

symtable.get(sym) and stored in a HashMap via symtable.put(sym, x).

Both the Unicon table type and the Java HashMap type map elements from a domain to an associ-

ated range. In the case of a symbol table, the domain will contain the string names of the symbols 

in the program source code. For each symbol in the domain, the range will contain a corresponding 

instance of the symtab_entry class, a symbol table entry. In the Jzero implementations we will 

be presenting, the hash tables themselves will be wrapped in a class so that symbol tables can 

contain additional information about the entire scope, in addition to the symbols and symbol 

table entries.

Two major issues are: when are symbol tables created for each scope and how exactly is infor-

mation inserted into them? The answer to both questions is: during a syntax tree traversal. But 

before we get to that, you need to learn about semantic attributes.

Adding semantic attributes to syntax trees
The tree type in the previous chapter was clean and simple. It contained a label for printing, a 

production rule, and some children. In real life, a programming language needs to compute and 

store a lot of additional information in various nodes of the tree. This information is stored in 

extra fields in tree nodes, commonly called semantic attributes. The values of these fields can 

sometimes be computed during parsing when we construct the tree nodes. More often, it is easier 

to compute the values of semantic attributes once the entire tree has been constructed. In that 

case, the attributes are constructed using a tree traversal.

There are two kinds of semantic attributes:

•	 Synthesized attributes are attributes whose values for each node can be constructed 

from the semantic attributes of their children. 
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•	 Inherited attributes are computed using information that does not come from the node’s 

children.

The only possible path for information from elsewhere in the tree is through the parent, which is 

why the attribute is said to be inherited. In practice, inherited attributes may come from siblings 

or from far away in the syntax tree. This is generally accomplished incrementally, by pushing or 

pulling information up or down the tree one node at a time.

This chapter will add two attributes to the tree.icn and tree.java files from the previous chapter. 

The first attribute, the isConst Boolean, is a synthesized attribute that reports whether a given 

tree node contains only constant values known at compile time. The following diagram depicts 

a syntax tree for the expression x+1. The isConst (instance type) of a parent node (an addition) 

is computed from its children’s isConst values:

Figure 6.1: A synthesized attribute computes a node’s value from its children

The preceding diagram shows a good example of a synthesized attribute being calculated from 

its children. In this example, the leaves for x and 1 already have isConst values, and those values 

must come from somewhere. It is easy to guess where the isConst value for the 1 token comes 

from: a language’s literal constant values should be marked as isConst=true.

For a name like x, it is not so obvious where the isConst value comes from. As presented in the 

previous chapters, the Jzero language does not have Java’s final keyword, which would desig-

nate a given symbol as being immutable. Your options are to either set isConst=false for every 

IDENTIFIER or extend Jzero to allow the final keyword, at least for variables. If you choose the 

latter, whether x is a constant or not should be found by looking up the symbol table informa-

tion of x. The symbol table entry for x will only know whether x is a constant if we place that 

information there.
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The second attribute, stab, is an inherited attribute containing a reference to the symbol table 

for the nearest enclosing scope that contains a given tree node. For most nodes, the stab value is 

simply copied from its parent; an exception is introduced when a node defines a new scope. The 

following diagram shows the stab attribute being copied from parents into children:

Figure 6.2: An inherited attribute computes a node’s value from parent information

How will we get attributes pushed up to parents from children? Tree traversals. How will we get 

attributes pushed down to children from parents? Tree traversals. But first, we must make room 

in the tree nodes to store these attributes. This chapter’s tree class header in Unicon has been 

revised to include these attributes, as follows:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab)

This code doesn’t do anything; the point is to add two fields for semantic attributes at the end. 

In Java, these class tree additions result in the following code:

class tree {

  int id, rule, nkids;

  String sym;

  token tok;

  tree kids[];

  Boolean isConst;

  symtab stab;

}

The tree class will have many methods added to it in this and coming chapters since most aspects 

of semantic analysis and code generation for your language will be presented as tree traversals. 

Now, let’s look at the class types you need to render symbol tables and the symbol table entry 

class that contains the information that’s held in symbol tables.
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Defining classes for symbol tables and symbol table entries
Instances of the symtab class manage the symbols for one scope. For each symbol table, you will 

need to know what scope it is associated with, as well as what the enclosing scope is. An import-

ant method in this class, insert(), issues a semantic error if the symbol is already in the table. 

Otherwise, insert() allocates a symbol table entry and inserts it. The insert() method will be 

shown in the Finding redeclared variables section, later in this chapter. The Unicon code for the 

symtab class, which can be found in the symtab.icn file, starts as follows:

class symtab(scope, parent, t)

   method lookup(s)

      return \ (t[s])

   end

initially

   t := table()

end

The symtab class is almost just a wrapper around Unicon’s built-in table data type. Within this 

class, the scope field is a string beginning with class, local, or package for user-declared scopes 

in Jzero. The corresponding Java class consists of the following code in symtab.java:

package ch6;

import java.util.HashMap;

public class symtab {

   String scope;

   symtab parent;

   HashMap<String,symtab_entry> t;

   symtab(String sc, symtab p) {

      scope = sc; parent = p;

      t = new HashMap<String,symtab_entry>();

   }

   symtab_entry lookup(String s) {

      return t.get(s);

   }

}
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Each symbol table associates a name with an instance of the symtab_entry class. The symtab_entry 

class will hold all the information that we know about a given variable. The Unicon implemen-

tation of symtab_entry can be found in symtab_entry.icn:

class symtab_entry(sym,parent_st,st,isConst)

end

For now, the symtab_entry class contains no code; it just holds several data fields. The sym field 

is a string that holds the symbol that the entry denotes. The parent_st field is a reference to the 

enclosing symbol table. The st field is a reference to the new symbol table associated with this 

symbol’s subscope, used only for symbols that have subscopes, such as classes and methods. In 

future chapters, the symtab_entry class will gain additional fields, both for semantic analysis 

and code generation purposes. The Java implementation of symtab_entry in symtab_entry.java 

looks as follows:

package ch6;

public class symtab_entry {

   String sym;

   symtab parent_st, st;

   boolean isConst;

   symtab_entry(String s, symtab p, boolean iC) {

     sym = s; parent_st = p, isConst = iC; }

   symtab_entry(String s, symtab p, boolean iC, symtab t) {

     sym = s; parent_st = p; isConst = iC; st = t; }

}

The preceding class contains no code other than two constructors. One is for regular variables, 

while the other is for classes and methods. Classes and method symbol table entries take a child 

symbol table as a parameter since they have a subscope. Having defined the class types for sym-

bol tables and symbol table entries, it is time to look at how to create the symbol tables for the 

input program.

Creating symbol tables
You can create a symbol table for every class and every method by writing a tree traversal. Every 

node in the syntax tree needs to know what symbol table it belongs to. The brute-force approach 

presented here consists of populating the stab field of every tree node. Usually, the field is inher-

ited from the parent, but nodes that introduce new scopes go ahead and allocate a new symbol 

table during the traversal. 
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The following Unicon mkSymTables() method constructs symbol tables. It is added to the tree 

class in the tree.icn file:

method mkSymTables(curr)

  stab := curr

  case sym of {

    "ClassDecl": { curr := symtab("class",curr) }k

    "MethodDecl": { curr := symtab("method",curr) }

  }

  every (!\kids).mkSymTables(curr)

end

The mkSymTables() method takes an enclosing symbol table named curr as a parameter. The 

corresponding Java method, mkSymTables(), in tree.java looks as follows:

void mkSymTables(symtab curr) {

   stab = curr;

   switch (sym) {

   case "ClassDecl": curr = new symtab("class", curr); 

      break;

   case "MethodDecl": curr = new symtab("method", curr);

      break;

   }

   for (int i=0; i<nkids; i++) kids[i].mkSymTables(curr);

}

The root of the entire parse tree starts with a global symbol table with predefined symbols such as 

System and java. That begs the question: when and where is mkSymTables() called? The answer 

is after the root of the syntax tree has been constructed. Where the previous chapter was calling 

j0.print($$), it should now call j0.semantic($$) and all semantic analysis will be performed 

in that method of the j0 class. Therefore, the semantic action for the first production in j0gram.y 

becomes the following:

ClassDecl: PUBLIC CLASS IDENTIFIER ClassBody {

  $$=j0.node("ClassDecl",1000,$3,$4);

  j0.semantic($$);

} ;
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The semantic() method in j0.icn looks as follows:

method semantic(root)

local out_st, System_st

   global_st := symtab("global")

   out_st := symtab("class")

   System_st := symtab("class")

   out_st.insert("println", false)

   System_st.insert("out", false, out_st)

   global_st.insert("System", false, System_st)

   root.mkSymTables(global_st)

   root.populateSymTables()

   root.checkSymTables()

   global_st.print()

end

This code creates a global symbol table and then predefines a symbol for the System class. System 

has a subscope in which a name, out, is declared to have a subscope in which println is defined. 

The corresponding Java code to initialize predefined symbols in the j0.java file looks like this. 

The parserVal from the BYACC/J value stack is unwrapped in order to obtain the tree node at 

the beginning:

public static void semantic(parserVal r) {

   Tree root = (tree)(r.obj);

   symtab out_st, System_st;

   global_st = new symtab("global");

   System_st = new symtab("class");

   out_st = new symtab("class");

   out_st.insert("println", false);

   System_st.insert("out", false, out_st);

   global_st.insert("System", false, System_st);

   root.mkSymTables(global_st);

   root.populateSymTables();

   root.checkSymTables();

   global_st.print();

}

Creating symbol tables is one thing; making use of them is another. Let’s look at how symbols get 

put into the symbol tables. Then, we can start talking about how those symbol tables are used.
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Populating symbol tables
Populating (inserting symbols into) symbol tables can be done during the same tree traversal 

in which those symbol tables are created. However, the code is simpler in a separate traversal. 

Every node knows what symbol table it lives within. The challenge is to identify which nodes 

introduce symbols.

For a class, the second child of FieldDecl has a list of symbols to be inserted. The first child of 

MethodDeclarator is a symbol to be inserted. For a method, the second child of FormalParm in-

troduces a symbol. The second child of LocalVarDecl has a list of symbols to be inserted. These 

actions are shown in the following Unicon code:

method populateSymTables()

  case sym of {

    "ClassDecl": {

       stab.insert(kids[1].tok.text, , kids[1].stab)

       }

    "FieldDecl" | "LocalVarDecl" : {

       k := kids[2]

       while \k & k.label=="VarDecls" do {

         insert_vardeclarator(k.kids[2])

         k := k.kids[1]

         }

       insert_vardeclarator(k); return

       }

    "MethodDecl": {

      stab.insert(kids[1].kids[2].kids[1].tok.text, ,

                  kids[1].stab) }

    "FormalParm": { insert_vardeclarator(kids[2]); return }

   }

    every (!\kids).populateSymTables()

end

The corresponding Java code is as follows:

void populateSymTables() {

    switch(sym) {

    case "ClassDecl": {

       stab.insert(kids[0].tok.text, false, kids[0].stab);



Symbol Tables156

       break;

    }

    case "FieldDecl": case "LocalVarDecl": {

       tree k = kids[1];

       while ((k != null) && k.sym.equals("VarDecls")) {

         insert_vardeclarator(k.kids[1]);

         k = k.kids[0];

         }

       insert_vardeclarator(k); return;

       }

    case "MethodDecl": {

       stab.insert(kids[0].kids[1].kids[0].tok.text, false,

                   kids[0].stab); }

    case "FormalParm": {

      insert_vardeclarator(kids[1]); return; }

    }

   for(int i = 0; i < nkids; i++) {

      tree k = kids[i];

      k.populateSymTables();

   }

}

The insert_vardeclarator(n) method can be passed one of two possibilities: either an 

IDENTIFIER containing the symbol to be inserted or a VarDeclarator tree node that indicates 

an array is being declared. The Unicon implementation looks like this:

method insert_vardeclarator(vd)

   if \vd.tok then stab.insert(vd.tok.text)

   else insert_vardeclarator(vd.kids[1])

end

The Java implementation of the code looks as follows:

void insert_vardeclarator(tree vd) {

   if (vd.tok != null) stab.insert(vd.tok.text, false);

   else insert_vardeclarator(vd.kids[0]);

}
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Populating symbol tables is necessary for later aspects of your programming language imple-

mentation, such as type checking and code generation. They will not be free to just skip down 

the subtree until they find the IDENTIFIER. Even in this first formulation, it is already good for 

checking certain common semantic errors such as undeclared variables. Now, let’s look at how 

to compute a synthesized attribute, a skill you can use both when populating symbol tables with 

information and in later parts of semantic analysis and code generation. 

Synthesizing the isConst attribute
isConst is a classic example of a synthesized attribute. Its calculation rules depend on whether 

a node is a leaf (following the base case) or an internal node (using the recursion step):

•	 Base case: For tokens, literals are isConst=true and everything else is isConst=false.

•	 Recursion step: For internal nodes, isConst is computed from children, but only through 

the expression grammar, where expressions have values.

If you are wondering which production rules are referred to by the expression grammar, it is 

pretty much those production rules derivable from the non-terminal named Expr. The Unicon 

implementation of this method is another traversal in tree.icn, as shown here:

method calc_isConst()

   every (!\kids).calc_isConst()

   case sym of {

      "INTLIT" | "DOUBLELIT" | "STRINGLIT" |

      "BOOLFALSE" | "BOOLTRUE": isConst := "true"

      "UnaryExpr": isConst := \kids[2].isConst

      "RelExpr": isConst := \kids[1].isConst & 

        \kids[3].isConst

      "CondOrExpr" | "CondAndExpr" | "EqExpr" |

      "MULEXPR"|

      "ADDEXPR": isConst := \kids[1].isConst & 

        \kid[2].isConst

      default: isConst := &null

   }

end
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There are a couple of special cases in the preceding code. Whether binary relational operators 

such as the less than operator (<) are constant depends on the first and third children. Most other 

binary operators do not place the operator in the tree as a middle leaf; they are calculated from 

the isConst values of the first and second child. The Java implementation of the calc_isConst() 

method looks like this:

void calc_isConst() {

   for(int i=0; i <nkids; i++)

      kids[i].calc_isConst();

   switch(sym) {

   case "INTLIT": case "DOUBLELIT": case "STRINGLIT":

   case "BOOLFALSE": case "BOOLTRUE": isConst = true; 

      break;

   case "UnaryExpr": isConst = kids[1].isConst; break;

   case "RelExpr":

      isConst = kids[0].isConst && kids[2].isConst; break;

   case "CondOrExpr": case "CondAndExpr":

   case "EqExpr": case "MULEXPR": case "ADDEXPR":

      isConst = kids[0].isConst && kids[1].isConst; break;

   default: isConst = false;

   }

}

The whole method is a switch to handle the base case and set isConst, followed by a traversal of 

zero or more children. Java is arguably every bit as good as Unicon, or a bit better, at calculating 

the isConst synthesized attribute.

This concludes this section on creating and populating symbol tables. The main skill we prac-

ticed was the art of writing tree traversals, which are recursive functions. A regular tree traversal 

visits all the children and treats them identically. A programming language may traverse a tree 

selectively. It may ignore some children or do different things with different children. Now, let’s 

look at an example of how symbol tables can be used to detect undeclared variables.

Checking for undeclared variables
To find undeclared variables, check the symbol table on each variable that’s used for assignment 

or dereferencing. These reads and writes of memory occur in the executable statements and the 

expressions whose values are computed within those statements. Given a syntax tree, how do 

you find them? 
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The answer is to use tree traversals that look for IDENTIFIER tokens but only when they are in 

executable statements within blocks of code. To go about this, start from the top with a tree tra-

versal that just finds the blocks of code. In Jzero, this is a traversal that finds the bodies of methods.

Identifying the bodies of methods
The check_codeblocks() method traverses the tree from the top to find all the method bodies, 

which is where the executable code is in Jzero. For every method declaration it finds, it calls an-

other method called check_block() on that method’s body. In tree.icn, the Unicon version is:

method check_codeblocks()

   if sym == "MethodDecl" then { kids[2].check_block() }

   else every k := !\kids do

         if k.nkids>0 then k.check_codeblocks()

end

The corresponding Java implementation of check_codeblocks() goes in the tree.java file:

void check_codeblocks() {

   tree k;

   if (sym.equals("MethodDecl")) { kids[1].check_block(); }

   else {

      for(int i = 0; i<=nkids; i++){

         k := kids[i];

         if (k.nkids>0) k.check_codeblocks();

      }

   }

}

The preceding method demonstrates the pattern of searching through the syntax tree while look-

ing for one specific type of tree node. It does not call itself recursively on MethodDecl. Instead, it 

calls the more specialized check_block() method, which implements the work to be done when 

a method body has been found. This method knows it is in a method body, where the identifiers 

that it finds are uses of variables.
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Spotting uses of variables within method bodies
Within a method body, any IDENTIFIER that is found is known to be inside a block of executable 

code statements. One exception is that new variables introduced by local variable declarations 

cannot possibly be undeclared variables:

method check_block()

   case sym of {

   "IDENTIFIER": {

     if not (stab.lookup(tok.text)) then

        j0.semerror("undeclared variable "||tok.text)

     }

   "FieldAccess" | "QualifiedName": kids[1].check_block()

   "MethodCall": {

      kids[1].check_block()

      if rule = 1290 then

         kids[2].check_block()

      else kids[3].check_block()

     }

   "LocalVarDecl": { } # skip

   default:  {

      every k := !kids do {

            k.check_block()

         }

      }

   }

end

The preceding check_block() method is handling several special-case tree shapes. Refer to the 

j0gram.y grammar file to examine the uses of IDENTIFIER that are not looked up in the local 

symbol table due to their syntactic context. In the case of FieldAccess or QualifiedName, the 

second child is an IDENTIFIER that is a field name, not a variable name. It can be checked once 

type information is added over the next few chapters. Similarly, the number 1290 denotes a 

production rule for an ordinary method call where both children are checked, but rule 1291, the 

second production rule of MethodCall, is a qualified method call that skips checking its second 

child because it is an IDENTIFIER that follows a dot and must be handled differently. The corre-

sponding Java method is as follows:

void check_block() {
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   switch (sym) {

   case "IDENTIFIER": {

     if (stab.lookup(tok.text) == null)

        j0.semerror("undeclared variable " + tok.text);

     break;

     }

   case "FieldAccess": case "QualifiedName":

     kids[0].check_block();

     break;

  case "MethodCall": {

      kids[0].check_block()

      if (rule == 1290)

         kids[1].check_block();

      else kids[2].check_block();

      break;

     }

   case "LocalVarDecl": break;

   default:

      for(i=0;i<nkids;i++)

            kids[i].check_block();

   }

}

Despite the break statements, the Java implementation is equivalent to the Unicon version de-

scribed earlier. The main idea you learned in this section was how to split up an overall tree 

traversal task into a general traversal that looks for a node of interest, and then a specialized 

traversal that performs its work at nodes found by the general traversal. Now, let’s look at de-

tecting a variable redeclaration semantic error, which occurs when symbols are being inserted 

into the symbol tables.

Finding redeclared variables
When a variable has been declared, most languages report an error if the same variable is declared 

again in the same scope. The reason for this is that within a given scope, the name must have 

a single, well-defined meaning. Trying to declare a new variable would entail allocating some 

new memory and from then on, mentioning that name would be ambiguous. If the x variable 

is defined twice, it is unclear to which x any given use refers. You can identify such redeclared 

variable errors when you insert symbols into the symbol table.
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Inserting symbols into the symbol table
The insert() method in the symbol table class calls the language’s underlying hash table API. The 

method takes a symbol, a Boolean isConst flag, and an optional nested symbol table, for symbols 

that introduce a new (sub)scope. The Unicon implementation of the symbol table’s insert() 

method is shown here. If you go to https://github.com/PacktPublishing/Build-Your-Own-

Programming-Language-Second-Edition/tree/master/ch6, this can be found in symtab.icn, 

along with the other class symtab methods:

   method insert(s, isConst, sub)

      if \ (t[s]) then j0.semerror("redeclaration of "||s)

      else t[s] := symtab_entry(s, self, sub, isConst)

   end

A symbol table lookup is performed before insertion. If the symbol is already present, a redecla-

ration error is reported. The corresponding Java implementation of the symbol table’s insert() 

methods looks as follows:

   void insert(String s, Boolean iC, symtab sub) {

      if (t.containsKey(s)) {

         j0.semerror("redeclaration of " + s);

      } else {

         sub.parent = this;

         t.put(s, new symtab_entry(s, this, iC, sub));

      }

   }

   void insert(String s, Boolean iC) {

      if (t.containsKey(s)) {

         j0.semerror("redeclaration of " + s);

      } else {

         t.put(s, new symtab_entry(s, this, iC));

      }

   }

This code is crude but effective. The use of the underlying hash table Java API is long-winded but 

readable. Now, let’s look at the semerror() method.

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch6
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch6
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Reporting semantic errors
The semerror() method in the j0 class must report the error to the user, as well as making a note 

that an error has occurred so that the compiler will not attempt code generation. The code for 

reporting semantic errors is similar to the code for reporting lexical or syntax errors, although 

sometimes, it is harder to pinpoint what line in what file is to blame. For now, it is OK to treat 

these errors as fatal and stop compilation when one occurs. In later chapters, you will make this 

error non-fatal and report additional semantic errors after one is found. The Unicon code for the 

j0 class’s semerror() method is as follows:

method semerror(s)

   stop("semantic error: ", s)

end

The Java code for the j0 class’s semerror() method is shown here:

void semerror(String s) {

   System.out.println("semantic error: " + s);

   System.exit(1);

}

Identifying redeclaration errors occurs most naturally while the symbol table is being populated, 

that is, when an attempt is being made to insert a declaration. Unlike an undeclared symbol error, 

where all nested symbol tables must be checked before an error can be reported, a redeclaration 

error is reported immediately, but only if the symbol has already been declared in the current 

inner-most scope. Now, let’s look at how a real programming language deals with other symbol 

table issues that did not come up in this discussion.

Handling package and class scopes in Unicon 
Creating symbol tables for Jzero considers two scopes: class and local. Since Jzero does not do 

instances, Jzero’s class scope is static and lexical. A larger, real-world language must do more 

work to handle scopes. Java, for example, must distinguish when a symbol declared in the class 

scope is a reference to a variable shared across all instances of the class, and when the symbol 

is a normal member variable that’s been allocated separately for each instance of the class. In 

the case of Jzero, an isMember Boolean can be added to the symbol table entries to distinguish 

member variables from class variables, similar to the isConst flag.
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Unicon’s implementation is a lot different than Jzero’s. A summary of its symbol tables and class 

scopes allows for a fruitful comparison. Whatever it does similarly to Jzero might also be how 

other languages handle things. What Unicon does differently than Jzero, each language might 

do in its own unique way. How Unicon handles these topics is being presented here for its quirky 

real-world insights, not because it is somehow exemplary or ideal.

One basic difference between Unicon and the Jzero example in this chapter is that Unicon’s syntax 

tree is a heterogeneous mixture of different types of tree node objects. In addition to a generic 

tree node type, there are separate tree node types to represent classes, methods, and a few other 

semantically significant language constructs. The generic tree node type lives in a file named 

tree.icn, while the other classes live in a file named idol.icn that is descended from Unicon’s 

predecessor, a language called Idol. Now, let’s look at another difference between Unicon and 

Jzero that comes up in Unicon’s implementation of packages. This is known as name mangling.

Mangling names
Scope checks may state that a symbol has been found in a package. A lot of programming languages 

– historic C++ is a prime example – use name mangling in generated code. Name mangling refers 

to the practice of altering a name in order to distinguish different uses of it, or to add information. 

In Unicon, some scoping rules are resolved via name mangling. A name such as foo, if it is found 

to be in package scope for a package bar, is written out in the generated code as bar__foo.

The mangle_sym(sym) method from the Unicon implementation has been presented in its partial 

form here and has been abstracted a bit for readability. This method takes a symbol (a string) and 

mangles it according to which imported package it belongs to, including the declared package of 

the current file, which takes precedence over any imports:

procedure mangle_sym(sym)

…

   if member(package_level_syms, sym) then

      return package_mangled_symbol(sym)

   if member(imported, sym) then {

      L := imported[sym]

      if *L > 1 then

         yyerror(sym || " is imported from multiple packages")

      else return L[1] || "__" || sym

   }

   return sym

end
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In the mangle_sym() method, a Unicon table named package_level_syms stores entries for sym-

bols declared in the package associated with the current file. Another table, called imported, 

tracks all the symbols defined in other packages. This table returns a list of the other packages in 

which a symbol is found. The size of that list is given by *L. If a symbol is defined in two or more 

imported packages, using that symbol in this file is ambiguous and generates an error. The use 

of packages is a relatively simple compile-time mechanism for making separate namespaces for 

different scopes. More difficult scoping rules must be handled at runtime. For example, accessing 

class members in Unicon requires the compiler to generate code that uses a reference to a current 

object named self.

Inserting self for member variable references
Scoping rules can come back with the answer that a symbol is a class member variable. In Unicon, 

all methods are non-static and method calls always have an implicit first parameter named 

self, which is a reference to the object upon which the method has been invoked. A class scope 

is implemented by prefixing the name with a dot operator to reference the variable within the 

self object. This code, extracted from a method named scopeck_expr() in Unicon’s idol.icn 

semantic analysis file, illustrates how self. can be prefixed onto member variable references:

      "token": {

         if node.tok = IDENT then {

            if not member(\local_vars, node.s) then {

               if classfield_member(\self_vars, node.s)then

                  node.s := "self." || node.s

               else

                  node.s := mangle_sym(node.s)

            }

         }

      }

This code modifies the contents of the existing syntax tree field in place. The use of the self. 

string prefix is possible because the code is written out in a source code-like form and further 

compiled to C or virtual machine bytecode by a subsequent code generator. The use of self as 

a reference to the current object is needed not only to access the member variables within the 

object but also to access calls to the object’s methods. On the flip side of that, let’s look at how 

Unicon provides the self variable when methods are called.



Symbol Tables166

Inserting self as the first parameter in method calls
When an identifier appears in front of parentheses, the syntax indicates that it is the name of a 

function or method being called. In this case, additional special handling is required. The code 

for calling a method must look up the method name in an auxiliary structure called the methods 

vector. The methods vector is referenced via self.__m. For example, for a method named meth, 

instead of becoming self.meth, the reference to the method becomes self.__m.meth.

In addition to using the methods vector, __m, a method call requires self to be inserted as a first 

parameter into the call. In Unicon’s predecessor, this was explicit in the generated code. A call 

such as meth(x) would become self.__m.meth(self, x). In the Unicon implementation, this 

insertion of the object into the parameter list of the call is built into the implementation of the dot 

operator in the runtime system. When the dot operator is asked to perform self.meth, it looks 

up meth to see whether it is a regular member variable. If it finds that it is not, it checks whether 

self.__m.meth exists, and if it does, the dot operator both looks up that function and pushes 

self onto the stack as its first parameter.

To summarize: the Unicon virtual machine was modified to make code generation for method calls 

simpler. Consider the call to o.m() in the following example. The semantics of the o.m(3,4) call 

are equivalent to o.__m.m(o,3,4) but the compiler just generates the instructions for o.m(3,4) 

and the Unicon dot operator does all the work:

class C(…)

   method m(c,d); … end

end

procedure main()

   o := C(1,2)

   o.m(3,4)

end

One of the nice parts about building a programming language is that you can make the runtime 

system that runs your generated code do anything you want. Now, let’s consider how to test and 

debug your symbol tables to tell whether they are correct and working.

Testing and debugging symbol tables
You can test your symbol tables by writing many test cases and verifying whether they obtain 

the expected undeclared or redeclared variable error messages. But nothing says confidence like 

an actual visual depiction of your symbol tables. 
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If you have built your symbol tables correctly by following the guidance in this chapter, then 

there should be a tree of symbol tables. You can print out your symbol tables using the same tree 

printing techniques that were used to verify your syntax trees in the previous chapter, using either 

a textual representation or a graphical one.

Symbol tables are slightly more work to traverse than syntax trees. To output the symbol table, 

you need to output information for the table and then visit all the children, not just look one 

up by name. Also, there are two classes involved: symtab and symtab_entry. Suppose you start 

at the root symbol table. In Unicon, to iterate through all the symbol tables, use the following 

method in symtab.icn:

method print(level:0)

  writes(repl(" ",level))

  write(scope, " - ", *t, " symbols")

  every (!t).print(level+1);

end

Notice that although the children are being invoked with a method of the same name, the print() 

method in symtab_entry is a different method than the one on symtab. The Java code for the 

symbol table’s print() method looks like this:

void print() { print(0); }

void print(int level) {

   for(int i=0;i<level;i++) System.out.print(" ");

   System.out.print(scope + " - " + t.size()+" symbols");

   for (symtab_entry se: t.values()) se.print(level+1);

}

For the print() method of symtab_entry, an actual symbol is printed out. If that symbol table 

entry has a subscope, it is then printed and indented more deeply to show the nesting of the 

scopes. In symtab_entry.icn, the Unicon code is:

method print(level:0)

  writes(repl(" ",level), sym)

  if \isConst then writes(" (const)")

  write()

  (\st).print(level+1);

end

The mutually recursive call to print the nested symbol table is skipped if it is null. In Java, the 

code is longer but more explicit:
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void print(level:0) {

   for(int i=0;i<level;i++) System.out.print(" ");

   System.out.print(sym);

   if (isConst) System.out.print(" (const)");

   System.out.println("");

   if (st != null) st.print(level+1);

}

Printing out symbol tables doesn’t take many lines of code. You may find that it’s worth adding 

additional lexical information, such as filenames and line numbers where variables were declared. 

In future chapters, it will be logical to also extend these methods with type information.

To run the Jzero compiler with the symbol table output shown in this chapter, download the code 

from this book’s GitHub repository, go into the ch6/ subdirectory, and build it with the Make 

program. By default, Make will build both the Unicon and Java versions. When you run the j0 

command with the symbol table output in place, it produces the following output. In this case, 

the Java implementation is being shown:

Figure 6.3: Symbol table output from the Jzero compiler

You must read the hello.java input file pretty carefully to ascertain whether this symbol table 

output is correct and complete. The more complicated your language’s scoping and visibility 

rules, the more complicated your symbol table’s output will be.
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For example, this output does not print anything for a variable’s public and private status, but for 

a full Java compiler, we would want that. When you are satisfied that the symbols are all present 

and accounted for in the correct scopes, you can move on to the next phase of semantic analysis.

Summary
In this chapter, you learned about the crucial technical skills and tools used to build symbol tables 

that track all the variables in all the scopes in the input program. You create a symbol table for 

every scope in the program and insert entries into the correct symbol table for each variable. All 

of this is accomplished via traversals of the syntax tree.

You learned how to write tree traversals that create symbol tables for each scope, as well as how 

to create inherited and synthesized attributes for the symbol table associated with the current 

scope for each node in your syntax tree. You then learned how to insert symbol information 

into the symbol tables associated with your syntax tree and detect when the same symbol is 

redeclared illegally. You learned how to write tree traversals that look up information in symbol 

tables and identify any undeclared variable errors. These skills will enable you to take your first 

steps in enforcing the semantic rules associated with your programming language. In the rest of 

your compiler, both semantic analysis and code generation will rely upon and add to the symbol 

tables that you established in this chapter.

Now that you have built symbol tables by walking through the parse tree using tree traversals, it is 

time to start considering how to check the program’s use of data types. The next chapter will start 

us off on that journey by showing you how to check basic types such as integers and real numbers.

Questions
1.	 What is the relationship between the various symbol tables that are created within the 

compiler and the syntax tree that was created in the previous chapter?

2.	 What is the difference between synthesized semantic attributes and those that are inher-

ited? How are they computed and where are they stored?

3.	 How many symbol tables do we need in the Jzero language? How are symbol tables or-

ganized?

4.	 Suppose our Jzero language allowed multiple classes, compiled separately in separate 

source files. How would that impact our implementation of symbol tables in this chapter?
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Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw


7
Checking Base Types

This is the first of two chapters about type checking. In most mainstream programming languages, 

type checking is a key aspect of semantic analysis that must be performed before you can generate 

code. Type checking uses the syntax trees from Chapter 5 and the symbol tables from Chapter 6.

This chapter will show you how to do simple type checks for the base types included in the Jzero 

subset of Java. A by-product of checking the types is adding type information to the syntax tree. 

Knowing the types of operands in the syntax tree enables you to generate correct instructions for 

various operations. For example, if your compiler sees the code x + y, should it generate code for 

integer addition? Floating-point addition? Something else?

This chapter covers the following main topics: 

•	 Type representation in the compiler

•	 Assigning type information to declared variables

•	 Determining the type at each syntax tree node

•	 Runtime type checks and type inference – a Unicon example

It is time to learn about type checking, starting with base types. Some of you may be wondering, 

why do type checking at all? If your compiler does not do any type checking, it must generate 

code that works, no matter what types of operands are used. Python, Lisp, BASIC, and Unicon are 

examples of languages with this design approach. Often, this makes a language user-friendly, but 

it runs slower because the types of operands must be checked at runtime. There is also a whole 

broad category of fatal type errors that can be avoided if types are checked at compile time. For 

these two reasons, speed and safety, we will cover type checking. We will begin by looking at how 

to represent the type information that you extract from the source code.
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Technical requirements
The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-

Your-Own-Programming-Language-Second-Edition/tree/master/ch7

The Code in Action video for the chapter can be found here: https://bit.ly/3cgvkWT

Type representation in the compiler
Frequently, our compiler will need to do things such as compare the types of two variables to 

see whether they are compatible. Program source code represents types with string data, which 

is incorporated in our syntax tree. In some languages, it might be possible to use little syntax 

subtrees to represent the types that are used in type checking, but in general, type information 

does not exactly correspond to a subtree within our syntax tree. This is because part of the type 

information is pulled in from elsewhere, such as another type. For this reason, we need a new 

data type specifically designed to represent the type information associated with any given value 

that is declared or computed in the program.

It would be nice if we could just represent types with an atomic value such as an integer code or a 

string type name. For example, we could use 1 for an integer, 2 for a real number, or 3 for a string. 

If a language had only a small, fixed set of built-in types, an atomic value would suffice. However, 

most real programs use types that are more complex. The representation of a compound type 

such as an array, a class, or a method is more involved. We will start with a base class capable of 

representing atomic types.

Defining a base class for representing types
The type information associated with any name or value in your language can be represented 

within a new class named typeinfo. The typeinfo class is not called type because some pro-

gramming languages use that as a reserved word or built-in name. In Unicon, it is the name of a 

built-in function, so declaring a class with that name would cause an error.

The typeinfo class has a basetype member for storing what kind of data type is represented. 

Complex types have additional information as needed. For example, a type whose basetype in-

dicates that it is an array has an additional element_type. With this extra information, we will 

be able to distinguish an array of integers from an array of strings or an array of some class type. 

In some languages, array types also have an explicit size or starting and ending indices.

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch7
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch7
https://bit.ly/3cgvkWT
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There are many ways that you could handle this variation in the information needed for different 

types. A classic object-oriented representation of these differences is to use subclasses. For Jzero, 

we will add arraytype, methodtype, and classtype as subclasses of typeinfo. First, there is the 

superclass itself, which can be found in the Unicon typeinfo.icn file, as shown in the following 

code:

class typeinfo(basetype)

   method str()

      return string(basetype)|"unknown"

   end

end

In addition to the basetype member, the typeinfo class has methods to facilitate debugging. 

Types need to be able to print themselves in a human-readable format. The Java version, in the 

typeinfo.java file, looks like this:

public class typeinfo {

   String basetype;

   public typeinfo() { basetype = "unknown"; }

   public typeinfo(String s) { basetype = s; }

   public String str() { return basetype; }

}

An extra constructor taking no arguments is required for the subclasses to compile properly in 

Java. Having a class, and not just an integer, to encode the type information allows us to represent 

more complex types by subclassing the base class.

Subclassing the base class for complex types
The Unicon code for the subclasses of typeinfo is also stored in typeinfo.icn since the subclasses 

are short and closely related. In Jzero, the arraytype class only has an element_type; in other 

languages, an array type might require additional fields to hold the array size or the type and 

range of valid indices. The Unicon representation of the array type in Jzero is as follows:

class arraytype : typeinfo(element_type)

initially

   basetype := "array"

end
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The arraytype.java file contains the corresponding Java implementation of the arraytype class:

public class arraytype extends typeinfo {

   typeinfo element_type;

   public arraytype(typeinfo t) {

      basetype = "array"; element_type = t; }

}

The representation for methods, also called class member functions, is a class named methodtype 

that includes a signature consisting of the method’s parameters and return type. For now, all the 

methodtype class does is allow methods to be identified as such. The Unicon implementation of 

the methodtype class is as follows:

class methodtype : typeinfo(parameters,return_type)

initially

   basetype := "method"

end

The Unicon constructor for the methodtype class takes a list of zero or more parameters and a re-

turn type; in Java, the parameters are passed via an array. In both Unicon and Java, the parameters 

are passed by reference, so take care that the caller does not subsequently modify the list or array 

that was passed. The parameters and return type will be used in the next chapter to check the 

types when methods (functions) are called. The Java representation of methods looks as follows 

and can be found in the methodtype.java file:

public class methodtype extends typeinfo {

   parameter [] parameters;

   typeinfo return_type;

   methodtype(parameter [] p, typeinfo rt){

      parameters = p; return_type = rt;

   }

}

The parameters member variable could be an array of typeinfo. Instead, a separate class is de-

fined for parameters here to allow languages to include parameter names along with their types 

to represent methods. The Unicon implementation of the parameter class is found in typeinfo.

icn and reads as follows:

class parameter(name, param_type)

end
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Some of these classes are pretty empty so far. They are placeholders that will include more code 

in subsequent chapters or require more substantial treatments in other languages. The corre-

sponding Java implementation of the parameter class in the parameter.java file is shown here:

public class parameter {

   String name;

   typeinfo param_type;

   parameter(String s, typeinfo t) { name=s; param_type=t; }

}

The class for representing classes includes a class name, its associated symbol table, and lists of 

zero or more fields, methods, and constructors. In some languages, this might be more complex 

than Jzero, including superclasses, for example. The Unicon implementation of the classtype 

class in typeinfo.icn is shown here:

class classtype : typeinfo(name, st, fields, methods, constrs)

   method str()

      return name

   end

initially

   basetype := "class"

end

You might be wondering about the st field, which holds a symbol table. In Chapter 6, Symbol Tables, 

symbol tables were constructed and stored in syntax tree nodes, where they formed a logical tree 

corresponding to the program’s declared scopes. References to those same symbol tables need 

to be placed in the types so that we can compute the type resulting from the use of the dot oper-

ator, which references a scope that is not associated with the syntax tree. The classtype.java 

file contains the Java implementation of the classtype class, as shown in the following code:

public class classtype extends typeinfo {

   String name;

   symtab st;

   parameter [] methods;

   parameter [] fields;

   typeinfo [] constrs;

   public classtype(String s) { name = s; }

   public classtype(String s, symtab stab) { name = s; st = stab; }

}
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Given a typeinfo class, it is appropriate to add a member field of this type to both the tree class 

and the symtab_entry class so that type information can be represented for expressions and 

variables. We will call it typ in both classes:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab,typ)

class symtab_entry(sym,parent_st,st,isConst,typ)

We are not repeating the classes here in their entirety; the code for this can be found in the 

ch7/ subdirectory at https://github.com/PacktPublishing/Build-Your-Own-Programming-

Language-Second-Edition. In Java, the respective classes are amended as follows:

class tree { . . .

   typeinfo typ; . . . }

class symtab_entry { . . .

   typeinfo typ; . . . }

Given a typ field, it is possible to write the mini tree traversals needed to place type information 

in the symbol tables with the variables as they are declared. Let’s look at assigning this type 

information to declared variables.

Assigning type information to declared variables
Type information is constructed during a tree traversal and then stored with the associated vari-

ables in the symbol table. This would usually be part of the traversal that populates the symbol 

table, as presented in the previous chapter. In this section, we will traverse the syntax tree looking 

for variable declarations, as we did previously, but this time, we need to propagate type informa-

tion by using synthesized and/or inherited attributes.

For type information to be available at the time that we are inserting variables into the symbol 

table, the type information must be computed at some prior point in time. This type information 

is computed either by a preceding tree traversal or during parsing when the syntax tree is con-

structed. Consider the following grammar rule and semantic action from Chapter 5, Syntax Trees: 

FieldDecl: Type VarDecls ';' {

  $$=j0.node("FieldDecl",1030,$1,$2); };

The semantic action builds a tree node connecting Type with VarDecls under a new node called 

FieldDecl. Your compiler must synthesize type information from Type and inherit it into VarDecls. 

The information flowing up from the left subtree and going down into the right subtree can be 

seen in the following diagram:

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition


Chapter 7 177

Figure 7.1: The flow of type information in variable declarations

We can embed this into the syntax tree construction process via mini traversals of the subtrees. 

The following code adds a call to a method named calctype(), which is where this semantic 

analysis will be conducted within j0gram.y, as shown in the previous example:

FieldDecl: Type VarDecls ';' {

  $$=j0.node("FieldDecl",1030,$1,$2);

  j0.calctype($$);

};

From examining the grammar, you may note that a similar call to calctype() is needed for 

non-terminal FormalParm, and that there are a few additional places in the grammar where a 

type is associated with an identifier or list of identifiers. The j0 class’s calctype() method turns 

around and calls two tree traversals on the two children of FieldDecl. The Unicon version of this 

method in j0.icn looks as follows:

method calctype(t)

   t.kids[1].calctype()

   t.kids[2].assigntype(t.kids[1].typ)

end
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The j0 class’s calctype() method calls the class tree’s calctype() method, which calculates the 

synthesized typ attribute in the left child. The type is then passed down as an inherited attribute 

into the right child. The Java version of this method in j0.java looks like this:

void calctype(parserVal pv){

   tree t = (tree)pv.obj;

   t.kids[0].calctype();

   t.kids[1].assigntype(t.kids[0].typ);

}

Methods within the tree class, such as calctype() and assigntype(), are special case tree 

traversals whose tree shape and the kinds of possible tree nodes that they might be invoked on 

are a small subset of the possibilities that must be handled by more general tree traversals. The 

traversal code can be specialized to take advantage of this. By way of example, we first consider 

the calctype() method.

Synthesizing types from reserved words
The calctype() method calculates the synthesized typ attribute. The recursive work of calculat-

ing the value for the children is done first, followed by the calculation for the current node. This 

form of traversal is called a post-order traversal and it is common in compilers. In Unicon, the 

calctype() method in the tree class in tree.icn looks like this:

method calctype()

  every (!\kids).calctype()

  case sym of {

    "FieldDecl": typ := kids[1].typ

    "token": {

      case tok.cat of {

        parser.IDENTIFIER:{return typ := classtype(tok.text) }

        parser.INT:{ return typ := typeinfo(tok.text) }

        default:

          stop("don't know the type of ", image(tok.text))

        }

      }

    default:

      stop("don't know the type of ", image(sym))  }

end
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This code constructs the current tree node’s typ value using information from its children; in this 

case, by directly accessing a child’s public typ field. Alternatively, information obtained from a 

child could be obtained by calling a method that returns the child type as its return value, such 

as the return value of calctype(). In this code, the number of case branches is small because 

the Jzero grammar for non-terminal Type is minimal. In other languages, it would be richer. The 

corresponding Java code is shown in the following example’s calctype() method in tree.java:

typeinfo calctype() {

  for (tree k : kids) k.calctype();

  switch (sym) {

    case "FieldDecl": return typ = kids[0].typ;

    case "token": {

      switch (tok.cat) {

       case parser.IDENTIFIER:{

          return typ=new classtype(tok.text); }

       case parser.INT: { return typ=new typeinfo(tok.text); }

       default:

          j0.semerror("don't know the type of " + tok.text);

      }

   }

    default:

      j0.semerror("don't know the type of " + sym);}

}

Having synthesized the type from the left child of FieldDecl, let’s look at how to inherit that type 

into the variable nodes in the right child subtree of FieldDecl.

Inheriting types into a list of variables
Passing type information into a subtree is performed in the assigntype(t) method. Inherited 

attributes are generally coded via a pre-order traversal, in which the current node does its work 

and then calls the children with information they are inheriting. The Unicon implementation of 

the assigntype(t) method is as follows:

method assigntype(t)

  typ := t

  case sym of {

  "VarDeclarator": {

    kids[1].assigntype(arraytype(t))
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    return

    }

  "token": {

    case tok.cat of {

      parser.IDENTIFIER: return

      default: stop("eh? ", image(tok.cat))

      }

    }

  default:

     stop("don't know how to assign the type of ", image(sym))

    }

  every (!\kids).assigntype(t)

end

Since the information is coming down from a parent into children, it is natural to pass this infor-

mation as a parameter to the child, who then assigns it as their type via typ := t. It would also be 

possible to copy it down via an explicit assignment into a child’s public field. The corresponding 

Java implementation of the assigntype(t) method is shown here:

void assigntype(typeinfo t) {

    typ = t;

    switch (sym) {

    case "VarDeclarator": {

      kids[0].assigntype(new arraytype(t));

      return;

    }

    case "token": {

      switch (tok.cat) {

        case parser.IDENTIFIER:{ return; }

        default: j0.semerror("eh? " + tok.cat);

      }

   }

    default:

        j0.semerror("don't know how to assigntype " + sym);

    }

    for(tree k : kids) k.assigntype(t);

  }
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Attaching type information to variable names where they are declared is important, and it is not 

too difficult, especially for a simple language such as Jzero. Now, it is time to look at the main task 

of this chapter: how to calculate and check type information in the expressions that comprise the 

executable code in the bodies of functions and methods.

Determining the type at each syntax tree node
Within the syntax tree, the nodes associated with actual code expressions in the method bodies 

have a type associated with the value that the expression computes. For example, if a tree node 

corresponds to the sum of adding two numbers, the tree node’s type is determined by the types 

of the operands and the rules of the language for the addition operator. Our goal for this section 

is to spell out how this type information can be calculated.

As you saw in the Type representation in the compiler section, the class for syntax tree nodes has 

an attribute to store that node’s type, if there is one. The type attribute is calculated bottom-up, 

during a post-order tree traversal. There is a similarity here to checking for undeclared variables, 

which we did in the previous chapter, in that the expressions that need types checked only occur 

in the bodies of functions. The call to invoke this type checking tree traversal, starting at the root 

of the syntax tree, is added at the end of the semantic() method, within the j0 class. In Unicon, 

the invocation consists of the following:

root.checktype()

There isn’t a parameter here, but that is the same thing as passing in a null value or a false. In 

Java, the following statement is added:

root.checktype(false); 

In both cases, the parameter indicates whether a given node is within the body of an executable 

statement. At the root, the answer is false. It will turn true when the tree traversal reaches the 

bodies of methods that contain code. To perform the tree traversal, you must consider what to 

do regarding the leaves of the tree.

Determining the type at the leaves
At the leaves, the types of literal constant values are self-evident from their lexical category. To 

begin, we must add a typ field to the class token. For literals, we must initialize typ in the con-

structor. In Unicon, the first line and initial section of token.icn becomes the following:

class token(cat, text, lineno, colno, ival, dval, sval,typ)

   . . .
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initially

  case cat of {

  parser.INTLIT:{ ival := integer(text); typ := typeinfo("int")}

  parser.DOUBLELIT:{dval:=real(text); typ := typeinfo("double")}

  parser.STRINGLIT:{

    sval := deEscape(text); typ := typeinfo("String") }

  parser.BOOLLIT: { typ := typeinfo("boolean") }

  parser.NULLVAL: { typ :=  typeinfo("null") }

  ord("="|"+"|"-"): { typ := typeinfo("n/a") }

  }

end

The code here assigns the "n/a" type to operators (the code for calculating the types of expres-

sions using those operators from their operand types will be shown later, in the Calculating and 

checking the types at internal nodes section). Note that the three operators shown here are for il-

lustration purposes and a full language implementation should represent the type information 

for all supported operators. In Java, the corresponding change to the class token for literal types 

looks as follows:

package ch7;
public class token {
  . . .
  public typeinfo typ;
  public token(int c, String s, int l) {
    cat = c; text = s; lineno = l;
    id = serial.getid();
    switch (cat) {
    case parser.INTLIT: typ = new typeinfo("int"); break;
    case parser.DOUBLELIT:typ = new typeinfo("double"); 
        break;
    case parser.STRINGLIT: typ= new typeinfo("String"); 
        break;
    case parser.BOOLLIT: typ = new typeinfo("boolean"); 
        break;
    case parser.NULLVAL: typ = new typeinfo("null"); break;
    case '=': case '+': case '-':
       typ = new typeinfo("n/a"); break;
    }
   }



Chapter 7 183

The types of variables are looked up in the symbol table. This implies that symbol table population 

must occur before type checking. The symbol table lookup for the Unicon version is performed 

by a type() method and added to a class token in token.icn. It takes the symbol table that the 

token is scoped within as a parameter:

method type(stab)

  if \typ then return typ

  if cat === parser.IDENTIFIER then

    if rv := stab.lookup(text) then return typ := rv.typ

  stop("cannot check the type of ",image(text))

end

This first line in this method returns the type for this token immediately if it has been determined 

previously. If not, the rest of this method just checks whether we have an identifier, and if so, looks 

it up in the symbol table. The corresponding addition to token.java looks as follows:

public typeinfo type(symtab stab) {

  symtab_entry rv;

  if (typ != null) return typ;

  if (cat == parser.IDENTIFIER)

      if ((rv = stab.lookup(text)) != null) return typ=rv.typ;

  j0.semerror("cannot check the type of " + text);

}

Having shown the code to calculate the type of syntax tree leaves, it is now time to examine how 

to check the types at the internal nodes. This is the core function of type checking.

Calculating and checking the types at internal nodes
The internal nodes are only checked within the executable statements and expressions in the 

code bodies of the program. This is a post-order traversal where work at children is done first 

and then work is done at the parent node. The process of visiting the children is delegated by 

the checktype() method in the tree class to the checkkids() helper function. The selection of 

which nodes to visit varies depending on the tree node, and the work that’s done at the parent 

depends on whether it is in a block of code. The Unicon implementation of these methods in 

tree.icn is as follows:

method checktype(in_codeblock)

  if checkkids(in_codeblock) then return

  if /in_codeblock then return
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  case sym of {

    "Assignment": typ := check_types(kids[1].typ, 

                                     kids[3].typ)

    "AddExpr": typ := check_types(kids[1].typ, kids[2].typ)

    "Block" | "BlockStmts": { typ := &null }

    "MethodCall": { }

    "QualifiedName": {

       if type(kids[1].typ) == "classtype__state" then {

         typ := (kids[1].typ.st.lookup(

                 kids[2].tok.text)).typ

         } else stop("illegal . on ",kids[1].typ.str())

    }

    "token": typ := tok.type(stab)

    default: stop("cannot check type of ", image(sym))

    } 

end

In addition to the checkkids() helper method, this code relies on a helper function called 

check_types(), which determines the result type, given operands. The corresponding Java im-

plementation of checktype() is shown here:

void checktype(boolean in_codeblock) {

  if (checkkids(in_codeblock)) return;

  if (! in_codeblock) return;

  switch (sym) {

  case "Assignment":

    typ = check_types(kids[0].typ, kids[2].typ); break;

  case "AddExpr":

    typ = check_types(kids[0].typ, kids[1].typ); break;

  case "Block": case "BlockStmts": typ = null; break;

  case "MethodCall": break;

  case "QualifiedName": {

    if (kids[0].typ instanceof classtype) {

      classtype ct = (classtype)(kids[0].typ);

      typ = (ct.st.lookup(kids[1].tok.text)).typ;

    } else j0.semerr("illegal . on  " + kids[0].typ.str());

    break;

    }
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  case "token": typ = tok.type(stab); break;

  default: j0.semerror("cannot check type of " + sym);

  }

}

By default, the checkkids() helper function calls checktype() on every child, but in some cases, 

it does not. On method declaration, for example, the method header has no executable code 

expressions and is skipped; only the block of code is visited, and in that block, the in_codeblock 

Boolean parameter is set to true. Similarly, within a block of code where a local variable decla-

ration is encountered, only the list of variables is visited, and within that list, in_codeblock is 

turned off (only to be turned back on again in initializers). As another example, identifiers on 

the right-hand side of a period operator are not looked up in the regular symbol table; instead, 

they are looked up relative to the type of expression on the left-hand side of the period and thus 

require special handling. The Unicon implementation of checkkids() is shown here:

method checkkids(in_codeblock)

  case sym of {

    "MethodDecl": { kids[2].checktype(1); return }

    "LocalVarDecl": { kids[2].checktype(); return }

    "FieldAccess": { kids[1].checktype(in_codeblock); 

        return }

    "QualifiedName": {

      kids[1].checktype(in_codeblock);

      }

    default: { every (!\kids).checktype(in_codeblock) }

    }

end

The corresponding Java implementation of this helper function is shown here:

public boolean checkkids(boolean in_codeblock) {

  switch (sym) {

  case "MethodDecl": kids[1].checktype(true); return true;

  case "LocalVarDecl": kids[1].checktype(false); return true;

  case "FieldAccess": kids[0].checktype(in_codeblock);

                      return true;

  case "QualifiedName":

                      kids[0].checktype(in_codeblock); 

                      break;
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  default: if (kids != null)

              for (tree k : kids) k.checktype(in_codeblock);

  }

  return false;

}

The check_types() helper method calculates the type of the current node from the types of up 

to two operands. Its calculation varies, depending on what operator is being performed, as well 

as the rules of the language. Its answer might be that the type is the same as one or both oper-

ands, or it may be some new type or an error. The Unicon implementation of check_types() in 

tree.icn is as follows. Note that the code here is illustrative but incomplete, showing only integer 

type checks on a few operators due to space considerations. A full implementation, even for a toy 

language like Jzero, has additional base types and operators.

method check_types(op1, op2)

  operator := get_op()

  case operator of {

     "="|"+"|"-" : {

        if tok := findatoken() then

           writes("line ", tok.tok.lineno, ": ")

        if op1.basetype === op2.basetype === "int" then {

           write("typecheck ",operator," on a ",

                 op2.str(), " and a ", op1.str(), " -> OK")

           return op1

           }

        else stop("typecheck ",operator," on a ",

                  op2.str(), " and a ", op1.str(),

                   " -> FAIL")

        }

     default: stop("cannot check ", image(operator))

    }

end

This method relies on two helper methods. The get_op() method reports which operator is being 

performed. The findatoken() method seeks out the first token in the source code represented 

by a given syntax tree node; it is used to report the line number. The corresponding Java imple-

mentation of check_types() is shown here:
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   public typeinfo check_types(typeinfo op1, typeinfo op2) {

     String operator = get_op();

     switch (operator) {

     case "=": case "+": case"-": {

       tree tk;

       if ((tk = findatoken())!=null)

         System.out.print("line " + tk.tok.lineno + ": ");

       if ((op1.basetype.equals(op2.basetype)) &&

           (op1.basetype.equals("int"))) {

         System.out.println("typecheck "+operator+" on a "+

                  op2.str() + " and a "+ op1.str()+

                   " -> OK");

       return op1;

    }

       else j0.semerror("typecheck "+operator+" on a "+

                op2.str()+ " and a "+ op1.str()+

                 " -> FAIL");

       }

     default: j0.semerror("cannot check " + operator);

     }

   return null;

   }

The operator that the current syntax node represents can usually be ascertained from the node’s 

corresponding non-terminal symbol. In some cases, the actual production rule must also be used. 

The Unicon implementation of get_op() found in tree.icn is shown here:

   method get_op()

      return case sym of {

          "Assignment" : "="

          "AddExpr": if rule=1320 then "+" else "-"

          default: fail

      }

   end
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Unicon allows us to return the result that’s produced by a case expression. Additive expressions 

designated by "AddExpr" include both addition and subtraction. The production rule is used 

to disambiguate. The corresponding Java implementation of get_op() is similar, as given here:

   public String get_op() {

     switch (sym) {

     case "Assignment" : return "=";

     case "AddExpr": if (rule==1320) return "+";

                     else return "-";

     }

     return sym;

   }

The findatoken() method is used from an internal node in the syntax tree to chase down one of 

its leaves. It recursively dives into the children until it finds a token. The Unicon implementation 

of findatoken() is as follows:

method findatoken()

   if sym==="token" then return self

   return (!kids).findatoken()

end

The corresponding Java implementation of findatoken() is shown here:

   public tree findatoken() {

     tree rv;

     if (sym.equals("token")) return this;

     for (tree t : kids)

        if ((rv=t.findatoken()) != null) return rv;

     return null;

   }

Even the basics of type checking, all of which have been shown in this section, have required 

you to learn a lot of new ways to traverse trees. The fact is, building a programming language 

or writing a compiler is a big, complex job, and if we showed a complete one for a mainstream 

language, this book would be much thicker, and longer than our page limit allows.

This chapter presented how to add roughly half of a type checker to Jzero. Running j0 with these 

additions is not very glamorous; it just lets you see simple type errors get detected and reported. 
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If you want to see that, download the code from this book’s GitHub site, go into the ch7/ sub-

directory, and build code with the Make program. By default, Make will build both the Unicon 

and Java versions. When you run the j0 command with preliminary type checking in place, it 

produces an output similar to the following. In this case, the Unicon implementation is shown:

Figure 7.2: The output from the type checker produces OK or FAIL on various operators

Of course, if the program has no type errors, you will see nothing but lines ending with OK. Now, 

let’s consider an aspect of type checking that is encountered when implementing some program-

ming languages, including Unicon: runtime type checks.

Runtime type checks and type inference in Unicon
The Unicon language handles types a lot differently than the Jzero type system described in this 

chapter. In Unicon, types are not associated with declarations but with values. The Unicon virtual 

machine code generator does not place type information in symbol tables or do compile-time type 

checking. Instead, types are represented explicitly at runtime and checked everywhere before a 

value is used. Explicitly representing type information at runtime is common in interpreted and 

object-oriented languages, and optional in some semi-object-oriented languages such as C++.

Consider the write() Unicon function. Every argument to write() that isn’t a file specifying 

where to write to must be a string, or be able to be converted into a string. In the Unicon virtual 

machine, the type information is created and checked at runtime as needed. The pseudocode for 

the Unicon write() function looks like this:

for (n = 0; n < nargs; n++) {

   if (is:file(x[n])) {

       // set the current output file

   } else if (cnv:string(x[n])) {
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       // output the string to the output file

   } else runtime_error("string or file expected")

}

For every argument to write(), the preceding code says to either set the current file, convert 

the argument into a string and write it, or stop with a runtime error. Checking types of things at 

runtime provides extra flexibility but slows down execution. Keeping type information around 

at runtime also consumes memory – potentially a lot of memory. To perform a runtime type 

check, every value in the Unicon language is stored in a descriptor. A descriptor is a struct that 

contains a value plus an extra word of memory that encodes its type, called the d-word. A Boolean 

expression such as is:file(x) on some Unicon value, x, boils down to performing a check to see 

whether the d-word says the value is of the file type.

Unicon also has an optimizing compiler that generates C code. The optimizing compiler performs 

type inference, which determines a unique type more than 90% of the time, eliminating the need 

for most runtime type checks. Consider the following trivial Unicon program:

procedure main()

   s := "hello" || read()

   write(s)

end

The optimizing compiler knows that "hello" is a string, and read() only returns strings. It can 

infer that the s variable holds only string values, so this particular call to write() is passed a value 

that is already a string and does not need to be checked or converted. Type inference is beyond 

the scope of this book, but it is valuable to know that it exists and that for some languages, it is 

an important bridge that allows flexible higher-level languages to run at speeds comparable to 

those of lower-level compiled languages.

Summary
In this chapter, you learned how to represent base types and check the type safety of common 

operations, such as preventing adding an integer to a function. All of this can be accomplished 

by traversing the syntax tree.

You learned how to represent types in a data structure and add an attribute to the syntax tree 

nodes to store that information. You also learned how to write tree traversals that extract type 

information about variables and store that information in their symbol table entries. You then 

learned how to calculate the correct type at each tree node, checking whether the types are used 

correctly in the process. Finally, you learned how to report type errors that you found.
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The process of type checking may seem like a thankless job that just results in a lot of error mes-

sages, but really, the type information that you compute at each of the operators and function calls 

in the syntax tree will be instrumental in determining what machine instructions to generate for 

those tree nodes. Now that you have built a type representation and implemented simple type 

checks, it is time to consider some more complex operations necessary to check compound types, 

such as function calls and classes. You will do this in the next chapter.

Questions
1.	 What purpose does type checking serve, besides just frustrating tired programmers?

2.	 Why is a structure type (in our case, a class) needed to represent type information? Why 

can’t we just use an integer to represent each type?

3.	 The code in this chapter outputs lines that report every successful type check with OK. 

This is very reassuring. Why don’t other compilers report successful type checks like this?

4.	 Java is pickier about types than its ancestor, the C programming language. What are the 

advantages of being pickier about types, instead of automatically converting them on 

demand?

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw




8
Checking Types on Arrays, 
Method Calls, and Structure 
Accesses

This is the second of two chapters regarding type checking. The previous chapter introduced 

type checking for built-in atomic types. In comparison, this chapter will cover more complex 

type-checking operations.

This chapter will show you how to perform type checks for the arrays, parameters, and return 

types of method calls in the Jzero subset of Java. Additionally, it covers the type checking of 

structured types such as classes.

In this chapter, we will cover the following main topics:

•	 Type-checking arrays

•	 Checking method calls

•	 Checking structured type accesses

By the end of the chapter, you will be able to write more sophisticated tree traversals to check types 

that themselves contain one or more other types. Being able to support such composite types in 

your programming language is necessary for you to go beyond toy programming languages and 

into the realm of languages that are useful in the real world. It is time to learn more about type 

checking. We will begin with the simplest composite type: arrays.
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Technical requirements
The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-

Your-Own-Programming-Language-Second-Edition/tree/master/ch8

The Code in Action video for the chapter can be found here: https://bit.ly/30w1V8I

Checking operations on array types
An array is a sequence of elements that are all the same type. Up to this point, the Jzero language 

hasn’t really supported array types, other than to allow enough syntax for main() to declare 

its array of the String parameter. Now, it is time to add support for the remainder of the Jzero 

array operations, which are a small subset of what Java arrays can do. Jzero arrays are limited to 

single-dimension arrays created without initializers. To check array operations properly, we will 

modify the code from the previous chapters so that we can recognize array variables when they 

are declared, and then check all uses of these arrays to only allow legal operations. Let’s begin 

with array variable declarations.

Handling array variable declarations
The idea that a variable will hold a reference to an array is attached to the variable’s type in the 

recursive grammar rule, in j0gram.y, for the non-terminal VarDeclarator. The rule in question 

is the second production rule, which appears after the vertical bar, as follows:

VarDeclarator: IDENTIFIER | VarDeclarator '[' ']' {

  $$=j0.node("VarDeclarator",1060,$1); };

For this rule, the corresponding code in the class tree’s assigntype() method adds an arraytype() 

on top of the type that is being inherited, as assigntype() recurses into the VarDeclarator child 

node. The Unicon code for this, in the tree.icn file, appears as follows:

  method assigntype(t)

   . . .

    "VarDeclarator": {

      kids[1].assigntype(arraytype(t))

      return

    }

The t type being inherited is not discarded. It becomes the element type of the array type that is 

constructed here. The corresponding Java code in tree.java is almost identical:

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch8
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch8
https://bit.ly/30w1V8I
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  void assigntype(typeinfo t) {

    . . .

    case "VarDeclarator": {

      kids[0].assigntype(new arraytype(t));

      return;

    }

Because it is recursive, this code works for multiple-dimension arrays represented by a chain of 

VarDeclarator nodes in the syntax tree, although for the sake of brevity, the rest of Jzero will not. 

Even for single-dimension arrays, things get interesting when you consider how type information 

is checked when arrays are used in executable code. The first point within the code where you 

will need to check array types is when an array is created.

Checking types during array creation
Arrays in Java are created with the new expression; this is something that, up to this point, was 

omitted from Jzero. This entails a new token added to javalex.l for the reserved new word, as 

shown in the following code:

"new"    { return j0.scan(parser.NEW); }

Additionally, it entails a new kind of primary expression, called an ArrayCreation expression. 

This is added in the grammar within j0gram.y, as shown in the following code:

Primary:  Literal | FieldAccess | MethodCall |
         '(' Expr ')' { $$=$2;} | ArrayCreation ;
ArrayCreation: NEW Type '[' Expr ']' {
  $$=j0.node("ArrayCreation", 1260, $2, $4); };

Having added the new reserved word and defined a tree node for it, it is time to consider how a 

type is assigned for that expression. Let’s consider the creation of an array in the new int [3] 

Java expression. The int token is being used in an executable expression for the first time, and 

initially, the code that creates the int token inside token.icn should allocate its type as follows:

class token(cat, text, lineno, colno, ival, dval, sval, typ)
   . . .
initially
  case cat of {
     parser.INT:     typ := typeinfo("int")
     parser.DOUBLE:  typ := typeinfo("double")
     parser.BOOLEAN: typ := typeinfo("boolean")
     parser.VOID:    typ := typeinfo("void")
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As you can see, the same additions are needed for the other atomic scalar types. The corresponding 

Java code in the constructor in token.java is shown here:

    case parser.INT: typ = new typeinfo("int"); break;

    case parser.DOUBLE: typ = new typeinfo("double"); break;

    case parser.BOOLEAN: typ = new typeinfo("boolean"); break;

    case parser.VOID: typ = new typeinfo("void"); break;

These additions to the class token take care of the leaves that are providing our base types. The 

ArrayCreation node’s type is calculated with an addition to the checktype() method. In tree.

icn, the addition to checktype(), which primarily consists of a call to arraytype(), is shown here:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab,typ)

   . . .

   method checktype(in_codeblock)

   . . .

    "ArrayCreation": typ := arraytype(kids[1].typ)

The Java code that corresponds to this in the tree.java file is as follows:

    case "ArrayCreation":

       typ = new arraytype(kids[0].typ); break;

So, when a newly created array is used, usually, in an assignment, its array type must match the 

type that is allowed by the surrounding expression. For example, in the following two lines, the 

assignment operator on the second line must allow arrays when its type is being checked:

      int x[];

      x = new int[3];

The code to allow the assignment of an array variable from an array value is added to the 

check_types() method in the tree.icn file, as shown here:

   method check_types(op1, op2)

      . . .

      else if (op1.basetype===op2.basetype==="array") &

               operator==="=" &

               check_types(op1.element_type,

                           op2.element_type) then {

               return op1

               }
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The code checks that both op1 and op2 are arrays, that we are doing an assignment, and that the 

element types are OK. Here, a write() statement in the then part might be useful for the pur-

poses of testing this chapter’s code. However, in a compiler, only type errors will be shown. The 

corresponding Java addition to the check_types() method in the tree.java file is as follows:

       else if (op1.basetype.equals("array") &&

                op2.basetype.equals("array") &&

                operator.equals("=") &&

                (check_types(((arraytype)op1).element_type,

                    ((arraytype)op2).element_type) != null)) {

                return op1;

               }

From the examples in this section, it might appear as though type checking is just a bunch of 

nit-picky attention to detail, but with all of that detail, we prevent many coding errors and en-

sure faster execution. The recursive call to check_types() on the arrays’ element types prevents 

a program from accidentally assigning an array of string to a variable of type array of int, for 

example. Now, it is time to consider type checking for array element accesses.

Checking types during array accesses
Array accesses consist of read and write operations on an array’s elements using the subscript 

operator. Here, we need to add syntax support for these operations and build syntax tree nodes 

before we can perform any type checking on them. Adding array accesses to the grammar con-

sists of adding a non-terminal ArrayAccess and then adding two production rules that use this 

non-terminal symbol: 

•	 One for assignments that store a value in an array element 

•	 One for expressions that fetch the value from an array element

The changes to the j0gram.y file will appear as follows. They have been reordered in the grammar 

for clarity:

ArrayAccess: Name '[' Expr ']' {

  $$=j0.node("ArrayAccess",1390,$1,$3); };

LeftHandSide: Name | FieldAccess | ArrayAccess ;

Primary:  Literal | FieldAccess | MethodCall | ArrayAccess

    |'(' Expr ')' { $$=$2;} | ArrayCreation ;
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The square bracket operator that is used to access array elements must check the types of its 

operands and use them to calculate the result type. The result of an array subscript removes one 

level of array from the type of the left operand, thereby producing its element type. The addition 

to the checktype() method in the tree.icn file looks like this:

  method checktype(in_codeblock)

   . . .

    "ArrayAccess": {

       if match("array ", kids[1].typ.str()) then {

          if kids[2].typ.str()=="int" then

             typ := kids[1].typ.element_type

          else stop("subscripting array with ",

                    kids[2].typ.str())

          }

       else stop("illegal subscript on type ",

                 kids[1].typ.str())

       }

The preceding code checks that the type of kids[1] is an array type and the type of kids[2] is an 

integer type. If those are good, the value assigned to this node’s typ is the array’s element_type. 

The corresponding Java addition to the checktype() method in the tree.java file is shown here:

    case "ArrayAccess":

    if (kids[0].typ.str().startsWith("array ")) {

        if (kids[1].typ.str().equals("int"))

        typ = ((arraytype)(kids[0].typ)).element_type;

        else j0.semerror("subscripting array with " + 

                          kids[1].typ.str());

        }

    else j0.semerror("illegal subscript on type " +

                       kids[0].typ.str());

    break;

In this section, we have demonstrated how to type-check arrays. Fortunately, non-terminal sym-

bols in the grammar, and hence in the syntax tree, make it easy to find the spots where this form 

of type checking is needed. Now, it is time to look at perhaps the most challenging part of type 

checking. We will learn how to check the parameters and return types of method calls next.
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Checking method calls
The function call is the fundamental building block of both imperative and functional program-

ming paradigms. In object-oriented languages, functions are called methods, but they can play 

all the same roles that functions can. In addition to this, a set of methods provides an object’s 

public interface. To type check a method call, both the number and the type of the parameters 

must be verified along with the return type.

Calculating the parameters and return type information
The type representation introduced in the previous chapter, Chapter 7, Checking Base Types, in-

cluded a methodtype class that had fields for the parameters and the return type; however, we 

haven’t yet presented the code to extract that information from the syntax tree and place it into 

the type. The parameters and return type of a method are called its signature. The grammar rule 

where a method signature is declared is the one that builds a MethodHeader node. To calculate 

the return type, we need to synthesize it from the MethodReturnVal node. To calculate the pa-

rameters, we need to walk to the FormalParmList subtree within MethodDeclarator. You can do 

this by adding a call to j0.calctype() to the grammar rule for MethodHeader in j0gram.y; this 

is similar to the ones we added earlier for variable declarations:

MethodHeader: PUBLIC STATIC MethodReturnVal MethodDeclarator {

  $$=j0.node("MethodHeader",1070,$3,$4);

  j0.calctype($$);

  };

The calctype() method in the j0 class has not been modified, but the methods it calls over 

in tree.icn have been extended to add more type information, as needed, to handle method 

signatures. The calctype() method in the tree class gets a small upgrade to synthesize a leaf’s 

type from its contained token type, if present. In Unicon, it is the following line added to tree.

icn that assigns typ from tok.typ:

  method calctype()

      . . .

      "token": {

         if typ := \(tok.typ) then return

The corresponding Java addition to calctype() in tree.java is shown here:

          if ((typ = tok.typ) != null) return;
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The modifications to the assigntype() method for constructing method signatures are more 

substantial. For variable declarations, you are simply passing the type as an inherited attribute 

down a list to the individual variables’ leaf identifiers. For a method, the type to be associated 

with the identifier is constructed from the inherited attribute, which is the return type, plus the 

remainder of the method’s signature obtained from the subtree associated with the parameter 

list. The code in tree.icn is:

  method assigntype(t)

    case sym of {

    . . .

    "MethodDeclarator": {

       parmList := (\(kids[2]).mksig()) | []

       kids[1].typ := typ := methodtype(parmList , t)

      return

    }

In this code, the parmList parameter list is constructed as a list of types. If the parameter list is not 

empty, it is constructed by calling the mksig() method on that non-empty tree node. If the param-

eter list is empty, parmList is initialized to the empty list, []. The parameter list and the return 

type of t are passed in to construct the method type that is assigned to the MethodDeclarator node 

and its first child, that is, the identifier method name that will be inserted into the class symbol 

table. The corresponding Java addition to the assigntype() method in tree.java is shown here:

   case "MethodDeclarator":

      typeinfo parmList[];

      if (kids[1] != null) parmList = kids[1].mksig();

      else parmList = new typeinfo [0];

      kids[0].typ = typ = new methodtype(parmList , t);

      return;

The mksig() method constructs a list of the types of parameters of a method. The mksig() method 

is an example of a very specialized tree method. It is a subtree traversal that only traverses a very 

narrow subset of all tree nodes. It is only ever called on a formal parameter list and only needs to 

consider the FormalParmList and FormalParm nodes as it walks down the parameter list, picking 

up the types of each parameter. The Unicon code for mksig() in tree.icn is as follows:

  method mksig()

     case sym of {

        "FormalParm": return [ kids[1].typ ]
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        "FormalParmList":

           return kids[1].mksig() ||| kids[2].mksig()

        }

  end

The FormalParm case returns a list of size 1. The FormalParmList case returns the concatenation 

of two recursive calls on its children. The corresponding Java code in tree.java is shown here:

  typeinfo [] mksig() {

    switch (sym) {

    case "FormalParm": return new typeinfo[]{kids[0].typ};

    case "FormalParmList":

      typeinfo ta1[] = kids[0].mksig();

      typeinfo ta2[] = kids[1].mksig();

      typeinfo ta[] = new typeinfo[ta1.length + ta2.length];

      

      System.arraycopy(ta1, 0, ta, 0, ta1.length);

      System.arraycopy(ta2, 0, ta, ta1.length, ta2.length);

      return ta;

    }

    return null;

  }

The Java implementation uses arrays. The majority of the preceding code concatenates the two 

arrays returned from the calls to mksig() on the children. This concatenation could be performed 

by importing java.util.Arrays and using utility methods there, but the Arrays code is not 

much shorter or clearer. There is one last tweak to the code that is required to connect all this 

method-type information and make it usable. When the method is inserted into the symbol table 

in the populateSymTables() method, its type information needs to be stored there. In Unicon, 

the change in tree.icn is shown here:

  method populateSymTables()

    case sym of {

    . . .

   "MethodDecl": {

      stab.insert(kids[1].kids[2].kids[1].tok.text, ,

                  kids[1].stab, kids[1].kids[2].typ)
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Compared to previous chapters, the addition of type information is just one extra parameter being 

passed into the symbol table’s insert() method. The corresponding Java code in tree.java is 

shown here:

stab.insert(s, false, kids[0].stab, kids[0].kids[1].typ);

We have constructed the type information for methods when they are declared and made that 

type information available in the symbol table. Now, let’s take a look at how to use type infor-

mation from various methods to check the types of the actual parameters when they are called.

Checking the types at each method call site
The method call sites can be found in the syntax tree by looking for the two production rules in 

j0gram.y that build a non-terminal MethodCall. The rule where a MethodCall is a Name followed 

by a parenthesized list of zero or more parameters is shown here. It includes the classic function 

syntax, which is primarily used to call methods within the same class, as well as qualified names 

with the object.function syntax to invoke a method within another class. This section focuses 

on type checking for the classic function syntax. The object.function syntax is covered in the 

Checking structured type accesses section. The code given here has been amended in that section.

The code to check the types of method calls is added to the checktype() method. The Unicon 

additions to tree.icn appear as follows:

method checktype(in_codeblock)

  . . .

  "MethodCall": {

    if rule = 1290 then {

      if kids[1].sym ~== "token" then

        stop("can't check type of Name ", kids[1].sym)

      if kids[1].tok.cat == parser.IDENTIFIER then {

        if (\(rv:=stab.lookup(kids[1].tok.text))) then {

          rv := rv.typ

          if not match("method ", rv.str()) then

            stop("method expected, got ", rv.str())

            cksig(rv)

          }

        }

      else stop("can't typecheck token ", kids[1].tok.cat)

    }

    else stop("Jzero does not handle complex calls")
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  }

  . . .

In the preceding code, the method is looked up in the symbol table and its type is retrieved. If there 

are no parameters, the type is checked to ensure that its parameter list is empty. If there are actual 

parameters in the call, they are checked against the formal parameters via a call to the cksig() 

method. If that check succeeds, the typ field for this node is assigned from the return_type, 

which was specified for the method that was called. The corresponding Java code in tree.java 

is shown here:

  case "MethodCall":

    if (rule == 1290) {

      symtab_entry rve;

      methodtype rv;

      if (!kids[0].sym.equals("token"))

        j0.semerror("can't check type of " + kids[0].sym);

      if (kids[0].tok.cat == parser.IDENTIFIER) {

        if ((rve = stab.lookup(kids[0].tok.text)) != null) {

          if (! (rve.typ instanceof methodtype))

            j0.semerror("method expected, got " + rve.typ.str());

          rv = (methodtype)rve.typ;

          cksig(rv);

        }

      }

    else j0.semerror("can't typecheck " + kids[0].tok.cat);

    }

  else j0.semerror("Jzero does not handle complex calls");

  break;

The method that is used to check a function’s signature and apply its return type is the cksig() 

method. The Unicon implementation of cksig() in tree.icn is shown here:

   method cksig(sig)

   local i:=*sig.parameters, nactual := 1, t := kids[2]

     if /t then {

       if i ~= 0 then stop("0 parameters, expected ", i)

       }

     else {

       while t.sym == "ArgList" do {

         nactual +:= 1; t:=t.kids[1] }
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       if nactual ~= i then

         stop(nactual " parameters, expected ", i)

       t := kids[2]

       while t.sym == "ArgList" do {

         check_types(t.kids[-1].typ, sig.parameters[i])

         t := t.kids[1]; i-:=1

         }

       check_types(t.typ, sig.parameters[1])

     }

     typ := sig.return_type

   end

This method first handles zero parameters as a special case; however, aside from that, it checks 

one parameter at a time in a while loop. For each parameter, it calls check_types() to check 

the formal and actual types. Because of the way the syntax tree is constructed, parameters are 

encountered in reverse order during the tree traversal here. The first parameter is found when 

you hit a tree node that is not an ArgList. After processing the arguments, cksig() sets the 

MethodCall node’s type to the type returned by the method. The corresponding Java code in 

tree.java appears as follows:

  void cksig(methodtype sig) {

    int i = sig.parameters.length, nactual = 1;

    tree t = kids[1];

    if (t == null) {

      if (i != 0) j0.semerror("0 params, expected ",i);

    }

    else {

      while (t.sym.equals("ArgList")){

        nactual++; 

        t=t.kids[0];

      }

      if (nactual != i)

        j0.semerror(nactual + " parameters, expected "+ i);

      t = kids[1];

      i--;

      while (t.sym.equals("ArgList")) {

        check_types(t.kids[1].typ, sig.parameters[i--]);

        t = t.kids[0];
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      }

    check_types(t.typ, sig.parameters[0]);

  }

    typ = sig.return_type;

  }

The check_types() method and its get_op() helper method need to be tweaked in order to han-

dle parameter type checking. The Unicon implementation of these changes appears in tree.icn 

as follows:

   method get_op()

     return case sym of { …

      "MethodCall" : "param"

   . . .

   method check_types(op1, op2)

      operator := get_op()

      case operator of {

         "param"|"return"|"="|"+"|"-" : {

          . . .

The corresponding Java changes to get_op() and check_types() in tree.java are as follows:

  public String get_op() {

    switch (sym) {

    case "MethodCall" : return "param";

    . . .

  public typeinfo check_types(typeinfo op1, typeinfo op2) {

    String operator = get_op();

    switch (operator) {

    case "param": case "return": case "=": case "+":     case"-":

So, you have learned how to check the types of parameters passed into method calls, which is 

one of the most challenging aspects of type checking. Now it is time to check the return types 

that come out of the function call via its return statements.

Checking the type at return statements
The type of the expressions in the method’s return statements must match the method’s declared 

return type. These two locations are quite some distance apart in the syntax tree. There are lots 

of different ways in which you might connect them. 
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For example, you could add a return_type attribute to all the tree nodes and inherit the type from 

the MethodHeader into the Block and down through the code into the return statements. However, 

that approach is a waste of time for a relatively sparsely used piece of information. The symbol 

table is the most convenient way to connect remote locations. We can insert a dummy symbol 

into the symbol table that can hold a function’s return type. This dummy symbol can be looked 

up and checked against the type at every return statement. The dummy symbol named return 

is ideal. It is easy to remember and is a reserved word that will never conflict with a real symbol 

in user code. The code to insert the return type into the method’s symbol table is an addition to 

the populateSymTables() method. The Unicon implementation in tree.icn is as follows:

  method populateSymTables()

  case sym of {

  . . .

    "MethodDecl": {

      stab.insert(kids[1].kids[2].kids[1].tok.text, ,

                  kids[1].stab, kids[1].kids[2].typ)

      kids[1].stab.insert("return", , , 

            kids[1].kids[1].typ)

      }

In this code, kids[1] is the MethodHeader node. Its stab field is the local symbol table being 

inserted as a subscope inside the enclosing class scope. The kids[1].kids[1] expression is the 

MethodReturnVal node, which is usually just the token denoting the return type. The pair of blank 

spaces separated by commas between "return" and the type are null values. They are being 

passed into the second and third parameters of the insert() symbol table. The corresponding 

Java code that is added to the populateSymTables() method in tree.java is as follows:

    kids[0].stab.insert("return", false, null,

                         kids[0].kids[0].typ);

The type-checking code that makes use of this return type information within the return state-

ments is added to the checktype() method, which is also in the tree class. The Unicon imple-

mentation in tree.icn appears as follows:

  method checktype(in_codeblock)

    …

    case sym of {

    …

    "ReturnStmt": {
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      if not (rt := ( \ (stab).lookup("return")).typ) then

         stop("stab did not find a returntype")

      if \ (kids[1].typ) then

          typ := check_types(rt, kids[1].typ)

      else {

        if rt.str() ~== "void" then

          stop("void return from non-void method")

        typ = rt;

       }

    }

The corresponding Java code is presented here:

void checktype(Boolean in_codeblock) {

   …

   switch (sym) {

   …

   case "ReturnStmt":

      symtab_entry ste;

      if ((ste=stab.lookup("return")) == null)

         j0.semerror("stab did not find a returntype");

      typeinfo rt = ste.typ;

      if (kids[0].typ != null)

        typ = check_types(rt, kids[0].typ);

      else {

        if (!rt.str().equals("void"))

          j0.semerror("void return from non-void method");

      typ = rt;

       }

     break;

So, you have learned how to check return statements. Now, it is time to learn how to check the 

accesses to the fields and methods of a class instance.

Checking structured type accesses
In this book, the phrase structured type will denote composite objects that can hold a mixture 

of types whose elements are accessed by name. This contrasts with arrays, whose elements are 

accessed by their position and whose elements are of the same type. 
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In some languages, there are struct or record types for this kind of data. In Jzero and most ob-

ject-oriented languages, classes are used as the principal structured type.

This section discusses aspects of how to check the types for operations on classes and, more 

specifically, class instances. This organization mirrors the presentation of array types at the 

beginning of this chapter, starting with what is needed to process declarations of class variables.

The original intent of Jzero was to support a tiny Java subset that was somewhat comparable to 

Wirth’s PL/0 language. Such a language does not require class instances or object orientation, and 

space limitations prevent us from covering many of the bells and whistles needed for a feature-rich 

object-oriented language such as Java or C++. However, we will present some of the highlights. 

The first thing to consider is how to declare instance variables for class types.

Handling instance variable declarations
Variables of class types are declared by giving a class name and then a comma-separated list of 

one or more identifiers. For example, our compiler needs to handle declarations that are similar 

to the following declaration of three strings:

String a, b, c;

Jzero had to handle such declarations from the beginning since the main() procedure takes an 

array of strings. Although our Jzero compiler already supports class variable declarations, a few 

additional considerations are in order.

In many object-oriented languages, variable declarations will have accompanying visibility rules 

such as public and private. In Jzero, all methods are public and all variables are private, but you 

could go ahead and implement an isPublic attribute anyway. A similar consideration applies to 

static variables. Jzero has no static variables, but you could implement an isStatic attribute 

if you decide you want them. Extending our example to include these two considerations will 

look like the following:

private static String a, b, c;

To support these Java attributes, you can add them to tokens, tree nodes, and the symbol table 

entry type. You can propagate them from the reserved word over to where the variables are de-

clared, just as we did for type information.
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Checking types at instance creation
Objects, also called class instances, are created using the new reserved word, as was the case for 

arrays, which we discussed in the Checking operations on array types section. The additions to the 

grammar in j0gram.y are shown here:

Primary:  Literal | FieldAccess | MethodCall | ArrayAccess

   |'(' Expr ')' { $$=$2;} | ArrayCreation | InstanceCreation;

InstanceCreation: NEW Name '(' ArgListOpt ')' {

  $$=j0.node("InstanceCreation", 1261, $2, $4); };

This added syntax enables instance creation. To calculate the type of the expression so that it 

can be checked, we need to look up the type of the class in the symbol table. For that to work, at 

an earlier point in time, we must construct the corresponding classtype object and associate it 

with the class name in the enclosing symbol table.

Instead of embedding code to construct the class type with subtree traversals during parsing, as 

we did in the preceding sections to construct the signature for a method, for a class, it is easier to 

wait until after parsing and populating the symbol table, that is, just before type checking. That 

way, all the information for constructing the class type is ready for us in the class symbol table. 

A call to a new mkcls() method is added to the semantic() method in j0.icn, after the symbol 

table processing and before type checking, as follows:

   method semantic(root)

   . . .

     root.checkSymTables()

     root.mkcls()

     root.checktype()

The corresponding Java addition to j0.java is shown here:

   root.mkcls();

The mkcls() method stands for make class. When it sees a class declaration, it looks up the class 

name and goes through the class symbol table, putting entries into the correct category. There 

is one list for fields, one for methods, and one for constructors. The Unicon implementation of 

mkcls() from tree.icn is shown here:

  method mkcls()

    if sym == "ClassDecl" then {
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        rv := stab.lookup(kids[1].tok.text)

        flds := []; methds := []; constrs := []

        every k := key(rv.st.t) do

           if match("method ", rv.st.t[k].typ.str()) then

             put(methds, [k, rv.st.t[k].typ])

           else put(flds, [k, rv.st.t[k].typ])

       /(rv.typ) := classtype(kids[1].tok.text, rv.st,

                              flds, methds, constrs)

    }

    else every k := !kids do

      if k.nkids>0 then k.mkcls()

  end

When this traversal hits a class declaration, it looks up the class name and fetches the symbol table 

for that class. Every symbol is checked, and if it is a method, it goes on the list of methods named 

methds; otherwise, it goes on the list of fields, named flds. The class type in the class’s symbol 

table entry is assigned an instance of a class type that holds all of this information. You might 

notice that constructors are not identified and placed on the constructor list. It is OK for Jzero to 

not support constructors, but a larger subset of Java would support at least one constructor for 

each class. In any case, the corresponding Java version is shown as follows:

  void mkcls() {

    symtab_entry rv;

    if (sym.equals("ClassDecl")) {

      int ms=0, fs=0;

      rv = stab.lookup(kids[0].tok.text);

      for(String k : rv.st.t.keySet()) {

        symtab_entry ste = rv.st.t.get(k);

        if ((ste.typ.str()).startsWith("method ")) ms++;

        else fs++;

      }

      parameter flds[] = new parameter[fs];

      parameter methds[] = new parameter[ms];

      fs=0; ms=0;

      for(String k : rv.st.t.keySet()) {

      symtab_entry ste = rv.st.t.get(k);

      if ((ste.typ.str()).startsWith("method "))

         methds[ms++] = new parameter(k, ste.typ);
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      else flds[fs++] = new parameter(k, ste.typ);

      }

      rv.typ = new classtype(kids[0].tok.text,

                     rv.st, flds, methds, new typeinfo[0]);

    }

    else for(int i = 0; i<nkids; i++)

      if (kids[i].nkids>0) kids[i].mkcls();

  }

There is one more piece of code that is needed to complete the handling of instance creation. The 

type field has to be set for the InstanceCreation nodes in the checktype() method. After all the 

work of placing the type of information for the class in the symbol table, this is a simple lookup. 

The Unicon implementation in tree.icn looks like this:

  method checktype(in_codeblock)

   . . .

    "InstanceCreation": {

      if not (rv := stab.lookup(kids[1].tok.text)) then

        stop("unknown type ",kids[1].tok.text)

      if not (typ := \ (rv.typ)) then

        stop(kids[1].tok.text, " has unknown type")

    }

The preceding code is just a symbol table lookup that includes the fetching of the type from the 

symbol table entry, plus lots of error checking. The corresponding Java additions in tree.java 

appear as follows:

void checktype(boolean in_codeblock) {

    …

    case "InstanceCreation":

      symtab_entry rv;

      if ((rv = stab.lookup(kids[0].tok.text))==null)

        j0.semerror("unknown type " + kids[0].tok.text);

      if ((typ = rv.typ) == null)

        j0.semerror(kids[0].tok.text +

               " has unknown type");

      break;
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So, you have learned how to construct type information for classes and use it to produce the 

correct type at instance creation. Now, let’s explore what it will take to support access to names 

defined within the instance.

Checking types of instance accesses
Instance accesses refer to references to the fields and methods of an object. There are implicit 

accesses, where a field or method of the current object is referenced directly by name, and explicit 

accesses, where the dot operator is used to access an object through its public interface. Implicit 

accesses are handled by regular symbol table lookups in the current scope, which will automat-

ically try to enclose scopes, including the class scope where the current object’s class methods 

and variables can be found. This section is about explicit access using the dot operator. In the 

j0gram.y grammar, these are called QualifiedName nodes. Adding support for qualified names 

begins by modifying the MethodCall code in the class tree’s checktype() method. The code pre-

sented earlier in this chapter for method signature checking on simple names is put into an else 

clause. The Unicon implementation in tree.icn adds the following lines:

  method checktype(in_codeblock)

   . . .

    "MethodCall": {

      if rule = 1290 then {

        if kids[1].sym == "QualifiedName" then {

          rv := kids[1].dequalify()

          cksig(rv)

          }

        else {

           if kids[1].sym ~== "token" then

             …

           else stop("can't check type of ", 

                      kids[1].tok.cat)

        }

The code in checktype() recognizes qualified names when used as the name of the method be-

ing called, and it calls a dequalify() method to obtain the type of the dotted name. It then uses 

the signature-checking method, cksig(), as presented earlier, to check the types at the call. The 

corresponding Java code in tree.java is as follows:

void checktype(boolean in_codeblock) {

    …
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        if (kids[0].sym.equals("QualifiedName")) {

          rv = (methodtype)(kids[0].dequalify());

          cksig(rv);

          }

        else {

          …

        }

kids[0] is a tree node with two children. The type of the left child contains the symbol table 

within which we look up the right child to find its method type. The dequalify() method does 

this dirty work. The Unicon implementation in tree.icn looks like this:

  method dequalify()

  local rv, ste

    if kids[1].sym == "QualifiedName" then

      rv := kids[1].dequalify()

    else if kids[1].sym=="token" &

            kids[1].tok.cat=parser.IDENTIFIER then {

      if not \ (rv := stab.lookup(kids[1].tok.text)) then

         stop("unknown symbol ", kids[1].tok.text)

      rv := rv.typ

    }

    else stop("can't dequalify ", sym)

    if rv.basetype ~== "class" then

      stop("can't dequality ", rv.basetype)

    if \ (ste := rv.st.lookup(kids[2].tok.text)) then

      return ste.typ

    else stop(kids[2].tok.text, " is not in ", rv.str())

end

This method first calculates the type for the left-hand side operand. This requires a recursion if 

the left operand is another qualified name. Otherwise, the left operand must be an identifier that 

can be looked up in the symbol table. Either way, the left operand’s type is checked to make sure 

it is a class, and if so, the identifier on the right-hand side of the dot is looked up in that class 

and its type is returned. The corresponding Java implementation in tree.java is shown here:

  public typeinfo dequalify() {

      typeinfo rv = null;
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      symtab_entry ste;

      if (kids[0].sym.equals("QualifiedName"))

        rv = kids[0].dequalify();

      else if (kids[0].sym.equals("token") &

           (kids[0].tok.cat==parser.IDENTIFIER)) {

      if ((ste = stab.lookup(kids[0].tok.text)) != null)

        j0.semerror("unknown symbol " + kids[0].tok.text);

      rv = ste.typ;

      }

      else j0.semerror("can't dequalify " + sym);

      if (!rv.basetype.equals("class"))

        j0.semerror("can't dequalify " + rv.basetype);

      ste = ((classtype)rv).st.lookup(kids[1].tok.text);

      if (ste != null) return ste.typ;

      j0.semerror("couldn't lookup " + kids[1].tok.text +

          " in " + rv.str());

      return null;

  }

In this section, you learned how to handle structure accesses. We included a type-checking con-

sideration where variables of a class type were declared and instantiated. Then, you learned how 

to calculate the types of qualified names within objects.

After all of this type checking, the output is, once again, a bit anticlimactic. You can download the 

code from the book’s Github site, navigate to the ch8/ subdirectory, and build it with the make 

program. This will build both the Unicon and the Java versions. As a reminder, you will have to 

configure installed software and/or set your CLASSPATH to the directory where you unpacked the 

book examples, as discussed from Chapter 2, Programming Language Design, to Chapter 5, Syntax 

Trees. When you run the j0 command with type checking in place, it produces an output that is 

similar to the following:
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Figure 8.1: Type checking on parameters and return types

If the program has no type errors, all the lines will end with OK. In later chapters, Jzero will not 

bother to output when successful type checks occur, so this will be the last you see of these OK lines.

Summary
This chapter was the second of two chapters covering various aspects of type checking. You learned 

how to represent compound types. For example, you learned how to build method signatures and 

use them to check method calls. All of this is accomplished via traversals of the syntax tree, and 

much of it involves adding minor extensions to the functions presented in the previous chapter.

This chapter also showed you how to recognize array declarations and build the appropriate type 

representations for them. You learned how to check whether correct types are being used for array 

creation and access and to build type signatures for method declarations. You also learned how 

to check that the correct types are being used for method calls and returns.
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Congratulations on making it this far! At this point, we have completed our discussion of the 

front half of a programming language implementation, in which input source code is analyzed. 

Notations and tools helped greatly with lexical and syntax analysis, after which almost everything 

has been tree construction and traversals.

While writing fancier tree traversal functions is a valuable skill in its own right, representing type 

information and propagating it around the syntax tree to where it is needed also makes excellent 

practice of the skills you will need for the next steps in your compiler. Now that you have imple-

mented type checking, you are ready to move on to code generation. This denotes the midpoint 

in your programming language implementation. So far, you have been gathering information 

about the program. The next chapter begins working toward the translated output of the input 

program, starting with intermediate code generation.

Questions
1.	 What are the main differences between checking the types of array accesses and checking 

the types of struct or class member accesses?

2.	 How do a function’s return statements know what type they are returning? They are often 

quite far away in the tree from the location where the function’s return type is declared.

3.	 How are types checked during a function call? How does this compare with type checking 

operators such as plus and minus?

4.	 Besides accesses via the [ ] and . operators, what other forms of type checking are nec-

essary for arrays, structures, or class types?

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw


9
Intermediate Code Generation

After the semantic analysis is complete, you can contemplate how to execute the program. For 

compilers, the next step is to produce a sequence of machine-independent instructions called 

intermediate code. This chapter starts by defining intermediate code and then shows you how 

to generate intermediate code, by looking at examples for the Jzero language. After the preceding 

chapters, where you learned how to write tree traversals that analyze and add information to the 

syntax tree constructed from the input, in this chapter we finally begin the process of construct-

ing the compiler’s output. Intermediate code generation is usually followed by an optimization 

phase and final code generation for a target machine.

This chapter covers the following main topics: 

•	 What is intermediate code?

•	 An intermediate code instruction set

•	 Generating code for expressions

•	 Generating code for control flow

We will start by gaining some perspective on what intermediate code is, and why it is so useful. 

You can think of intermediate code generation as the process of preparing for final code generation.

Technical requirements
The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-

Your-Own-Programming-Language-Second-Edition/tree/master/ch9

The Code in Action video for the chapter can be found here: https://bit.ly/30t3gNQ

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch9
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch9
https://bit.ly/30t3gNQ
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What is intermediate code?
At this point, you may be asking, what is intermediate code, and what will I need to generate it? 

We previously defined it as a sequence of machine-independent instructions, but what does that 

mean? A sequence can be represented by either an array or a linked list, or possibly something 

fancier; in Unicon, it will just be a list, while in Java, it will be an ArrayList. But what are the 

elements – these machine-independent instructions? Like a machine-dependent instruction, a 

machine-independent instruction has an opcode and zero or more data values used as operands. 

The difference is that instructions for a real machine have a very specific and precise binary layout 

in one or more bytes, using machine-specific registers and memory addressing modes. In contrast, 

machine-independent instructions refer to data values in a more abstract way, as values to be 

found at some location in memory.

The act of generating intermediate code produces enough information to enable the task of gen-

erating the final code that can be run. Like many things in life, a daunting task becomes possible 

when you prepare well. Eager developers might want to skip this phase and jump straight to 

final code generation, so let’s consider why intermediate code generation is so advantageous. 

Generating final machine code is a complex task, and most compilers use intermediate code to 

break the work up into stages to complete it successfully. This section will show you the details of 

what and why, starting with some specific technical motivations to generate intermediate code.

Why generate intermediate code?
The goal of this phase of your compiler is to produce a list of machine-independent instructions 

for each method in the program. Generating preliminary machine-neutral code as an intermediate 

representation of a program’s instructions has the following benefits:

•	 It allows you to identify the memory regions and byte offsets in which variables will be 

stored before worrying about machine-specific details, such as registers and addressing 

modes.

•	 It allows you to work out most of the details of the control flow, such as identifying where 

labels and go-to instructions will be needed.

•	 Including intermediate code in a compiler reduces the size and scope of the CPU-specific 

code, improving the portability of your compiler to new architectures.

•	 It allows you to check your work up to this point and provides output in a human-readable 

format, before you get bogged down in low-level machine code.
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•	 Generating intermediate code allows for a wide range of optimizations to be applied be-

fore machine-specific final code generation. Optimizations that are made to intermediate 

code benefit all final code generators that you target after this point.

Now, let’s look at the memory regions that are introduced and manipulated in the intermediate 

code.

Learning about the memory regions in the generated 
program
In an interpreter, an address in the user’s program refers to memory within the interpreter’s 

address space and can be manipulated directly. A compiler has the more difficult challenge of 

reasoning about addresses that are abstractions of memory locations in future executions of the 

generated program. At compile time, the user program’s address space does not exist yet, but 

when it does, it will be organized in a similar way to the following:

Figure 9.1: Runtime memory regions

Some addresses will be in static memory, some on the stack, some in the heap, and some in the 

code. In general terms, the uses of these regions are summarized as follows:

•	 code: Code regions are usually read-only static regions that contain nothing but code.

•	 static: Static data regions contain things like global variables and constants.

•	 stack: Stack regions contain parameters, saved registers, and local variables associated 

with function calls and returns. They allocate and deallocate memory by growing and 

shrinking at one end.

•	 heap: Heap regions contain data objects that are allocated on demand and returned and 

reused when they are no longer needed.

In practice, these fundamental regions are further divided into subregions for specific purposes. 

In the final code, the means by which these regions are accessed often differs, but for intermediate 

code addresses, we just need a way to tell what region each address lives in. 
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We could use integer codes to represent these different memory regions, but in Unicon and Java, 

a string name is a direct human-readable way to designate them. The (sub)regions we will use 

for intermediate code and their interpretations are shown here:

•	 "loc": In the local region, the offset is relative to the top of the stack. For example, it will 

probably be accessed relative to a stack frame pointer register.

•	 "global": The global region holds statically allocated variables. The offset is relative to 

the start of a data region that is fixed at load time. Depending on your final code, it may 

be resolved to an absolute address.

•	 "strings": The strings region holds statically allocated read-only values. Aside from be-

ing read-only, its properties are like those of the global region. It typically holds strings 

and other constant structured data; small constants belong in the "imm" pseudo region, 

defined below.

•	 "lab": A unique integer label is used to abstract an offset relative to the start of the code 

region, which is usually a read-only static region. Labels are resolved to an absolute address 

in the final code, but we let the assembler do the work of calculating the byte offsets. In 

intermediate code, as in assembler code, labels are just names for machine instructions.

•	 "class": The offset is relative to the start of some object allocated from the heap, meaning 

it will be accessed relative to another address. For example, an object-oriented language 

might address instance variables as offsets relative to a self or this pointer. The self or 

this pointer might in turn be stored in a dedicated register, a fixed offset from the frame 

pointer register, or a global variable.

•	 "imm": The pseudo-region for immediate values denotes that the offset is the actual value, 

not an address. Most CPUs have limits on the size of values they can store in the instruc-

tion itself. The mapping of the immediate pseudo-region into the final code will typically 

attempt to map values to the instruction if the instruction set supports it; otherwise, they 

will be mapped into memory as additions to the strings region.

Regions are not very difficult once you are used to them. Now, let’s look at how they are used in 

the data structure that the compiler uses to represent addresses in the generated code.

Introducing data types for intermediate code
The most common form of intermediate code used in compilers is three-address code. Each 

instruction will contain an opcode and from zero to three operands, which are the values that 

are used by that instruction, usually an address. 
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You might wonder, why is the number three, and not four, or two? Skipping the obligatory Monty 

Python joke here, human arithmetic is largely based on binary operators in which two source 

values are used to produce a third value as a result. Actual hardware CPU instruction sets may 

use three addresses per instruction or some other number, but for machine-independent inter-

mediate code, three is a reasonable number of operands; hence, we will stick with three-address 

code, which is mainstream.

For the Jzero compiler, we will define a class called address that represents an address as a region 

and an offset. The Unicon implementation of the address class begins in the address.icn file, 

as shown here:

class address(region, offset)

end

The corresponding Java version requires us to decide what types to use for the region and offset. 

We are using strings to represent regions, while an offset is typically a distance in bytes from the 

start of a region, so it can be represented by an integer. The Java implementation of the address 

class in address.java is as follows:

public class address {

   public String region;

   public int offset;

   address(String s, int x) { region = s; offset = x; }

}

We will add methods to this class for use later. Given this representation of addresses, we can 

define our three-address code in a class called tac, which consists of an opcode and up to three 

addresses. Not all opcodes will use all three addresses. The Unicon implementation of the tac 

class in tac.icn is shown here:

class tac(op, op1, op2, op3)

end

The corresponding Java implementation in tac.java is as follows. Several overloaded constructors 

are provided for different numbers of operands:

public class tac {

  String op;

  address op1, op2, op3;

   tac(String s) { op = s; }
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   tac(String s, address o) { op = s; op1 = o; }

   tac(String s, address o1, address o2) {

      op = s; op1 = o1; op2 = o2; }

   tac(String s, address o1, address o2, address o3) {

      op = s; op1 = o1; op2 = o2; op3 = o3; }

}

To make it convenient to assemble lists of three-address instructions, we will add a factory method 

named gen() to the class tree, which creates a single three-address instruction and returns a 

new list of size one that contains it. One interesting question that comes to mind at this point is 

whether to use Unicon’s built-in list type and Java’s ArrayList class, or implement an explicitly 

linked list representation. An explicitly linked list representation would keep the Unicon and 

Java code closer in sync and facilitate some sharing of sublists. Plus, to be honest, I am a little 

bit ashamed at the thought of using Java’s ArrayList get() and set(), length versus length() 

versus size(), and so forth.

On the other hand, if we roll our own linked lists, we will be wasting space and time on relatively 

low-level code for basic operations that the implementation language should provide. So, we 

will use the built-in list type in Unicon and ArrayList in Java and see how well they perform.

 The Unicon implementation in tree.icn is shown here:

method gen(o, o1, o2, o3)

   return [ tac(o, o1, o2, o3) ]

end

The Unicon version does not have to do anything to allow arguments to be omitted and initial-

izes omitted o1…o3 parameters to the null value. The corresponding Java implementation in 

tree.java uses variable argument method syntax. It looks like this:

ArrayList<tac> gen(String o, address ... a) {

  ArrayList<tac> L = new ArrayList<tac>();

  tac t = null;

  switch(a.length) {

    case 3: t = new tac(o, a[0], a[1], a[2]); break;

    case 2: t = new tac(o, a[0], a[1]); break;

    case 1: t = new tac(o, a[0]); break;

    case 0: t = new tac(o); break;

    default: j0.semerr("gen(): wrong # of arguments");

  }
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  L.add(t);

  return L;

}

The preceding examples demonstrate two ways that Java awkwardly supports methods with a 

variable number of arguments. First, there is method overloading: the tac class has four different 

constructors to accommodate a different number of arguments. On the other hand, the gen() 

method uses Java’s variable argument syntax, which provides a weird array-like thing that is not 

an array to hold the arguments to the method.

Three-address code instructions are easily mapped down into short sequences of 1–2 native 

instructions, and computers with complex instruction sets often have instructions that have 

three operands and more direct correspondence to three-address code. Now, let’s look at how 

to augment tree nodes to include information needed for intermediate code, including these 

three-address instructions.

Adding the intermediate code attributes to the tree
In the previous two chapters, we added symbol table scope and type information to the syntax 

tree nodes. Now, it is time to add representations for several pieces of information needed for 

code generation.

For every tree node that contains intermediate code, a field named icode will denote the list of 

code instructions that correspond to executing the code for that subtree.

For expressions, a second attribute named addr will denote the address where the computed 

value of the expression can be found after that expression executes.

For every tree node that contains intermediate code, the first field denotes the label to use as a 

target when the control flow should execute at the beginning of that code, and the follow field 

denotes the label to use as a target when the control flow executes whatever instruction logically 

comes immediately after that code.

Lastly, for every tree node that represents a Boolean expression, the onTrue and onFalse fields will 

hold labels to use as targets when that Boolean expression is found to be true or false, respectively. 

These names were chosen to avoid the reserved words true and false in Java.

In Unicon, adding these attributes to the class tree in tree.icn leaves us with the following:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab,

            typ,icode,addr,first,follow,onTrue,onFalse)
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Our tree nodes are getting fatter and fatter. While we may have to allocate thousands of them 

to compile a program, on a machine with gigabytes of main memory, the memory cost of these 

added attributes generally will not be noticeable. The corresponding Java additions to tree.java 

look like this:

class tree {

   . . .

   typeinfo typ;

   ArrayList<tac> icode;

   address addr, first, follow, onTrue, onFalse;

At this point, you might be wondering how we plan to calculate these new attributes. The answer 

is mostly that they are synthesized via a post-order tree traversal, which we will look at in the 

following sections. However, there will be a few wrinkles.

Generating labels and temporary variables
A couple of helper methods will prove instrumental during intermediate code generation. You 

can think of them as factory methods if you want; a factory method is a method that constructs 

an object and returns it. In any case, we need one for labels, to facilitate control flow, and one for 

temporary variables. Let’s call them genlabel() and genlocal().

The label generator, genlabel(), generates a unique label. A unique integer can be obtained from 

serial.getid(), so genlabel() can, for example, concatenate the string  "L" with the result from 

a call to that method. It is an interesting question whether genlabel() should return the label 

as an integer or string, an address, a three-address instruction, or a list containing a three-ad-

dress instruction. The right answer is pr obably an address. The Unicon code for genlabel() in 

tree.icn might look like this:

method genlabel()

   return address("lab", serial.getid())

end

The corresponding Java method in tree.java is as follows:

address genlabel() {

   return new address("lab", serial.getid());

}
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The temporary variable generator, genlocal(), needs to reserve a chunk of memory in the local 

region. Logically, this entails memory allocation on the top of the stack in some future address 

space when the generated program executes at a later date. This is heady stuff. In practice, a stack 

allocation is made in a big chunk whenever a method is called. The compiler calculates how big 

that chunk needs to be for each method, including all the local variables within the program, as 

well as the temporary variables that are used to calculate the partial results during the various 

operators, when the expressions in the method are executed.

Each local variable requires some number of bytes, but for this book, the units allocated are full 

64-bit words whose address is an even multiple of eight; some CPUs require this property. Offsets 

are reported in bytes, but if you need a byte, you round up and allocate a word. The symbol table 

is where Jzero allocates local variables. In the tree class code, methods can invoke genlocal() 

from the symbol table with the stab.genlocal() expression. To implement genlocal(), symbol 

table entries are extended to keep track of the address that each new variable occupies, and the 

symbol table itself tracks how many bytes have been allocated in total. Whenever a request for a 

new variable comes in, we allocate the number of words it requires, and we increment a counter 

by that amount.

As given, genlocal() allocates a single word and produces an address for it. For a language that 

allocates multi-word entities on the stack, genlocal() can be extended to take a parameter that 

specifies the number of words to allocate, but since Jzero allocates arrays and class instances 

from the heap, Jzero’s genlocal() can get away with allocating one eight-byte word each call.

Symbol table entries are extended with an address field named addr. The Unicon addition to 

symtab_entry.icn is shown here:

class symtab_entry(sym,parent_st,st,isConst,typ,addr)

The Java addition to symtab_entry.java looks like this:

public class symtab_entry {

   . . .

   address addr;

   . . .

   symtab_entry(String s, symtab p, boolean iC,

        symtab t, typeinfo ti, address a) {

      sym = s; parent_st = p; isConst = iC;

      st = t; typ = ti; addr = a;
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The symbol table class gets a byte counter for how many bytes have been allocated within the 

region corresponding to the symbol table. Symbol table insertion places an address in the symbol 

table entry and increments the counter. A call to genlocal() inserts a new variable. As written, 

this method allows only for the creation of temporary variables to hold the results of operations 

that produce integers. A language larger than Jzero might need methods that create additional 

types of local variables. The Unicon implementation in symtab.icn is shown here:

class symtab(scope, parent, t, count)

   . . .

  method insert(s, isConst, sub, typ)

      . . .

      t[s] := symtab_entry(s, self, sub, isConst, typ,

                           address(scope,count))

               count +:= 8

      . . .

  end

  method genlocal()

  local s := "__local$" || count

    insert(s, false, , typeinfo("int"))

    return t[s].addr

  end

initially

  t := table()

  count := 0

end

The preceding change to the insert() method passes in the address at the top of the region to the 

symtab_entry constructor whenever a variable is allocated, and then increments the counter to 

allocate space for it. The addition of the genlocal() method consists of inserting a new variable 

and returning its address. The temporary variable has a dollar symbol in it, $, so that the name 

cannot appear as a regular variable name in the source code. The Java implementation of this 

addition to symtab.java consists of the following changes:

public class symtab {

  . . .

  int count;



Chapter 9 227

  . . .

  void insert(String s, Boolean iC, symtab sub,

               typeinfo typ){

         . . .

         t.put(s, new symtab_entry(s, this, iC, sub, typ,

                                   new address(scope,count)));

         count += 8;

      }

   }

  address genlocal() {

            String s = "__local$" + count;

            insert(s, false, null, new typeinfo("int"));

            return t.get(s).addr;

   }

With the helper methods for generating labels and temporary variables in place, let’s look at an 

intermediate code instruction set.

An intermediate code instruction set
Intermediate code is like machine-independent assembler code for an abstract CPU. The in-

struction set defines a set of opcodes. Each opcode specifies its semantics, including how many 

operands it uses and what state changes occur from executing it. Because this is intermediate 

code, we do not have to worry about registers or addressing modes – we can just define state 

changes in terms of what modifications must occur in the main memory. The intermediate code 

instruction set includes both regular instructions and pseudo instructions, as is the case for other 

assembler languages. Let’s look at a set of opcodes for the Jzero language. There are two categories 

of opcodes: instructions and declarations.

Instructions
Except for immediate mode, the operands of instructions are addresses. Based on their operand 

position, most instructions implicitly dereference (read) and assign (write) values in memory 

located at those addresses. On typical modern machines, units of words are 64 bits. Offsets are 

given in bytes:
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Figure 9.2: Different opcodes, the C equivalents, and their descriptions

Next, we will have a look at some of the declarations.

Declarations
Declarations and other pseudo-instructions typically associate a name with some amount of 

memory in one of the memory regions of the program. The following are some declarations and 

their descriptions:

Figure 9.3: Declarations and their descriptions
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These instructions and declarations are general and able to express a variety of computations. 

Input/output could be modeled by adding instructions or by making runtime system calls. We 

will make use of this instruction set substantially later in this chapter, starting in the Generating 

code for expressions section. But first, we must compute some more attributes in our syntax tree 

that are needed for control flow.

Annotating syntax trees with labels for control flow
The code for some tree nodes will be sources or targets of control flow. To generate code, we need 

a way to generate the labels at the targets and propagate that information to the instructions 

that will go to those targets. It makes sense to start with the attribute named first. The first 

attribute holds a label to which branch instructions can jump to execute a given statement or 

expression. It can be synthesized by brute force if need be; if you had to, you could just allocate 

a unique label to each tree node. The result would be replete with redundant and unused labels, 

but it would work. For most nodes, the first label can be synthesized from one of their children, 

instead of allocating a new one.

Consider the additive expression e1 + e2, which builds a non-terminal named AddExpr. If there 

was any code in e1, it would have a first field, and that would be the label to use for the first 

field of the entire AddExpr. If e1 had no code, for example, because it was a simple variable or 

constant, e2 might have some code and supply the first field for the parent. If neither subex-

pression has any code, then we need to generate a new label for whatever code we generate in the 

AddExpr node that performs the addition. Similar logic applies to other operators. The Unicon 

implementation of the genfirst() method in tree.icn looks like this:

method genfirst()

  every (!\kids).genfirst()

  case sym of {

  "UnaryExpr": first := \kids[2].first | genlabel()

  "AddExpr"|"MulExpr": first := \kids[1|2].first | 

                                 genlabel()

  . . .

  default: first := (!\kids).first

  }

end

The case branches in the preceding code rely on Unicon’s goal-directed evaluation. A non-null 

test is applied to children’s first fields for those children that may have code. If those non-null 

tests fail, genlabel() is called to assign first if this node generates an instruction. 
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The default, which is good for a lot of non-terminals higher up in the grammar, is to assign first 

if a child has one but not to call genlabel(). The corresponding Java code in tree.java looks 

like this:

void genfirst() {

  if (kids != null) for(tree k:kids) k.genfirst();

  switch (sym) {

    ...

    case "AddExpr": case "MulExpr": case "RelExpr": {

      if (kids[0].first != null) first = kids[0].first;

      else if (kids[1].first != null)

                first = kids[1].first;

      else first = genlabel();

      }

   . . .

   }

}

In addition to the first attribute, we need an attribute named follow that denotes the label 

to jump to for whatever code immediately comes after a given block. This will help implement 

statements such as if-then, as well as break statements. The follow attribute propagates in-

formation from ancestors and siblings rather than children. The implementation must use an 

inherited attribute, instead of a synthesized one. Instead of a simple bottom-up post-order tra-

versal, information is copied down in a pre-order traversal, as was seen previously for copying 

type information into variable declaration lists. The follow attribute uses first attribute values 

and must be computed after genfirst() has been run.

Consider the most straightforward grammar rule where you might define a follow attribute. In 

the Jzero grammar, the basic rule for statements executing in sequence consists of the following:

BlockStmts : BlockStmts BlockStmt ;

For an inherited attribute, the parent (BlockStmts, which is to the left of the colon) is responsible 

for providing the follow attribute for the two children. The left child’s follow will be the first 

instruction in the right child, so the attribute is moved from one sibling to the other. The right 

child’s follow will be whatever follows the parent, so it is copied down. Once these values have 

been set, the parent must have the children do the same for their children, if any. The Unicon 

implementation in tree.icn is shown here:

method genfollow()
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   case sym of {

   . . .

   "BlockStmts": {

      kids[1].follow := kids[2].first

      kids[2].follow := follow

      }

   . . .

   }

   every (!\kids).genfollow()

end

The corresponding Java code in tree.java looks like this:

void genfollow() {

  switch (sym) {

   . . .

   case "BlockStmts": {

      kids[0].follow = kids[1].first;

      kids[1].follow = follow;

      break;

      }

   . . .

  }

  if (kids != null) for(tree k:kids) k.genfollow();

}

Computing these attributes enables the generation of instructions for the control flow that goes 

to these various labels. You may have noticed that a lot of these first-and-follow labels might 

never be used. We can either generate them all anyway, or we can devise a mechanism to only 

emit them when they are an actual target of a branch instruction. Before we move on to code 

generation for the challenging control flow instructions that use these labels, let’s consider the 

simpler problem of generating code for ordinary arithmetic and similar expressions.

Generating code for expressions
The easiest code to generate is straight-line code consisting of statements and expressions that 

execute in sequence with no control flow. As described earlier in this chapter, there are two at-

tributes to compute for each node: the attribute for where to find an expression’s value is called 

addr, while the intermediate code necessary to compute its value is called icode. 
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The values to be computed for these attributes for a subset of the Jzero expression grammar are 

shown in the following table. The ||| operator refers to list concatenation:

Figure 9.4: Semantic rules for expressions

The main intermediate code generation algorithm is a post-order traversal of the syntax tree. To 

present it in small chunks, the traversal is broken into the main method, gencode(), and helper 

methods for each non-terminal. In Unicon, the gencode() method in tree.icn looks as follows:

method gencode()

  every (!\kids).gencode()

  case sym of {

    . . .

    "AddExpr": { genAddExpr() }

    "MulExpr": { genMulExpr() }

    . . .

    "token":   { gentoken() }

    default: {

       icode := []

       every icode |||:= (!\kids).icode
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       }

   }

end

The default case for tree nodes that do not know how to generate code consists of just concate-

nating the code of the children. The corresponding Java code in tree.java looks like this:

void gencode() {

  if (kids != null) for(tree k:kids) k.gencode();

  switch (sym) {

  . . .

  case "AddExpr": { genAddExpr(); break; }

  case "MulExpr": { genMulExpr(); break; }

  . . .

  case "token": { gentoken(); break; }

  default: {

    icode = new ArrayList<tac>();

    if (kids != null) for(tree k:kids) 

        icode.addAll(k.icode);

    }

  }

}

The methods that are used to generate code for specific non-terminals must occasionally generate 

different instructions, depending on the production rule. The Unicon code for genAddExpr() is 

shown here:

method genAddExpr()

      addr := genlocal()

      icode := kids[1].icode ||| kids[2].icode |||

              gen(if rule=1320 then "ADD" else "SUB",

                  addr, kids[1].addr, kids[2].addr)

end

After generating a temporary variable to hold the result, the code is constructed by adding the 

appropriate arithmetic instruction to the end of the children’s code. In this method, rule 1320 

refers to an addition; otherwise, the operation is a subtraction. The corresponding Java code 

looks like this:

void genAddExpr() {
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    addr = genlocal();

    icode = new ArrayList<tac>();

    icode.addAll(kids[0].icode); 

    icode.addAll(kids[1].icode);

    icode.addAll(gen(((rule==1320)?"ADD":"SUB"), addr,

                    kids[0].addr, kids[1].addr));

}

The gentoken() method generates code for terminal symbols. The icode attribute for terminal 

symbols is empty. In the case of a variable, the addr attribute is a symbol table lookup, while in 

the case of a literal constant, the addr attribute is a reference to a value in the constant region, or 

an immediate value. In Unicon, the gentoken() method looks like this:

method gentoken()

  icode := []

  case tok.cat of {

    parser.IDENTIFIER: { addr := stab.lookup(tok.text).addr }

    parser.INTLIT: { addr := address("imm", tok.ival) }

    . . .

    }

end

The icode attribute is an empty list, while the addr attribute is obtained via a symbol table lookup. 

In Java, gentoken() looks like this:

void gentoken() {

  icode = new ArrayList<tac>();

  switch (tok.cat) {

    case parser.IDENTIFIER: {

      addr = stab.lookup(tok.text).addr; break; }

    case parser.INTLIT: {

      addr = new address("imm", tok.ival); break; }

    . . .

    }

}

You may observe from all this that generating intermediate code for expressions in straight-line 

code is mainly a matter of concatenating the operands’ code, followed by adding one or more 

new instructions per operator. This work is made easier by allocating space in the form of the 

addresses of temporary variables ahead of time. The code for control flow is a bigger challenge.
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Generating code for control flow
Generating code for control structures such as conditionals and loops is more challenging than 

code for arithmetic expressions, as shown in the preceding section. Instead of using synthesized 

attributes in a single bottom-up pass, code for control flow uses label information that must be 

moved to where it is needed using inherited attributes. This may involve multiple passes through 

the syntax tree. We will start with the conditional expression logic needed for even the most basic 

control flow, such as if statements, and then show you how to apply that to loops, followed by 

the considerations needed for method calls.

Generating label targets for condition expressions
We have already set up for control flow by assigning the first and follow attributes, as described 

in the Annotating syntax trees with labels for control flow section. Consider what role the first 

and follow attributes play, starting with the simplest control flow statement, the if statement. 

Consider a code fragment such as the following:

if (x < 0) x = 1;

y = x;

The syntax tree for these two statements is shown here:

Figure 9.5: Syntax tree illustrating control flow

The BlockStmts node assigns the follow attribute of the IfThenStmt node to the first attribute 

of the y=x assignment. The code that is generated for RelExpr should go to the first label of the 

then part, pictured here as , if RelExpr is true. 
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It should follow the whole IfThenStmt if RelExpr is false. To implement this, label values com-

puted from IfThenStmt can be inherited down into two new attributes of RelExpr. As discussed 

earlier, we do not call them true and false because those are Java-reserved words. The attribute 

for where to go when an expression is true is called onTrue, and the attribute for where to go when 

an expression is false is called onFalse. The semantic rules we want to implement are shown in 

the following table:

Figure 9.6: Semantic rules for the if-then and if-then-else statements

As we can see, the condition in IfThenStmt is an Expr that inherits onTrue from Stmt, which is 

its then part, and inherits onFalse from the parent’s follow attribute – whatever code follows 

the whole IfThenStmt. These attributes must be inherited down into Boolean subexpressions 

through operators such as logical AND and OR. The semantic rules for the Boolean operators are 

shown in the following table:

Figure 9.7: Semantic rules for Boolean expressions
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The code to compute the onTrue and onFalse attributes is placed in a method called gentargets(). 

The Unicon implementation in tree.icn looks like this:

method gentargets()

   case sym of {

   "IfThenStmt": {

      kids[1].onTrue := kids[2].first

      kids[1].onFalse := follow

      }

   "CondAndExpr": {

      kids[1].onTrue := kids[2].first

      kids[1].onFalse := onFalse

      kids[2].onTrue := onTrue

      kids[2].onFalse := onFalse

      }    

   . . .

   }

   every (!\kids).gentargets()

end

The corresponding Java method looks like this:

void gentargets() {

   switch (sym) {

   case "IfThenStmt": {

      kids[0].onTrue = kids[1].first;

      kids[0].onFalse = follow;

      break;

      }

   case "CondAndExpr": {

      kids[0].onTrue = kids[1].first;

      kids[0].onFalse = onFalse;

      kids[1].onTrue = onTrue;

      kids[1].onFalse = onFalse;

      break;

      }    

   . . .

   }
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   if (kids!=null) for(tree k:kids) k.gentargets();

}

Having seen how the onTrue and onFalse attributes get assigned, perhaps the last piece of the 

puzzle is the code that’s generated for relational operators, such as the x < y test. On these op-

erators, it would be possible to generate code that computes a true (1) or false (0) result and store 

it in a temporary variable in the same way that results are computed for arithmetic operators. 

However, the point of computing the onTrue and onFalse labels was to generate code that would 

jump directly to the correct label, depending on whether a test was true or false. This is helpful 

for implementing the short-circuit semantics for the Boolean operators that Jzero inherits from 

Java and C. Here is the Unicon implementation of the genRelExpr() method, which is called from 

gencode() to generate intermediate code for relational expressions:

method genRelExpr()

  op :=  case kids[2].tok.cat of {

    ord("<"): "BLT"; ord(">"): "BGT";

    parser.LESSTHANOREQUAL: "BLE"

    parser.GREATERTHANOREQUAL: "BGE"

    }

  icode := kids[1].icode ||| kids[3].icode |||

            gen(op, onTrue, kids[1].addr, kids[3].addr) |||

            gen("GOTO", onFalse)

end

This code starts by setting the op variable to the three-address opcode that corresponds to the 

integer category of the operator, extracted from kids[2].tok.cat. Then, it constructs code by 

concatenating the left and right operands, followed by a conditional branch if the operator eval-

uates to true, followed by an unconditional branch if the operator was false. The corresponding 

Java implementation looks like this. Although we know the shape of the tree node on which we 

void genRelExpr() {

  String op;

  switch (kids[1].tok.cat) {

    case '<': op="BLT"; break; case ';': op="BGT"; break;

    case parser.LESSTHANOREQUAL: op="BLE"; break;

    default: op="BGE";

    }
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  icode = new ArrayList<tac>();

  icode.addAll(kids[0].icode); icode.addAll(kids[2].icode);

  icode.addAll(gen(op, onTrue, kids[0].addr, kids[2].addr));

  icode.addAll(gen("GOTO", onFalse));

}

Compared to the code that is generated for ordinary arithmetic, the code for control structures 

such as if statements passes a lot of label information around. Now, let’s look at what must be 

added to the code to support loop control structures.

Generating code for loops
This section presents ideas for generating intermediate code for while loops and for loops. The 

while loop code should be almost identical to an if-then statement, with the sole additions of 

a label at the top, and a goto at the bottom to jump to that label. A for loop is just a while loop 

with a couple of additional expressions thrown in. The following table shows the semantic rules 

for these two control structures:

Figure 9.8: Semantic rules for the intermediate code generation of loops
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The genWhileStmt() method is representative of similar control flow code generation methods 

such as genIfStmt() and genForStmt(). Most of the work is done while computing the first, 

follow, onTrue, and onFalse attributes. The Unicon implementation of genWhileStmt() is as 

follows:

method genWhileStmt()

  icode := gen("LAB", kids[1].first) ||| kids[1].icode |||

           gen("LAB", kids[1].onTrue) |||

           kids[2].icode ||| gen("GOTO", kids[1].first)

end

The Java implementation of genWhileStmt() is shown here:

void genWhileStmt() {

  icode = new ArrayList<tac>();

  icode.addAll(gen("LAB", kids[0].first));

  icode.addAll(kids[0].icode);

  icode.addAll(gen("LAB", kids[0].onTrue));

  icode.addAll(kids[1].icode);

  icode.addAll(gen("GOTO", kids[0].first));

}

There is one remaining aspect of control flow to present. Method (or function) calls are funda-

mental building blocks in all forms of imperative code and object-oriented code.

Generating intermediate code for method calls
The intermediate code instruction set provides three opcodes related to method calls: PARM, CALL, 

and RET. To invoke a method, the generated code executes several PARM instructions, one for each 

parameter, followed by a CALL instruction. The called method then executes until it reaches a 

RET instruction, at which time it returns to the caller. This intermediate code is an abstraction of 

several different ways that hardware supports method (or function) abstractions.

On some CPUs, parameters are mostly passed in registers, while on others, they are all passed on 

the stack. At the intermediate code level, we must worry about whether PARM instructions occur 

in the order actual parameters appear in the source code or in reverse order. In object-oriented 

languages such as Jzero, we also worry about how a reference to an object is accessible inside 

a called method. Programming languages have answered these questions in different ways on 

different CPUs, but for our purposes, we’ll use the following calling conventions: parameters are 

given in reverse order, followed by the object instance (a self or this pointer) as an implicit extra 

parameter, followed by the CALL instruction.
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When gencode() gets to a MethodCall, which is a type of primary expression in our grammar, it 

will call genMethodCall(). Its Unicon implementation is shown here:

method genMethodCall()

  local nparms := 0

  if k := \ kids[2] then {

    icode := k.icode

    while k.sym === "ArgList" do {

      icode |||:= gen("PARM", k.kids[2].addr)

      k := k.kids[1]; nparms +:= 1

      }

    icode |||:= gen("PARM", k.addr); nparms +:= 1

    }

  else icode := [ ]

  if kids[1].sym === "QualifiedName" then {

    icode |||:= kids[1].icode

    icode |||:= gen("PARM", kids[1].kids[1].addr)

    }

  else icode |||:= gen("PARM", "self")

  icode |||:= gen("CALL", kids[1].addr, nparms)

end

The generated code starts with the code to compute the values of the parameters. Then, it issues 

PARM instructions in reverse order, which comes for free from the way the context-free grammar 

constructed the syntax tree for argument lists. The trickiest parts of this method have to do with 

how the intermediate code knows the address to use for the current object. The Java implemen-

tation of genMethodCall() is shown here:

void genMethodCall() {

  int nparms = 0;

  icode = new ArrayList<tac>();

  if (kids[1] != null) {

    icode.addAll(kids[1].icode);

    tree k = kids[1];

    while (k.sym.equals("ArgList")) {

      icode.addAll(gen("PARM", k.kids[1].addr));

      k = k.kids[0]; nparms++;

      }

    icode.addAll(gen("PARM", k.addr)); nparms++;
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    }

  if (kids[0].sym.equals("QualifiedName")) {

    icode.addAll(kids[0].icode);

    icode.addAll(gen("PARM", kids[0].kids[0].addr));

    }

  else icode.addAll(gen("PARM", new address("self",0)));

  icode.addAll(gen("CALL", kids[0].addr,

                   new address("imm", nparms)));

}

What this section showed has probably convinced you that code generation for the calling side 

is more challenging than code generation for the return instruction, which you can examine in 

this chapter’s code on GitHub. It is also worth mentioning that every method body’s code might 

have a ret instruction appended, ensuring that code never executes past the end of a method 

body and into whatever comes after it.

Reviewing the generated intermediate code
You cannot run intermediate code, but you should check it carefully. Ensure that the logic looks 

correct on test cases for every feature that you care about. To check the generated code for a file 

such as hello.java, run the following command using either the Unicon (left-hand side) or 

Java implementation (right-hand side). As a reminder for Java, on Windows, you must execute 

something like set CLASSPATH=".;C:\byopl" first or the equivalent in your Control Panel or 

Settings. On Linux, it might look like export CLASSPATH=.:..:

j0 hello.java               java ch9.j0 hello.java

The output should look similar to the following:

.string

L0:

        string  "hello, jzero!"

.global

        global  global:8,hello

        global  global:0,System

.code

proc    main,0,0

        ASIZE   loc:24,loc:8

        ASN     loc:16,loc:24

        ADD     loc:32,loc:16,imm:2
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        ASN     loc:16,loc:32

L138:

        BGT     L139,loc:16,imm:3

        GOTO    L140

L139:

        PARM    strings:0

        PARM    loc:40

        CALL    PrintStream__println,imm:1

        SUB     loc:48,loc:16,imm:1

        ASN     loc:16,loc:48

        GOTO    L138

L140:

        RET

end

no errors

Looking over intermediate code is when you start to realize that you may be able to finish this 

compiler and translate your source code down into machine code of some kind. If you are not 

excited, you should be. A lot of errors can be spotted at this point, such as omitted features, or 

branch statements that go to non-existent labels, so check it out before you rush ahead to gen-

erate the final code.

Summary
In this chapter, you learned how to generate intermediate code. Generating intermediate code is 

the first vital step in synthesizing the instructions that will eventually allow a machine to run the 

user’s program. The skills you learned in this chapter build on the skills that are used in semantic 

analysis, such as how to add semantic attributes to the syntax tree nodes, and how to traverse 

syntax tree nodes in complex ways as needed.

One of the important features of this chapter was an example intermediate code instruction set 

that we used for the Jzero language. Since the code is abstract, you can add new instructions to 

this instruction set as needed for your language. Building lists of these instructions was easy 

using Unicon’s list data type or Java’s ArrayList type.

The chapter showed you how to generate code for straight-line expressions such as arithmetic 

calculations. Far more effort in this chapter went into the instructions for control flow, which often 

involve goto instructions whose target instructions must have labels. This entailed computing sev-

eral attributes for labels, including inherited attributes, before building the lists of code instructions.
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Now that you have generated intermediate code, you are ready to move on to the final code 

generation part. However, first, Chapter 10, Syntax Coloring in an IDE, will take you on a practical 

diversion, consisting of exploring how to use your knowledge to incorporate syntax coloring into 

an integrated development environment (IDE).

Questions
1.	 Does it make sense to add three address instructions for doing input and output? Why 

or why not?

2.	 Explain the relationship between semantic rules, such as those shown in Figure 9.4, and 

tree traversal methods, such as genAddExpr().

3.	 Why might some compiler writers be insistent about computing the semantic attributes 

for instruction labels during the same tree traversal that generates code? Is that possible 

in a general case?

4.	 In this chapter, whenever a new local variable is required, the code generator just calls 

genlabel() to obtain one. In the absence of optimization, what effect might this have 

on the program?

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw
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Syntax Coloring in an IDE

Creating a useful programming language requires more than just a compiler or interpreter that 

makes it possible to run programs—it requires an ecosystem of tools for developers. This ecosys-

tem often includes debuggers, online help, or an integrated development environment, com-

monly called an IDE. An IDE can be broadly defined as any programming environment in which 

source code editing, compilation, linking steps (if any), and execution can all be performed within 

the same user interface. A good modern IDE typically includes many additional features, such 

as a graphical user interface builder and integrated debugger.

This chapter addresses some of the challenges of supporting your programming language in an 

IDE to provide syntax coloring and visual feedback about syntax errors. One reason that you want 

to learn how to do this is that many programmers will not take your language seriously unless 

it has an IDE with such features. We will start by adding support for Jzero in a mainstream IDE, 

Visual Studio Code. We will then show some example syntax-coloring IDE code written in Unicon. 

Unlike other chapters, there is no IDE that is implemented identically in Unicon and Java from 

which to draw a parallel dual-language example.

This chapter covers the following main topics:

•	 Writing your own IDE versus supporting an existing one

•	 Downloading the software used in this chapter

•	 Adding support for your language to Visual Studio Code

•	 Integrating a compiler into a programmer’s editor

•	 Avoiding reparsing the entire file on every change

•	 Using lexical information to colorize tokens

•	 Highlighting errors using parse results
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The skills to learn in this chapter revolve around software system communication and coordi-

nation. Primarily, by bundling the IDE and compiler into a single executable, high-performance 

communication is conducted by passing references to shared data, instead of resorting to file 

input/output or inter-process communication.

Writing your own IDE versus supporting an existing 
one
Writing an IDE is a large project and could be the subject of an entire book. If all you want is for 

your new language to be supported by a good IDE, just figure out how to support your language 

within an existing popular IDE. This is especially true if supporting your language requires nothing 

unusual that existing IDEs do not already do. It is a big job, bigger in some IDEs than in others, 

but most of this chapter provides an example of how to do it in one mainstream IDE.

On the other hand, there are several reasons that you might decide to write your own IDE. Writing 

an IDE puts you in control. Writing an IDE in your new language can be a convincing demon-

stration of how awesome your new language is, that it has better user interface capabilities than 

mainstream languages, or that it has achieved a level of maturity and usability by virtue of a 

suitably robust class library and system interface.

Unlike other chapters of this book where we present the compiler code from scratch, the discus-

sion of adding syntax highlighting in an existing IDE involves no compiler code from our GitHub 

repository; instead, we will talk about configuration using various data files. The chapter includes 

a second section that describes how syntax coloring was added to the Unicon IDE, with a little 

bit of code that illustrates the ideas but is not intended for you to type in or run. The Unicon IDE 

was written by Clinton Jeffery and Nolan Clayton, with contributions from many other people 

since then. Luis Alvidres did the syntax coloring work as part of his master’s degree project. Luis’s 

project report can be found at http://www.unicon.org/reports/alvidres.pdf. The next section 

describes how to download the programs discussed in this chapter.

Downloading the software used in this chapter
In this chapter, we will be looking at one mainstream commercially supported IDE, plus a simpler 

IDE that illustrates some of the concepts presented. The first IDE is Visual Studio Code, a free IDE 

that you can download from http://visualstudio.microsoft.com/downloads. Since we are 

extending Visual Studio Code to know about your new language, additional tools are required. 

Microsoft’s instructions say to install Git (which you have probably already installed in order to ac-

cess the book’s code on GitHub) and Node.js (from https://nodejs.org/en/download/current). 

http://www.unicon.org/reports/alvidres.pdf
http://visualstudio.microsoft.com/downloads
https://nodejs.org/en/download/current
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Node.js in turn installs many software components, including Python and some Visual Studio 

development tools. This requires a strong internet connection, many minutes of time, and requires 

quite a leap of blind faith on your part. Have fun. If the Node.js install went well, you should be 

able to install a tool called Yeoman with the command:

npm install -g yo generator-code

Installing Yeoman (yo) takes a few more minutes. After that, you can run yo from the command 

line, which we will do in order to add a new extension for Jzero.

After Visual Studio Code and its baggage, the second IDE discussed in this chapter is a program 

called ui, which stands for Unicon IDE. The ui program is included in the Unicon language 

distribution, where it can be found in a directory called uni/ide. The program consists of about 

10,000 lines of code in 26 files, not counting code in library modules. The following screenshot 

shows the ui program:

Figure 10.1: The ui IDE

Before we explore syntax coloring within the ui program, let’s learn what we can do easily to 

support a new language within the context of Visual Studio Code, a popular editor that many 

programmers already use.
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Adding support for your language to Visual Studio 
Code
Microsoft Visual Studio Code (VS Code) is a popular IDE. It has been chosen to illustrate add-

ing support for your language to an existing IDE because of its market share, but this is not an 

endorsement. For your language, you may find that another IDE is far easier to support, or far 

better for your users. Personally, I am an Emacs person, and I won’t become interested in VS 

Code until someone demonstrates it running in Emacs mode. However, VS Code does have a lot 

of nice features.

VS Code knows how to display programs written in many programming languages, such as Java, 

out of the box. How it colors Java syntax depends on the selected color theme, but under the 

Black High Contrast, you get a very colorful display. It is unclear what colors mean in VS Code or 

how colors are assigned to different bits of the code, but hey—many pretty pastel shades of blue, 

green, pink, and orange are used. Figure 10.2 shows a “hello world” Java program in VS Code with 

the Black High Contrast theme.

Figure 10.2: VS Code uses many colors to display a Java program

On the other hand, when you invent a new programming language, VS Code starts out knowing 

nothing about it. If you open a Jzero program named hello.j0 within VS Code, it will display 

with no syntax coloring. Figure 10.3 shows the same program as Figure 10.2 under the Light High 

Contrast theme, with the filename changed to hello.j0 instead of hello.java. Because VS Code 

doesn’t know the .j0 extension, no coloring is applied under any theme, other than to highlight 

the current line that the cursor is on.
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Figure 10.3: VS Code shows unknown languages without syntax coloring

Adding support for a new language within VS Code depends on the provisions for such extensions, 

which are discussed at code.visualstudio.com/api/language-extensions/overview. The next 

section presents a few key aspects of writing VS Code language extensions, a topic that is complex 

and goes well beyond the scope of this chapter. This chapter also uses ideas incorporated from 

the site https://macromates.com/manual/en/language_grammars.

Configuring Visual Studio Code to do Syntax Highlighting 
for Jzero
As downloaded, VS Code will know how to syntax highlight mainstream languages, especially 

Microsoft languages, such as C++, C#, and the like. It already knows Java, so to configure VS Code 

to work with Jzero as a brand new language, we use the file extension .j0 for Jzero files in order 

to create our own syntax highlighting rules instead of using those of Java.

The page at code.visualstudio.com/api/language-extensions/syntax-highlight-guide pro-

vides Microsoft’s instructions on syntax highlighting new languages. This section is adapted from 

there and from https://code.visualstudio.com/api/get-started/your-first-extension.

To inform VSCode of the new language, run the Yeoman tool to generate a new language extension, 

and then see how to populate it. Run the command:

yo code

code.visualstudio.com/api/language-extensions/overview
https://macromates.com/manual/en/language_grammars
code.visualstudio.com/api/language-extensions/syntax-highlight-guide
https://code.visualstudio.com/api/get-started/your-first-extension
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The Yeoman program asks you a series of questions, starting with what type of VS Code extension 

you want to create. For Jzero, select New Language Support. It will ask you for a grammar, but if 

you leave that blank, you start a new language extension with no grammar; we will discuss writing 

the grammar below. Yeoman then asks you for many fields of non-technical information about 

your language. It even offers to create a Git repository for you. If we answer these questions in 

the most basic way possible for Jzero, we will see the output shown in Figure 10.4 as the Yeoman 

program creates our new extension:

Figure 10.4: The output of running yo code to create a language extension for Jzero
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Yeoman creates a directory for our new extension and populates it with several files. A quickstart 

file tells you to add your grammar to syntaxes\jzero.tmLanguage.json and add comment and 

bracket information to language-configuration.json. It also tells you to press F5 to open a new 

window with your extension loaded, and to use Control + R to reload when you make changes to 

your extension. When you have finished adding features and debugging your extension, copy it 

into the .vscode/extensions directory, where it will be used automatically whenever VS Code 

runs. There is a separate step for publishing your extension to the world when the time comes. 

At the time of writing, the link for it can be found at https://marketplace.visualstudio.com/

VSCode and requires you to log in with a Microsoft account and password.

Visual Studio Code extensions using the JSON format
VS Code uses the JavaScript Object Notation (JSON) for many of its language extension config-

uration files. If you don’t already know about JSON, you can learn all there is to know about it 

in around 5 minutes; no wonder it is so popular. JSON is described in detail at json.org, which 

uses railroad diagrams and a simple grammar to give a precise definition.

JSON is written in an ASCII text format. Its syntax comes from JavaScript, but it is similar to other 

popular languages like Python. There are six kinds of things that can appear in a JSON file: four 

kinds of simple atomic values, and two kinds of collections.

JSON atomic types
JSON allows four kinds of simple atomic values: string, number, boolean, or null. Strings are en-

closed in double quotes and are pretty much the same as Java strings. JSON strings include obvious 

examples such as "hello". Like Java, backslash is the escape character and can be followed by a 

double-quote mark, a backslash, a forward slash, b (backspace), f (form feed), n (newline), r (car-

riage return), t (tab), or a u followed by four hexadecimal symbols between 0-9 and A-F (or a-f).

JSON numbers include both integer and real numbers. No leading zero is allowed. Real numbers 

can have either or both of a decimal point followed by one or more digits, and an exponent (E or 

e) followed by an optional sign (+ or -) and one or more digits.

Booleans are the values true and false. The null type has only one value: null.

JSON collections
JSON has two kinds of collections that can contain multiple values: arrays and objects. An array is 

an ordered sequence of JSON values enclosed in square brackets and separated by commas. Array 

elements may themselves be other arrays or objects. Some example JSON arrays are [1, 2] and 

["three", 4, 5]. A more complex example is [[1, 2, 3], [4, 5, 6], [7, 8, 9]].

https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode
json.org
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A JSON object is an unordered collection of JSON values enclosed in curly brackets. Each element 

is preceded by an associated string key and a colon, and these key:element pairs are separated by 

commas. Consider the example {"hello": 3.14, "true": null}. It associates the key "hello" 

with the value 3.14 and the key "true" with the value null.

File organization for Visual Studio Code extensions
VS Code configuration files live in a .vscode\ directory under the home directory, as in c:\users\

clint\.vscode. Within that directory lives a directory named extensions. Each VS Code extension 

that you install gets its own subdirectory within .vscode\extensions; all the installed extensions 

are listed and described within a .vscode\extensions\extensions.json file. If you copy your 

new extension into the .vscode\extensions\ folder manually, you might need to modify the 

extensions.json file to tell it about your extension.

The extensions file
The extensions.json file is a JSON array with one element for each language extension. The 

format is shown below. To add your language as a new extension, if you are not the first installed 

extension, you add a comma after the last element already present, and then add the information 

for your new extension. Each extension is represented by one JSON object. The JSON format does 

not care if the contents are all given on one ridiculously long line, or spread across thousands. We 

provide this example on many lines for the sake of human readability:

[{"identifier":{

    "id":"cj.jzero",

    "uuid":"4cdff31d-3adb-47ad-a0eb-87489d90b470"},

  "version":"0.1.0",

  "location":{

      "$mid":1,

      "fsPath":"c:\\Users\\clint\\.vscode\\extensions\\cj.jzero-0.1.0",

      "_sep":1,

      "external":"file:///c%3A/Users/clint/.vscode/extensions/
cj.jzero-0.1.0",

      "path":"/c:/Users/clint/.vscode/extensions/cj.jzero-0.1.0",

      "scheme":"file"},

  "relativeLocation":"cj.jzero-0.1.0",

  "metadata":{

      "id":"4cdff31d-3adb-47ad-a0eb-87489d90b470",

      "publisherId":"aa569c26-c667-46dc-9b6d-0672063c01f8",
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      "publisherDisplayName":"Clinton Jeffery",

      "targetPlatform":"undefined",

      "updated":false,

      "isPreReleaseVersion":false,

      "installedTimestamp":1702263162060,

      "preRelease":false}

 }]

Let’s examine these sub-elements in detail. The identifier is a JSON object containing an id 

string in the format publisher.extensionname, and uuid, a unique user ID string. You can sort of 

make up your publisher and extension name; in this example, I use my initials and the language 

name. The UUID string consists of 128 bits in 32 hexadecimal digits, with hyphens after the 8th, 

12th, 16th, and 20th digit. UUIDs can be generated by websites such as uuidgenerator.net and 

by library functions such as java.util.UUID.randomUUID().

The version is a string of the format major.minor.patch. The location is a JSON object contain-

ing URI fields: $mid, fsPath, _sep, external, path, and scheme. For installed extensions, these 

URI fields can be set at installation time. You can use the location as-is, other than updating 

the three paths to show locations on your machine instead of mine. The relativeLocation is 

a string in the format id-version. The metadata is a JSON object containing id, publisherId, 

publisherDisplayName, targetPlatform, update, isPreReleaseVersion, installedTimestamp, 

and preRelease. It is mostly self-explanatory, other than to say that the extension installer nor-

mally generates this metadata.

The extension manifest
Within your extension directory, a file named package.json contains details about your language 

extension. When you created your extension with the Yeoman program, it created an initial version 

of this file, but you may want to review and edit it. The file package.json contains a single JSON 

object containing many fields. Different VS Code extensions will look different in this file, and 

this chapter only has room for a basic language extension for syntax coloring. We will break the 

package.json description into several pieces for exposition. The first section consists of seven 

simple string fields, identifying what the extension is and who provided it:

{

    "name": "jzero",

    "displayName": "Jzero Syntaxcolorer",

    "description": "Jzero Language",

    "author": "Clinton Jeffery",
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    "license": "public domain",

    "version": "0.1.0",

    "publisher": "cj",

The next field is a JSON object that describes what the extension contributes to VS Code. In this 

case, we contribute a new language, which uses the extension .j0:

    "contributes": {

        "languages": [

            {

                "id": "jzero",

                "extensions": [

                    ".j0"

                ],

                "aliases": [

                    "Jzero",

                    "jzero"

                ]

            }

        ]

    },

The "activationEvents" field is an array listing what events active this extension. For a language 

extension, this is almost always "onLanguage", which is concatenated with your language name 

and the event that occurs whenever a file with your language’s extension is opened. There are a 

lot of other event types used for other kinds of extensions:

    "activationEvents": [

         "onLanguage:jzero"

    ],

The "keywords" field is an array listing up to five keywords describing your extension. The 

"categories" field lets you identify with the 17 kind(s) of extensions VS Code things it supports—in 

our case, "Programming Languages". The "engines" field specifies the minimum version(s) for 

the tools that use this extension—in our case, "vscode" version 1.85.0 or newer:

    "keywords": [

         "Jzero"

    ],
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    "categories": [

        "Programming Languages"

    ],

    "engines": {

        "vscode": "^1.85.0"

    },

There may be other fields in the extension manifest. This section only described the most com-

mon ones. Now, it is time to look at the notation VS Code uses to specify token types and syntax 

rules: TextMate grammars.

Writing IDE tokenization rules using TextMate grammars
Syntax coloring can be provided by either a TextMate grammar or a more extensive language 

server. This section describes writing a TextMate grammar. TextMate grammars are similar to 

Flex+YACC specifications, only formatted in JSON. A TextMate grammar consists of two JSON 

files: a grammar contribution file, plus the grammar file itself. The grammar contribution file for 

Jzero looks like the following code. The grammar contribution file is optional, but recommended, 

organization, since "contributes" fields can appear directly in package.json files:

{

  "contributes": {

    "languages": [

      {

        "id": "jzero",

        "extensions": [".j0", ".jzero"]

      }

    ],

    "grammars": [

      {

        "language": "jzero",

        "scopeName": "source.jzero",

        "path": "jzero.tmGrammar.json"

      }

    ]

  }

}
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A starting TextMate grammar file for Jzero, named jzero.tmGrammar.json, is shown below, di-

vided into several sections for exposition purposes. A TextMate grammar encodes a subset of 

the same information depicted earlier by Flex and YACC in a longer and less readable format. A 

complete TextMate grammar for a mainstream language can run to well over a thousand lines, 

so we cannot present one in its entirety here. 

The whole grammar is a single JSON object (a.k.a. a table or dictionary). In this example, there 

are four keys. Many additional keys are optional and you can look those up on reference websites. 

This top-level JSON object corresponds to the start symbol in the Jzero YACC grammar from 

Chapter 4. The first two keys in the grammar are the "name" and "scopename". The "name" is just 

a unique identifier, and each grammar sub-element will have a different one. The "scopename" 

here is the root of all VS Code scopes introduced by this grammar; scope names of sub-elements 

will be this root "scopename" concatenated into the front of their "name":

{

   "name": "Jzero",

   "scopeName": "source.jzero"

The third key gives the patterns, corresponding to production rules for this start symbol. Like 

this top-level JSON object, the various sub-elements that correspond to non-terminal symbols 

in your grammar must include a similar entry named "patterns", which is a list of the produc-

tion rules for that non-terminal. The following Jzero patterns just say that Jzero programs have 

keywords, strings, and expressions in them and do not impose structure. The patterns entry 

here could contain actual patterns of what strings to match, but instead, this one just consists of 

forward references to the names of patterns to be found within the next key; pattern names are 

prefixed by a pound sign (#):

   "patterns": [

      { "include": "#keywords" },

      { "include": "#strings" },

      { "include": "#expression" }

    ],

The fourth key gives the repository, which is the main body of the grammar and contains all the 

syntactic and lexical rules about your language that you care to encode. Each entry in the repos-

itory maps to a JSON object. The JSON object might consist of a regular expression for specific 

tokens, or references to sub-elements, which may be recursive:

   "repository": {
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      "keywords": {

         "patterns": [{

            "name": "keyword.control.jzero",

            "match": "\\b(if|while|for|return)\\b"

            }]

      },

      "strings": {

         "name": "string.quoted.double.jzero",

         "begin": "\"",

         "end": "\"",

         "patterns": [{

            "name": "constant.character.escape.jzero",

            "match": "\\\\."

            }]

      }

      "expression": {

         "patterns": [{ "include": "#paren-expression" }]

      },

      "paren-expression": {

         "begin": "\\(",

         "end": "\\)",

         "beginCaptures": {

            "0": { "name": "punctuation.paren.open" }

         },

         "endCaptures": {

            "0": { "name": "punctuation.paren.close" }

         },

         "name": "expression.group",

         "patterns": [{ "include": "#expression" }]

      }

     },

}

The sub-level in your grammar that corresponds to terminal symbols will often include an entry 

named "match" that gives the regular expression for that terminal symbol. Whether you match 

many keywords with one big pattern, as shown in the "keywords" element above, or instead write 

a separate rule for each keyword depends on your grammar and whether the syntax coloring 

should be different for different keywords.
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Writing support for your language in VS Code can be as big a job as you have time to put into 

it. We have introduced this topic, but there is a much deeper end in this swimming pool, where 

you can write a whole external server to direct VS Code’s handling of your language. Now, let’s 

move on to a brief description of the Unicon IDE and how the Unicon compiler frontend code 

was integrated into that IDE for the purposes of syntax coloring.

Integrating a compiler into a programmer’s editor
The front half of the Unicon compiler—loosely covered from Chapter 2, Programming Language 

Design, up to Chapter 5, Syntax Trees, in this book—was integrated into the Unicon IDE, known 

as ui. The Unicon frontend consists of three major components: a preprocessor, a scanner (also 

called a lexical analyzer), and a parser. While we discussed scanners and parsers in detail in 

Chapters 3 and 4, we have not discussed preprocessors, which implement symbolic macro sub-

stitutions and provide the ability to select platform-specific code at compile time. Preprocessors 

are a major subject in the next chapter.

In the Unicon translator, these components are called from a main() procedure. The translator 

opens, reads, and writes files in the filesystem to perform its I/O, providing feedback to the user 

by writing text to standard output or a standard error on a console or terminal window. In an 

IDE, the compiler components are called from behind the scenes while the user edits their code 

in a graphical user interface (GUI). The source code is obtained directly from the memory in 

the IDE, and the compiler’s output is obtained from the memory by the IDE and presented to 

the user. Altogether, seven files from the Unicon translator were modified to become library 

modules that can be linked in and used from other programs besides the Unicon compiler itself. 

An overview of this integration of compiler components into the Unicon IDE is shown in Figure 

10.5. The compiler code is invoked from a method ReparseCode(), which is invoked whenever 

the cursor moves to a new line:
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Figure 10.5: Overview of compiler integration into the IDE method ReparseCode()

The IDE method GetCode() is interesting in and of itself. It could just return the entire contents of 

the file as a list of strings, but in large files, this amount of redundant lexical and syntax analysis 

would be problematic. Instead, GetCode() looks forward and backward from the cursor to find 

the nearest global declaration boundaries, and it only reparses the current declaration (such as 

a procedure or class) where the user makes changes. GetCode() is described in more detail later 

in the section titled Avoiding reparsing the entire file on every change. The next section explores 

how source code in the IDE is fed into the compiler frontend. After that, we will consider how 

the compiler syntax results, including error messages, are fed into the IDE.
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Analyzing source code from within the IDE
A compiler usually obtains its input by opening and reading from a named file. Compilers that 

feature preprocessors, such as C/C++ and Unicon, feed the named file a line at a time through 

a macro preprocessor that transforms the source code before it is input to the lexical analyzer. 

When a chunk of source code is selected for parsing in the IDE by GetCode(), it is provided as a 

list of strings to the preprocessor, which in turn produces its results one line at a time.

The lex-compatible interface used by many compilers specifically designates that input comes 

from an opened file handle stored in a global variable named yyin. This is too slow for an IDE, 

which performs lexical and syntax analysis frequently and repeatedly as the user edits. Instead 

of reading from a file, the Unicon scanner was modified so that it could read source code that was 

already in main memory. The scanner code already read the entire file into a single large string and 

scanned that, so modifying it to accept a string as input was trivial. The code to go from the list 

of strings produced by GetCode() through the preprocessor and into the string format expected 

by Unicon’s yylex() looks like the following. The function preprocessor() is a generator that 

produces a string for each line of source code. The lines are concatenated into one big string:

   preproc_err_count := 0

   yyin := ""

   every yyin ||:= preprocessor(theCode, uni_predefs) do yyin ||:= "\n"

With yyin initialized to the part of the file that needs to have its syntax checked, the ReparseCode() 

method calls yyparse():

   parsingErrors := []

   rv := yyparse()

The list parsingErrors will be populated by yyparse() in the event that any syntax errors should 

occur. Now, let’s look at how compiler messages are delivered to the GUI of the IDE.

Sending compiler output to the IDE
Instead of directly writing error output, the parser was modified to construct a list of error di-

agnostics. The regular compiler can then output these to the console, while the IDE displays 

messages in a sub-window or depicts them graphically. Consider a possible error message, such 

as the following:

hello.icn:5: '}' expected
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Prior to integration, the compiler could have written that with the following line of code:

write(&errout, filename, ":", lineno, ": ", message)

To integrate such messages into the IDE, the compiler yyerror(s) function was modified to 

instead put the error message, along with the line number, into a ParseError object on a list 

named parsingErrors. The code in yyerror() is as follows:

   /parsingErrors := []

   errorObject := ParseError( yylineno, s )

   put( parsingErrors, errorObject )

In the Unicon IDE, these parsing errors are displayed textually from within the ReparseCode() 

method. After the parser is invoked, if errors were encountered, the following lines execute:

  every errorObject := !parsingErrors do {

    errorObject.lineNumber +:= lineNumberOffset

    if errorObject.lineNumber <= *contents then {

      SetErrorLineNumber(errorObject.lineNumber)

      uidlog.MsgBox.set_contents(

        [errorObject.lineNumber ||": " ||

          errorObject.errorMessage])

      }

    }

The error message text is placed in a GUI component named MsgBox with a call to its set_

contents() method. MsgBox is drawn below the source code. In addition to displaying the same 

output text that the compiler would show, in the event of an error, the IDE highlights the line on 

which the error occurs. This is discussed later in the Highlighting errors using parse results section.

This section on integrating a compiler into an IDE or programmer’s editor discussed the nuts and 

bolts of how to combine these two large and complex pre-existing pieces of software. The Unicon 

compiler and IDE are maintained mostly independently. Keeping the connections between them 

simple reduces the likelihood of a change in one affecting the other. If you are writing a new IDE 

from scratch to go along with a new compiler, a more extensive integration might enable extra 

features or better performance, at a cost in complexity, maintainability, and portability. Now, let’s 

look at how to invoke syntax checks without parsing a file constantly while the user edits code.
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Avoiding reparsing the entire file on every change
The lexical and syntax analysis necessary to parse input and detect and report syntax errors pre-

sented in this book from Chapter 2, Programming Language Design, to Chapter 8, Checking Types 

on Arrays, Method Calls, and Structure Accesses, are substantial algorithms. Although the Flex and 

Yacc tools we’ve used are high-performance, if given a large input file, scanning and parsing 

become slow enough that users will not want to reparse the whole file each time a user modifies 

it in an IDE text editor. In testing, we found that reparsing the entire file became a problem on 

files larger than 1,000 lines.

Sophisticated incremental parsing algorithms that minimize the amount that must be reparsed 

after changes are the subject of Ph.D. dissertations and research articles. For the Unicon IDE, a 

simple approach is taken. Whenever the cursor moves away from a line that has been changed, a 

parsing unit is selected, starting with the changed line and extending above and below the bound-

aries of the nearest procedure, method, or another global declaration unit. That unit is reparsed.

In Unicon, this gives a very good performance. Luis Alvidres found that when an entire declaration 

unit is reparsed after a line is changed, 98% of the time the compiler reparses fewer than 100 lines 

of code. Most of the other 2% of cases—namely, procedures or methods larger than 100 lines—are 

still not a problem. Only the very largest procedure or method bodies result in slow reparsing. 

This is often machine-generated code, such as the output of Flex or Yacc, that a user seldom edits 

by hand. For this, the IDE disables syntax checking to avoid an unacceptable user response time.

The code to select a slice to reparse when a cursor moves off a line is in a method named GetCode(), 

this can be found in the BuffEditableTextList class, which is a subclass of Unicon’s standard 

GUI editor component named EditableTextList. The BuffEditableTextList class lives in uni/

ide/buffertextlist.icn. The GetCode() method is implemented as follows. First comes the 

method header and a set of local variable declarations:

   method GetCode()

      local codeSubStringList,

            originalPositionY, currentPositionY, token,

            startPositionY := 0, endPositionY := 0,

            inClass := 0, inMethod := 0

Within the GetCode() method, these variables play the following roles:

•	 codeSubStringList is a list containing the line number to start error reporting on, fol-

lowed by the strings to parse for code that could be affected by changes to the current line.

•	 originalPositionY is the text line where the text has been changed.
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•	 currentPositionY is a variable used to walk up and down from the current line.

•	 Token is an integer category returned by yylex(), as seen in Chapter 2, Programming Lan-

guage Design.

•	 startPositionY and endPositionY are the lines that identify the beginning and end of 

the current declaration.

•	 inClass and inMethod report whether the declaration is in a class or a method.

Initialization in the GetCode() method consists of resetting the parser and starting the position 

variables from the current cursor row, which indicates on which line the cursor is located. This 

is illustrated in the following code snippet:

      reinitialize()

      originalPositionY := currentPositionY := cursor_y

A primary loop in this procedure walks backward from the cursor location, using the compiler’s 

yylex lexical analyzer function to look at the first token on each line and find the nearest previ-

ous line on which an enclosing declaration begins, as illustrated in the following code snippet:

      while currentPositionY > 0 do {

         yyin := contents[currentPositionY]

         yylex_reinit()

         if (token := yylex()) ~=== EOFX then {

            if token = (PROCEDURE | METHOD | CLASS) then {

               if token=METHOD then inMethod := 1

               if token=CLASS then inClass := 1

               startPositionY := currentPositionY

               }

            }

         if startPositionY ~= 0 then break

         currentPositionY -:= 1

         }

You can see that walking backward is achieved by decrementing the current line index held in 

the currentPositionY variable. The preceding while loop terminates when a line is found that 

begins with a procedure, method, or class reserved word. When this while loop terminates 

without finding an enclosing declaration, parsing starts from line 1. This is achieved with the 

following if statement:

   if startPositionY = 0 then startPositionY := 1
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The method then searches forward from the cursor to find the enclosing end token. Lexical fea-

tures such as multiline continued string contents make this trickier than we might expect. The 

following while loop is long enough that it is split into multiple segments for explanation. The 

first segment shows that the while loop steps one line at a time through the code to be displayed, 

advancing currentPositionY on each line and fetching contents from the class member variable 

list of strings, named contents. In Unicon, unterminated string constants can span multiple 

lines that end in an underscore, which is handled by an inner while loop. In the unlikely event 

that we reach the end of a file while in a multiline string, the expression break break exits out 

of two while loops in one shot:

   currentPositionY := cursor_y

   while currentPositionY < *contents + 1 do {

      yyin := contents[ currentPositionY ]

      yylex_reinit()

      while countdoublequotes(yyin)%2=1 & yyin[-1]=="_" do {

         currentPositionY +:= 1

         if not (yyin ||:= contents[currentPositionY]) then {

            break break

            }

         }

      yylex_reinit()

The main task of the while loop given in the preceding code snippet is presented in what is the 

second half of the loop, shown next. This inner loop uses the compiler’s lexical analyzer to identify 

tokens that would indicate the boundary of a compilable unit. The end token indicates the end of a 

unit that can be compiled, while class and procedure indicate the beginning of a subsequent unit:

      while ( token := yylex() ) ~=== EOFX do {

         case token of {

         END: {

            endPositionY := currentPositionY

            break

            }

         CLASS | PROCEDURE: {

            if currentPositionY ~= startPositionY then {

               endPositionY := currentPositionY-1

               break
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               }

            }

         default : break

         }

      }

The method finishes by constructing a slice of the source code to reparse and returning it as a 

list of strings, prefixed by the line number immediately preceding the slice, as illustrated in the 

following code snippet:

      if endPositionY = 0 then

         return codeSubStringList := [ 0 ] ||| contents    

      if startPositionY = 0 then startPositionY := 1

      if inMethod = 1 then

         codeSubStringList := [ startPositionY,

            "class __Parse()" ] ||| 

            contents[ startPositionY : endPositionY+1 ] |||

            ["end"]

      else if inClass = 1 then

         codeSubStringList := [ startPositionY ] ||| 

            contents[ startPositionY : endPositionY+1 ] |||

            ["end"]

      else

         codeSubStringList := [ startPositionY ] ||| 

            contents[ startPositionY : endPositionY+1 ]

      return codeSubStringList

A careful reader might worry about whether the GetCode() function as presented might some-

times miss a declaration boundary and grab too much code—for example, if the word procedure 

or end is not at the beginning of a line. This is true but non-fatal, since it just means that if the 

source code is written in a very strange and improbable manner, the syntax checker might reparse 

a larger amount of code than necessary. Now, let’s look at how the source code is colorized.

Using lexical information to colorize tokens
Programmers need all the help they can get with reading, understanding, and debugging their 

programs. In Figure 10.1, the source code is presented in many different colors to enhance its 

readability. This coloring is based on the lexical categories of different elements of the text. 
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Although some people consider colored text as mere eye candy and others are not able to see colors 

at all, most programmers value it. Many forms of typos and text-editing bugs are spotted more 

quickly when a given piece of the source code is a different color than the programmer expected. 

For this reason, almost all modern programmer’s editors and IDEs include this feature.

Extending the EditableTextList component to support color
EditableTextList is a Unicon GUI component that displays the visible portion of a list of strings 

using a single font and color selection. EditableTextList does not allow the setting of a font 

or foreground and background colors for individual letters or words. To support syntax color-

ing, the Unicon IDE extends a subclass of EditableTextList named BuffEditableTextList to 

present the user with source code. BuffEditableTextList is not a full rich-text widget. As with 

EditableTextList, it represents the source code as a list of strings, but BuffEditableTextList 

knows to apply syntax coloring (and highlight an error line, if any) on the fly when it draws the 

source code.

Coloring individual tokens as they are drawn
To color tokens, BuffEditableTextList calls yylex() to obtain the lexical category for each 

token when it is drawn. The following code, drawn from the left_string_unicon() method in 

the BuffEditableTextList class, sets the color, using a big case expression from five user-cus-

tomizable colors specified in a preferences object. Most reserved words are drawn with a special 

color, designated as syntax_text_color in the preferences. Separate colors are used for global 

declarations, for the boundaries of procedures and methods, and for string and cset literals. This 

simple set of color designations could be extended by assigning different colors to a few other 

important lexical categories, such as comments or preprocessor directives:

   while (token := yylex()) ~=== EOFX do {

      Fg(win, case token of {

         ABSTRACT | BREAK | BY | CASE | CREATE | DEFAULT |

         DO | ELSE | EVERY | FAIL | IF | INITIALLY |

         iconINITIAL | INVOCABLE | NEXT | NOT | OF | RECORD |

         REPEAT | RETURN | SUSPEND | THEN | TO | UNTIL |

            WHILE : prefs.syntax_text_color

         GLOBAL | LINK | STATIC |

            IMPORT | PACKAGE | LOCAL : 

                prefs.glob_text_color

         PROCEDURE | CLASS |
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            METHOD | END     : prefs.procedure_text_color

         STRINGLIT | CSETLIT : prefs.quote_text_color

         default             : prefs.default_text_color

         })

      new_s_Position := yytoken["column"] + *yytoken["s"]-1

      DrawString(win, x, y,

                 s[ last_s_Position : (new_s_Position+1)])

      off := TextWidth(win,

                   s[ last_s_Position : (new_s_Position + 1)])

      last_s_Position := new_s_Position + 1

      x +:= off

      }

As can be seen from the preceding code, after the foreground color is set from the token, the 

token itself is rendered by a call to DrawString(), and the pixel offset at which the subsequent 

text should be drawn is updated using a call to TextWidth(). All of this, when combined, allows 

different lexical categories of source code to be drawn in different colors in the IDE. The term used 

in the industry is syntax coloring, although the part of our compiler that we brought in was only 

the lexical analyzer, not the parser function that performs syntax analysis. Now, let’s consider 

how to draw the user’s attention to the line, should the parser determine that the edits that were 

made on a line leave the code with a syntax error.

Highlighting errors using parse results
In a BuffEditableTextList component, the fire() method is called whenever the content is 

changed, as well as whenever the cursor moves. When content is changed, it sets a flag named 

doReparse, indicating that the code should be syntax-checked. The check does not occur until 

the cursor is moved. The code for the fire() method is shown here:

   method fire(type, param)

      self$Connectable.fire(type, param)

      if type === CONTENT_CHANGED_EVENT then

         doReparse := 1

      if type === CURSOR_MOVED_EVENT &

           old_cursor_y ~= cursor_y then

         ReparseCode()

   end
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In the preceding code, the ReparseCode() method is occasionally called in the Unicon IDE in 

response to a cursor move, in order to see whether editing has resulted in a syntax error. Only 

cursor moves that change the current line (old_cursor_y ~= cursor_y) trigger the ReparseCode() 

method, as shown here:

  method ReparseCode ()

    local s, rv, x, errorObject, timeElapsed, 

        lineNumberOffset

    if doReparse === 1 then {

      timeElapsed := &time

      SetErrorLineNumber ( 0 )

      uni_predefs := predefs()

      x := 1

      s := copy(GetCode()) | []

      lineNumberOffset := pop(s)

      preproc_err_count := 0

      yyin := ""

      every yyin ||:= preprocessor(s, uni_predefs) do

        yyin ||:= "\n"

      if preproc_err_count = 0 then {

        yylex_reinit()

        /yydebug := 0

        parsingErrors := []

        rv := yyparse()

        }

      if errors + (\yynerrs|0) + preproc_err_count > 0 then {

         # . . .every loop from Sending compiler output to the IDE here

         }

      else uidlog.MsgBox.set_contents(["(no errors)"])

    doReparse := 0

    }

  end
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The ReparseCode() method does nothing unless the code has changed, indicated by doReparse 

having the value 1. If the code has changed, ReparseCode() calls GetCode(), reinitializes the lexer 

and parser, calls yyparse(), and sends any error output to the IDE’s message box. The actual line 

on which the error occurs is also highlighted when the code is redrawn as follows. 

Within the draw_line() method in the BuffEditableTextList class, if the current line being 

drawn is the one found in the errorLineNumber variable, the foreground color is set to red:

      if \errorLineNumber then {

         if i = errorLineNumber then {

            Fg(self.cbwin, "red")

            }

         }

You have now seen that setting different colors for different kinds of tokens, such as reserved 

words, is fairly easy and requires only the lexical analyzer to be involved, whereas checking for 

syntax errors in the background was a fair bit of work.

Summary
In this chapter, you learned how to use lexical and syntax information to provide the coloring of 

text in an IDE. Most of the coloring is based on relatively simple lexical analysis, and much of the 

work required involves modifying the compiler frontend to provide a memory-based interface, 

instead of relying on reading and writing files on disk. In this chapter, you picked up several 

skills. You learned how to color reserved words and other lexical categories in a programmer’s 

editor, communicate information between the compiler code and the programmer’s editor, and 

highlight syntax errors during editing.

Up to this point, this book has been about analyzing and using the information extracted from 

source code. The rest of this book is all about generating code and the runtime environments in 

which programs execute. The topic we will explore in the next chapter is bytecode interpreters.
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Questions
1.	 A significant percentage of the population are partly or completely colorblind. How might 

you provide colorblind individuals with the same benefits that colors provide in this 

chapter?

2.	 Reparsing code to look for syntax errors whenever the user moves the cursor to a different 

line might be too often, or it might not be often enough. Can you suggest a better criterion 

for how often to reparse the code?

3.	 Suppose you want to add syntactic nesting information so that a user can visually tell 

which blocks of code are nested within which other blocks. Is there a way that you can 

add this information to the IDE in addition to the color-coding presented in this chapter? 

How might you go about that?
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Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw




Section III
Code Generation and 

Runtime Systems
After this section, you will finally be able to run programs written in your new programming 

language.

This section comprises the following chapters:

•	 Chapter 11, Preprocessors and Transpilers

•	 Chapter 12, Bytecode Interpreters

•	 Chapter 13, Generating Bytecode

•	 Chapter 14, Native Code Generation

•	 Chapter 15, Implementing Operators and Built-in Functions

•	 Chapter 16, Domain Control Structures

•	 Chapter 17, Garbage Collection

•	 Chapter 18, Final Thoughts





11
Preprocessors and Transpilers

This chapter returns us from our detour into IDEs back to the quest of generating output from 

our source program that can run. There are many ways to produce executable output from a 

programming language, and rather than pick just one in order to adhere to a rigid sequential 

narrative, this and the next couple chapters are a bit like a choose-your-own-adventure book 

that explores three ways of producing an executable: this chapter discusses translation to another 

high-level language, while Chapter 12 presents translation to a lower-level software instruction 

set called a bytecode machine, and Chapter 13 illustrates translation to native code that runs on 

the hardware’s instruction set.

The ordering of these three chapters is intentional. The code generation for this chapter is easier 

to implement but offers slower performance than the strategy demonstrated in Chapter 12, which 

is easier but slower than the strategy of Chapter 13. You may want to start with the easiest imple-

mentation that will meet your requirements and migrate to a more challenging implementation 

strategy later if needed.

In the good old days, there were two primary means of implementing a programming language: ei-

ther write an interpreter that implements that language directly or write a compiler that translates 

that language down to an assembler language or machine code. At this point, however, for many 

new programming languages, the quickest path to a first implementation is to generate source 

code for another more mainstream programming language that has an existing implementation. 

A language tool that generates code that is fed as input into another high-level language tool is 

commonly called a preprocessor or a transpiler.

The terms preprocessor and transpiler overlap but are not synonyms. When a new language extends 

an existing language or is limited to textual replacements, this is commonly called a preprocessor. 
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When the new language is substantially different from the target language, but both are con-

sidered high-level languages, the tool is called a transpiler. Using these definitions, the original 

AT&T implementation of C++, called Cfront and commonly referred to as a preprocessor, also 

may be called a transpiler using modern terminology. One possible way to distinguish between 

preprocessors and transpilers is by whether the tool fully parses the source language in order to 

generate its output.

This chapter introduces preprocessors and transpilers and aspects of their implementation. The 

sections in this chapter cover the following main topics:

•	 Understanding preprocessors

•	 Code generation in the Unicon preprocessor

•	 The difference between preprocessors and transpilers

•	 Transpiling Jzero code to Unicon

In this chapter, the skills learned include how to expand macros, generate output during a tree 

traversal, select different output operators depending on the source language type used, move 

around declarations to where the target language allows them, and how to manage data struc-

tures and semantic attributes for preprocessing and transpiling.

Understanding preprocessors
A preprocessor applies a transformation to source code. Some preprocessors are stand-alone 

tools, usable by and independent of any programming language tool. The most famous of these is 

probably the Unix m4 preprocessor. However, most preprocessors are tied to, associated directly 

with, and often integrated into a particular programming language and apply the transformation 

before the language compiler reads it in for lexical analysis. The output code from a preprocessor 

usually resembles its input with only a few changes, so you might wonder: why bother? Usually, 

the reason is that the judicious use of a preprocessor can make the code shorter and more readable.

A typical preprocessor transformation might be to replace all occurrences of some symbolic ab-

breviation such as PI with 3.1415. Another typical preprocessing example would be to expand 

some function-like syntax with parameters at compile-time, such as replacing occurrences of 

CUBED(X) with (X * X * X).

Symbols such as PI or CUBED that are replaced by preprocessors when they are encountered are 

called macros. Most preprocessors look for and apply these macro transformations to the source 

code one line at a time, although the replacement text of a macro may span several lines. Writing 

PI in place of 3.1415 merely shortens code and improves readability. 
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On the other hand, the notation CUBED(X) could be implemented by either a function call or a mac-

ro, and on many compilers, a macro at compile time will be faster than a function call performed 

at execution time. The next section illustrates preprocessor macros in a small real-world example.

A preprocessing example
Consider the symbol Key_Home used in the Unicon graphics facilities. It denotes the HOME key on 

the keyboard, which is returned as a different integer on different platforms. In the MS Windows 

implementation, a Unicon header file named keysyms.icn contains the following line:

$define Key_Home                  36

This line defines Key_Home to be 36 on Windows. The event codes defined in keysyms.icn are 

returned by Unicon’s Event() function, which reports the next key or mouse input event. Typical 

client code looks as follows:

case e := Event() of {

    Key_Home: do_home_key()

    other cases

 }

After preprocessing on an MS Windows platform, it looks like this:

case e := Event() of {

    36: do_home_key()

    other cases

 }

Other platforms such as Linux/X11 use different integer codes native to their platforms. The sub-

stitution of the symbol Key_Home for the appropriate code is performed in this manner on each 

platform. In addition to adding platform portability, code readability is improved by avoiding 

magic numbers like 36.

Macro preprocessors are important in low-level languages, particularly assembler languages in 

which much code is repetitive or otherwise cumbersome. In these low-level languages, program-

mers need all the help they can get. When used properly, macros make code more maintainable by 

reducing duplication; fixing a bug in a macro body may fix a bug in hundreds of locations where 

that macro is used. Of course, the flip side of this is true: if you write a macro and get it a little bit 

wrong, your one little bug may be introduced in hundreds of locations where that macro is used.
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Macro preprocessors have been so popular in the past that entire languages and communities 

have revolved around advanced macro programming. For some personalities, macro coding may 

be addictive; some coders use macros whenever possible! It might be a joke, or it might be legit-

imate , to say that such programmers have adopted a “macro-oriented programming” paradigm.

On the other hand, macro preprocessors are also famous for being too powerful, resulting in 

obscure bugs. They have been over-used in some projects to the point where humans do not un-

derstand what their complex macros are doing, particularly when many macros are being used in 

combination. In such instances, macro bugs can be difficult to find and fix. For example, our macro 

CUBED(X) looks innocent enough, but what if you pass in a parameter that has side effects, such 

as CUBED(n++)? It would expand to (n++ * n++ * n++), which might not be what was intended.

The dangers of macros influenced the Java language designers, who feel they have improved upon 

C/C++ by omitting the preprocessor entirely. Icon and Unicon’s more conservative reaction to 

these problems was to provide a preprocessor with macro parameters, such as the X in CUBED(X) 

intentionally omitted. This preserves the preprocessor’s ability to provide symbolic names for 

magic constants and select different code to eliminate the most egregious preprocessor-induced 

bugs. Now it is time to look at other aspects of the Unicon preprocessor.

Identity preprocessors and pretty printers
Two special cases of preprocessing might be worth considering before looking at more compli-

cated preprocessors. An identity preprocessor is a source code preprocessor that implements 

the identity transformation, generating identical output to its input. Identity preprocessors are 

not really a thing, but if you were starting a preprocessor project, it would make good sense to 

start with code that implements all the I/O correctly, before you started monkeying around with 

transformations of that code. To copy the input to the output character by character is easy and 

boring; to copy the input to the output after a full lexical analysis and possibly a full parse of the 

code might be a good test of a compiler frontend and its lexical attributes for line and column 

numbers, which are needed to support debugging tools.

A pretty printer is a bit like an identity preprocessor, except it reformats the whitespace around 

the code to improve readability. Pretty printers are at least as old as the LISP language, which is 

one of the oldest languages of all. Most languages are designed specifically to allow programmers 

to not worry about indentation, although bad indentation is known to result in occasional bugs 

and maintenance headaches. 



Chapter 11 279

Since a pretty printer may do a full parse of the input but applies a lexical transformation to the 

whitespace for increased human readability, it is arguably not a preprocessor or transpiler, but 

it does bring up the question of how closely the output of a preprocessor or transpiler should 

resemble the input, which may affect subsequent debugging efforts. If you were starting a new 

transpiler project from scratch, you might do very well to start from a pretty printer for the input 

language if one is available, and then gradually modify the pretty printer’s output to be the target 

language instead. In any case, if you are using an IDE that reformats your code for you, the pretty 

printer transformation might be integrated into your IDE. Now let’s consider a larger real-world 

preprocessor example.

The preprocessor within the Unicon preprocessor
This chapter discusses the Unicon translator as our example preprocessor. Unicon exhibits attri-

butes of both a preprocessor and a transpiler. On the one hand, Unicon is a preprocessor since it 

translates Unicon, which has object-oriented constructs, into often similar-looking but non-ob-

ject-oriented Icon code and then invokes (a modified version of) the Icon translator icont to 

generate VM bytecode. On the other hand, the Unicon translator does not just read lines and 

replace macro symbols with their bodies; it does a full parse of the input code. With a full syntax 

tree and symbol tables of the sort that a compiler would use, some of the Unicon translator out-

put for constructs such as classes is not a simple text substitution and does not closely resemble 

anything in the input. Additionally, the presence of a complex multiple inheritance mechanism 

and packages goes far beyond the concerns of a normal preprocessor.

A second argument against calling Unicon a preprocessor is that Unicon contains an entire macro 

preprocessor as its first stage! This preprocessor within the “preprocessor” is described in this 

section. Space does not allow coverage of every aspect of the preprocessor; an emphasis is placed 

on the core functionality of defining symbols and subsequently looking for them and substituting 

their replacement text. Figure 11.1 shows the Unicon translation pipeline with the preprocessor 

at the front, the Unicon translator as described above, the two phases of bytecode generation 

named itran and ilink that respectively translate to human-readable and binary bytecode, and 

the bytecode interpreter named iconx.

To make the code examples as clear as possible, a brief description of the preprocessor functionality 

is in order.  The Unicon preprocessor is like the C/C++ preprocessor, with some major exceptions. 

Since the hash sign # used by the C/C++ preprocessor is Unicon’s comment character, the pre-

processor symbol in Unicon is the dollar sign $. So, directives like #if or #define in C/C++ are 

$if and $define in Unicon. Secondly, the Unicon preprocessor does not have macro parameters. 
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The ability to $define symbols and to include selected blocks of code via $ifdef…$endif are ma-

jor features that were added to Icon and Unicon while avoiding the primary sources of problems 

introduced into C/C++ by their preprocessor.

Figure 11.1: Preprocessing is the first stage in the Unicon translation process

The Unicon preprocessor is implemented by a 700-line module named preproce.icn that was 

written by Bob Alexander and previously used in Jcon, a Java-based Icon implementation. A gen-

erator function called preprocessor() works one line of source code at a time in a big while loop. 
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Each line is analyzed using the string scanning control structure, resulting in a sequence of output 

lines that are produced by the function preprocessor() and transmitted to the rest of the com-

piler as its input. The code for this outermost loop in the preprocessor looks like the following:

procedure preprocessor(fname, predefined_syms)

    # initialization

    while line := preproc_read() do line ? {

       # preprocess one line of code, suspending results

       }

    # finalization

 end

Each iteration of the while loop analyzes the string corresponding to one line of source code. After 

skipping over whitespace, if a preprocessor directive is encountered, a helper function named 

preproc_scan_directive() is called, and otherwise, macro substitutions are performed on the 

line by a helper function named preproc_scan_text().

Let’s look at these two functions, starting with preproc_scan_directive(). A lot of the logic of 

this function is dedicated toward maintaining a stack of conditions as to whether various $if 

blocks are enabled or disabled. The function starts by identifying which preprocessor directive 

is being invoked, from around twelve that are defined in the language. For the sake of time and 

space, we will confine our consideration to the $define directive that introduces macros and 

their definitions into the preprocessor. The $define directive doesn’t do anything if it occurs in-

side a block that has been excluded by $if or $ifdef. In a live block, the symbol being defined is 

grabbed using the function prepoc_word(), followed by the text to substitute when that symbol 

is found in the code, which runs to the end of the line. It is an error to attempt to change the defi-

nition of a symbol that has already been defined, but new symbols are entered into a table named 

preproc_sym_table by the assignment preproc_sym_table[sym] := value. When symbols are 

encountered in regular source code lines, they are looked up in the table, and if a definition is 

present, the value will be used to replace the occurrence of the symbol:

procedure preproc_scan_directive()

    # initialization

    preproc_command := preproc_word()

    case preproc_command of {

       "define": {

          if /preproc_if_state then {
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             if sym := preproc_word() then {

                if value := preproc_scan_define_value() then {

                   if \(old := preproc_sym_table[sym]) ~=== value then {

                      preproc_error("redefinition of " || sym || " = " ||

                                    old)

                      }

                   else {

                      preproc_sym_table[sym] := value

                      }

                   }

                }

             else {

                preproc_error()

                }

             }

       }

       # … other cases for other preprocessor directives, $undef, $ifdef …

     }

    # finalization

 end

The procedure preproc_scan_text() processes a line of source code, looking for macro sym-

bols and replacing them with their definitions. It is a long procedure so our discussion will skip 

large parts and focus on the macro search-and-replace code. It looks for possible macro symbols, 

skipping over comments and text inside single- and double-quote characters. For every identifier 

encountered by the preprocessor, if the identifier is found via preproc_sym_table[ident], the 

value is substituted after first applying the preproc_scan_text() to it recursively, to expand 

macros within macros. Infinite and/or mutually recursive symbol expansions are prevented by a 

done_set of macros that are active at any given time:

procedure preproc_scan_text(done_set)

     initialization code, skip over code excluded by $if directives.

     result := ""

     while tab(upto(interesting_chars)) do {

         case move(1) of {

             "#": … skip over comments
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             "\"" | "'": … skip over quotes (no macros in constants)

             default: { …possible start of macro symbol

                 move(-1)

                 p := &pos

                 ident := tab(many(preproc_word_chars))

                 if value := \preproc_sym_table[ident] then {

                     if /done_set |

                             {type(done_set) == "string" &

                                 done_set := set([done_set])

                             not member(done_set,ident)} then {

                         value ? value :=

                             preproc_scan_text(insert(copy(\done_set),

                                                      ident) | ident)

                         result ||:= &subject[q:p] || value

                         q := &pos

                         }

                     }

                 }

             }

         }

     finalization code, suspends results out to the caller

 end

Although Unicon’s preprocessor is a lot smaller and simpler than that used in C/C++, it performs 

a similar task. It is line-oriented and primarily dedicated to macro-based rewrites of defined 

macro symbols to provide multi-platform portability and allow software to be more readable 

and configurable.

Code generation in the Unicon preprocessor
After the preprocessor, the rest of the Unicon translator takes Unicon input and outputs an extend-

ed dialect of Icon that has no name but is occasionally referred to as Icon’ (Icon prime). Unicon 

is written in around 7,000 lines of Unicon code and another 1,100 lines of iyacc specification. It 

is tiny compared to a conventional compiler, but ten times the size of the preprocessor’s prepro-

cessor described in the previous section.
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Transforming objects into classes
The output of Unicon frequently resembles the input closely enough to qualify as a preproces-

sor. Regular Icon code such as user-defined procedures with their statements and expressions 

pass through Unicon almost unmodified. However, the Unicon translator implements several 

language extensions by changing the source code. For example, packages are implemented via 

name mangling. You can see what Unicon does with a given input file foo.icn, if anything, by 

running unicon -E foo and looking at its output.

The primary transformation performed by this preprocessor turns each class definition into a 

pair of record declarations, a constructor procedure, and various initialization pieces. Consider 

the following simple class:

class myClass(a,b,c)

    method h()

       write("hello, world")

    end

 end

From this class, the Unicon translator writes out two record types: one for instances of the class 

and one for methods. Taken together, the field names in these two records comprise the namespace, 

and this namespace is resolved at runtime. The methods record for each class is a singleton; a single 

instance is created and then shared by all the class instances through an aliased pointer held by 

each instance in their __m field. The singleton is also accessible globally through a myClass__oprec 

variable that is only accessed within class constructor procedures:

record myClass_state(__s, __m, a, b, c)

record myClass__methods(h)

global myClass__oprec

Each method in a class is written out almost identically to how it appears in the source code, but 

name-mangled to introduce the class name, and a new parameter is inserted into the front – the 

self variable:

procedure myClass_h(self)

       write("hello, world")

end
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The self variable is used in several ways. Unless hidden by a local identifier, references to names 

in a class scope such as a, b, or c in class myClass above are textually replaced by self.a, self.b, 

or self.c.  Similarly, the names of method calls are looked up in the methods vector; considerable 

magic occurs within the Unicon virtual machine to turn foo(…) into self.__m.foo(self, …) 

but only when needed.

There is one other fundamental part of generating a class, which is the class constructor procedure. 

The first time that a constructor for a given class is executed, its methods vector is instantiated 

and initialized by a procedure called classnameinitialize(). On that and all subsequent calls 

to the constructor, an instance is created:

procedure myClass(a,b,c)

local self,clone

initial {

   if /myClass__oprec then myClassinitialize()

   }

   self := myClass__state(&null,myClass__oprec,a,b,c)

   self.__s := self

   return self

end

This mapping of object-oriented constructs onto lower-level Icon procedures and records has a few 

historical warts but has been sufficient to inspire the successful creation of much larger projects 

in Unicon than have been developed in Icon. When classes use inheritance and define themselves 

in terms of other classes, an additional layer of complexity is introduced, which is omitted here 

for the sake of space. See the Unicon Implementation Compendium if you want to study more 

about inheritance. Now let’s look at how Unicon generates the code described in this section.

Generating source code from the syntax tree
This section describes the code generation process within the Unicon translator. I will explain 

everything as best I can, but this code was not written for the pedagogical benefit of the learner. 

If you are not proficient in the Unicon language, you might skip this section, or skim it and avoid 

getting bogged down in the arcane code.

For a preprocessor or transpiler working from a syntax tree, code generation is a tree traversal 

in which most internal nodes just visit their children, and most leaf nodes that correspond to 

elements from the source code simply print themselves as they appeared in the original.
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The Unicon syntax tree is heterogeneous. Most syntax tree nodes are of the type treenode from 

tree.icn. (Warning: Unicon’s tree.icn is totally different from Jzero’s tree.icn; do not confuse 

them!) The code for such nodes is printed by a procedure called yyprint(node). This procedure 

has a special-case code for many kinds of tree nodes, distinguished by their label field. The 

procedure yyprint() also incorporates other kinds of objects that occur in the tree, such as plain 

string literals, the token objects associated with leaves, and custom non-treenode objects for 

special entities, described below. The code for yyprint() starts with the following:

procedure yyprint(node)

    initialization

    case type(node) of {

       "treenode": {

          if node.label=="package" then …

          …other treenode types

          }

        other types of objects that appear in the tree

Source code tokens appear occasionally as leaves in the tree. Around such tokens with lexical 

line and column attributes, yyprint() emits #file and #line directives so that debuggers will 

report source code line numbers correctly. It is too long to present in its entirety, but some of the 

relevant parts of yyprint() include:

      "token": {

          if \outfilename ~== \ (node.filename) | (outline > node.line)

          then {

             write(yyout,"\n#line ", node.line-1, " \"", 

                   node.filename, "\"")

             outline := node.line

             outcol := 1

             outfilename := node.filename

             }

           output spaces to get to the correct column, write the lexeme

In addition to tree nodes, tokens, and occasionally raw strings that should be output, several 

more complex classes are used for major declaration units with substantial code generation roles, 

including Class, Method, and about a dozen other types of special nodes. The syntax tree classes 

that represent major syntax constructs in Unicon know how to generate code for themselves.
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These classes predate Unicon; they originated in Unicon’s predecessor Idol, which was a more 

basic line-oriented preprocessor that did the job with no syntax tree. To this day, they live in a 

idol.icn file that originated in the Fall of 1989 as a university class project.

A class named declaration handles Icon and Unicon headers of the form:

tag name (field1, field2, …)

Where tag is one of several reserved words that use that syntax in Icon and Unicon, such as 

record and procedure. The class declaration provides two methods. Method Write(f) writes 

the header to file f, and method String() converts the declaration into a string.

Unicon’s class Class is a subclass of class declaration. It provides around seventeen methods 

that perform semantic analysis tasks related to scope and inheritance calculations in addition to 

code generation.  When yyprint() encounters a Class instance, it calls its Write() method via 

node.Write(yyout). The Write() method is long and will be presented in several parts. First, it 

writes out the method bodies for all the methods that are defined directly in the class:

  method Write(f)

     nam := self.name

     yyprint("\n")

     writemethods(f)

The actual representation of the class includes a pair of record declarations, but before Write() 

can generate those, it must complete the calculation of what fields and what methods the class 

gains by means of inheritance. Inheritance is performed by a call to a method named resolve() 

that populates a list of inherited fields named ifields. The record that holds instances’ state 

variables is written out; since it is not derived from any real location in the source code, a #line 

directive is emitted stating that the code comes from a fake location: line 1 of the imaginary 

file __faux.icn. A couple of fields in each instance contain pointers to the instance and to the 

methods record for the class. After that, the explicit fields of the class are written out by asking 

the fields object to produce its string representation via the method String(). The explicit fields 

are followed by the inherited fields that come from superclasses:

    if /self.ifields then self$resolve()

     write(f,"#line 1 \"__faux.icn\"")

     writes(f,"record ",nam,"__state(__s,__m") # reserved fields

     rv := ","

     rv ||:= self.fields$idTaque.String()		       # my fields

     if rv[-1] ~== "," then rv ||:= ","
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     every ifi := (!self.ifields).ident do {

        if type(ifi) == "string" then

           rv := rv || ifi || "," # inherited fields

        else if type(ifi) == "treenode" & ifi.label == "arg3" then {

          rv := rv || (ifi.children[1].s) || ","

          }

        else stop("Write(): can't handle ", type(ifi))

        }

     yyprint(rv[1:-1] || ")\n")

After the instance record is written out, a record for the class fields is generated. The methods 

record is a singleton, providing a shared reference to the methods to all instances of the class:

    writes(f,"record ",nam,"__methods(")

     rv := ""

     every s := (((methods$foreach())$name()) | # my explicit methods

                 (!self.imethods).ident |       # my inherited methods

                 supers$foreach())              # super.method fields

         do rv := rv || s || ","

     if *rv>0 then rv[-1] := ""                 # trim trailing comma

     yyprint(rv||")\n")

Each class’s methods record is stored in a global variable whose name is classname__oprec. The 

first instance of the class triggers the initialization of the methods record. This requires that all 

superclasses also be initialized, so references to their methods records are also declared:

    writes(f,"global ",nam,"__oprec")

    every writes(f,", ", supers$foreach(),"__oprec")

    yyprint("\n")

The constructor procedure for a class is the most complex piece of code to generate. It starts with 

writing out the procedure header, which is performed by the method writedecl(). The first time 

the constructor is called, an initial section calls the procedures that initialize the current class’s 

and all superclasses’ method records:

    self$writedecl(f,"procedure")

     yyprint("local self,clone\n")

     yyprint("initial {\n  if /"||nam||"__oprec then "||

             nam||"initialize()\n")

     if supers$size() > 0 then
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         every (super <- supers$foreach()) ~== nam do

             yyprint("  if /"||super||"__oprec then "||

                     super||"initialize()\n"||

                     "  "||nam||"__oprec."||super||" := "|| 

                     super||"__oprec\n")

     yyprint("  }\n")

Class constructor procedures can have default values for the various fields of the class. The de-

fault values are found to be present when the field is a treenode with the label arg3. In that case, 

the generated code for that field checks if the passed-in value is null using the unary null-check 

operator /, and if it is null, then an assignment of the default value is written out:

    every fld := fields$foreach() do {

         if type(fld) == "treenode" & fld.label == "arg3" then {

           writes(f,"/",fld.children[1].s, " := ")

           yyprint(fld.children[3])

           yyprint("\n")

           }

         }

    every ifi := (!(self.ifields)).ident do {

        if type(ifi) == "treenode" & ifi.label == "arg3" then {

           writes(f,"/", ifi.children[1].s, " := ")

           yyprint(ifi.children[3])

           yyprint("\n")

           }

        }

The constructor creates the actual instance and stores it in a variable named self:

    writes(f,"  self := ",nam,"__state(&null,",nam,"__oprec")

The fields of the instance are initialized from constructor parameters unless those parameters 

were passed into an initially method, in which case the initially method is responsible for any 

initialization of fields. An initially method is Unicon’s way of supplying code to run whenever 

an object instance is created. Checking whether we have an initially method with fields is one 

heck of an if statement. The technique here is brute force. I was a student when I wrote this code, 

and it hasn’t been broken enough to make us rewrite it:

   if (("initially" == (m := (methods$foreach()))$name()) & \(m.fields)) |

       (((mn := !(self.imethods)).ident == "initially") &
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       (m := classes.lookup(mn.Class).methods.lookup("initially")) & 

       \(m.fields))

    then {

If we do in fact have an initially method with fields, the next big wrinkle is whether the 

initially method takes variable arguments. If it does, we generate code to build the arguments 

as a list and then use the binary apply operator ! in the generated code to call the initially 

method from our constructor. The outermost else here shows the code is a lot simpler when the 

initially method is not a variable argument method. In that case, we just generate a code to call 

initially, inserting the instance followed by the arguments. In both cases, if the initially method 

fails, the constructor fails and the calling code gets no object to work with:

       yyprint(")\n  self.__s := self\n")

        if \ (m.fields.varg) then {

           m.fields.String()[1:-2] ? {

              if find(",") then {

                  writes(f,"  self.__m.initially!([self,")

                 while writes(f,tab(find(","))) do {

                     move(1)   # if last was nonfinal write it

                     if find(",") then writes(f,",")

                     }

                  write(f, "]|||", tab(0),") | fail")

                  }

              else {

                 write(f,"  self.__m.initially!(push(", tab(0), 

                       ",self)) | fail")

                 }

          }

       }

       else {

           writes(f,"  self.__m.initially(self,")

           yyprint(m.fields)

           yyprint(") | fail\n")

           }

        }

If there was an initially section but no fields declared on it, the constructor still calls the 

initially method that is declared explicitly in the class or inherited from a superclass. 
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In this way, an object can initialize its fields entirely on its own, with no parameters. This is 

transitive with respect to inheritance; initially methods call superclasses’ initially meth-

ods. This allows superclasses to initialize their own fields that the class may have inherited from 

those superclasses:

    if ((methods$foreach())$name()| (!self.imethods).ident) == "initially" 

    then

        yyprint("  self.__m.initially(self) | fail\n")

        }

The return value from the constructor is the instance – the self object that has been constructed:

    yyprint("  return self\nend\n\n")

After the constructor procedure, the remaining code to generate for a class consists of the methods 

record initializer procedure. Its code only executes the first time it is called:

    yyprint("procedure "||nam||"initialize()\n")

     writes(f,"  initial ",nam,"__oprec := ",nam,"__methods")

     rv := "("

     every s := (methods$foreach())$name() do { # explicit methods

       if *rv>1 then rv ||:= ","

       rv := rv || nam || "_" || s

     }

     every l := !self.imethods do {             # inherited methods

       if *rv>1 then rv ||:= ","

       rv := rv || l.Class || "_" || l.ident

     }

     yyprint(rv||")\nend\n")

   end

As you have seen, the code generation for Unicon classes is quite involved. We next present the 

code that Unicon executes in order to calculate what each class inherits from its superclasses, 

which is implemented in the resolve() method.

Closure-based inheritance in Unicon
Unicon’s main inheritance mechanism is inspired by the concept of transitive closure. The basic 

idea is to start from those fields and methods that you have in your class and look in superclasses 

for things that can be added until nothing more can be found and added. Superclasses are visited 

from left to right in depth-first order. 
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One of the things you can find in a superclass is more superclasses, so this process repeats until 

no more superclasses can be found. Interestingly, because inheritance stops as soon as nothing 

more can be added, it is no problem for two or more classes to inherit from each other under 

these semantics. The code for all this is in the method resolve() within the class Class in the 

file idol.icn. The method resolve() builds lists whose elements are [class, ident] pairs.

The code below can be read in English as something like: for every superclass name, fetch its 

corresponding Class object. For every field in that superclass, see if we’ve got it, and if not, add 

it to our inherited fields. Then do the same for methods:

  method resolve()

     self.imethods := []

     self.ifields := []

     ipublics := []

     addedfields := table()

     addedmethods := table()

     every sc := supers$foreach() do {

         if /(superclass := classes$lookup(sc)) then

             halt("class/resolve: couldn't find superclass ",sc)

         every superclassfield := superclass$foreachfield() do {

             if /self.fields$lookup(superclassfield) &

                /addedfields[superclassfield] then {

                 addedfields[superclassfield] := superclassfield

                 put ( self.ifields , classident(sc,superclassfield) )

                 if superclass$ispublic(superclassfield) then

                     put( ipublics, classident(sc,superclassfield) )

             } else if \strict then {

                 warn("class/resolve: '",sc,"' field '",superclassfield,

                      "' is redeclared in subclass ",self.name)

             }

         }

         every superclassmethod := (superclass$foreachmethod())$name() do {

             if /self.methods$lookup(superclassmethod) &

                /addedmethods[superclassmethod] then {

                 addedmethods[superclassmethod] := superclassmethod
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                 put ( self.imethods, classident(sc,superclassmethod) )

             }

         }

         every public := (!ipublics) do {

             if public.Class == sc then

                 put (self.imethods, classident(sc,public.ident))

         }

     }

   end

These core elements of Unicon have been around for 35 years and have not changed much in that 

time. Our discussion will now move to the creation of a more explicit transpiler, from our toy 

language Jzero to Unicon, but first, let’s consider some of the differences between preprocessors 

and transpilers.

The difference between preprocessors and 
transpilers
The Unicon translator writes its output in Icon and then invokes an extended version of the Icon 

translator icont to generate bytecode. The use of a preprocessor and a full parser smells like 

things a transpiler would do, but the fact that Unicon’s output looks almost identical to its input 

except when classes are involved makes Unicon feel like it is still a preprocessor in some respects.

Fundamentally, a transpiler writes out source code in a different high-level language than its 

input. Usually, there is in fact a difference in language level, and usually, the transpiler transpiles 

from a higher-level language down to a slightly lower-level language. The poster children for 

this process are the myriad of languages that are implemented by writing out C code and using 

a C compiler as their code generator. C is effectively used as a portable assembly language. The 

considerable optimization performed by most C compilers is cited as a great benefit, although 

if anything can defeat optimizers’ assumptions, it is transpilers generating staggering amounts 

of machine-written C code.

When writing a transpiler, a higher-level language’s control structures may need to be imple-

mented using considerably different control structures in a lower-level or different-paradigm 

target language. In the extreme case, the higher-level language control structures may be turned 

into a data structure representation and the lower-level language may be implementing those 

control structures by a form of interpretation.



Preprocessors and Transpilers294

Similarly, the data values in the source language must be mapped by a transpiler onto data val-

ues in the target language. When the two languages are similar, substantial performance can be 

gained if the data representation is a 1:1 map from source values to target values, or conversely, a 

substantial performance loss will be incurred if the data representations chosen by the transpiler 

are inefficient.

Unfortunately, the values represented and the language semantics are different enough that it 

is usually easiest to map all source values onto objects in the target language’s object-oriented 

facilities, and this mapping can then impose enough of a performance cost to pose substantial 

problems. A transpiler may need to incorporate substantial shortcuts or optimizations for com-

mon cases and fall back on a more expensive representation only when necessary.

Most of these considerations will seem like vague hand-wringing unless we can see how they 

impact a transpiler project in practice. For that, we will turn to a transpiler for the Jzero language.

Transpiling Jzero code to Unicon
All this talk about transpilers is all well and good, but seeing is believing. This section presents a 

transpiler implementation of the Jzero language, writing out Unicon code from the Jzero source 

code. The implementation is structured to resemble the tree traversal that is used to generate 

intermediate code in Chapter 9, so you might experience some déjà vu. But before we go there, 

consider what the transpiler code generator needs to do. As we’ve seen before, this involves a set 

of semantic attributes and a set of rules for how to compute them.

Semantic attributes for transpiling to Unicon
Our transpiler will introduce three semantic attributes. The first semantic attribute will be a 

representation of the output Unicon code. Like the icode attribute introduced for building a 

list of intermediate code instructions in Chapter 9, the transpiler implementation introduces an 

attribute named icncode that is used to build a list of output strings, generally one per output 

line. I say generally because, of course, there are times when different chunks of code need to be 

spliced together that must go on a single line, so some of the values in icncode may constitute 

parts of an output line, as little as a single token. In any case, the various tree nodes’ icncode 

attributes will be concatenated together as we work our way up the tree so that at the root, we 

will have a gigantic list of code that we can write out and send to the Unicon compiler.
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The other two semantic attributes are similar to icncode but serve a special purpose: they assist 

in moving code around to where Unicon requires it to be located. Java static declarations have 

substantially different semantics from Unicon statics. Static declarations must be pulled out to 

a different location in the generated code. For this reason, Jzero statics are placed into a separate 

semantic attribute analogous to icncode, named staticcode.

Similarly, Java local variables may be declared anywhere in a method body, while Unicon local 

declarations must be at the top of a procedure or method body. For this reason, local Jzero variable 

declarations are placed in an attribute named vardecls so that they can be moved to the top of a 

statement sequence. The Unicon version of the class tree is modified with the following additions:

class tree (id,sym,rule,nkids,tok,kids,isConst,stab,

            typ, icncode, staticcode, vardecls)

The corresponding Java additions to tree.java look like this:

class tree {

   . . .

  typeinfo typ;

  ArrayList<String> icncode, staticcode, vardecls;

Depending on the differences between the source language and transpiled target language, some of 

the attributes and algorithms developed for three-address code might still be useful for transpiler 

code generation. For Unicon, maybe we won’t need them, but if you are transpiling between two 

very different languages, you may decide to have class tree track addresses and Boolean labels in 

semantic attributes, as developed in Chapter 9.

The attributes icncode, staticcode, and vardecls will be synthesized during a post-order tree 

traversal. We will show you the main transpiler traversal method soon, but first, let’s consider 

the code generation model.

A code generation model for Jzero
Before presenting code to translate Jzero to Unicon, we need to design how Jzero code will be 

mapped to Unicon. For intermediate code, in Chapter 9, a set of semantic rules was presented 

that mapped source code production rules onto semantic attribute assignments. This achieved 

the one-to-many mapping of grammar rules onto much lower-level intermediate code addresses 

and instructions.
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One might hope that the code generation model for transpiling to a much higher-level language 

will be a 1:1 mapping: a Java class will be mapped to a Unicon class, etc. How can we even tell what 

to include in this mapping? Let’s start with a simple example and work out how to translate it, 

adding features to the model as we go.

The two languages both have classes, but they are different. For example, a Java class has two 

kinds of methods, static and non-static, while a Unicon class has only non-static methods. Because 

Jzero is a small subset of Java, our transpiler can use a simpler mapping than would be required 

if it had to handle the entire Java language.

This transpiler will map a Jzero class to a Unicon package containing a class. Consider the Hello 

World Java program. A class named hello containing a public static main() method will be 

mapped to a package hello containing a procedure main(), along with procedures for any 

other static methods in the class. If Jzero were extended to handle objects with non-static fields 

and methods, then the code generation would also map a Unicon class hello containing any 

non-static members, so let’s stick one of those in just for fun. To summarize, we are mapping a 

simple Jzero program such as the following hello.java file:

public class hello {

    public static void main(String argv[]) {

          System.out.println("hello, jzero!");

    }

 }

The corresponding output from our transpiler should generate a package, and within it, a class, 

as shown below, which might be written to a hello.icn file. The empty class is present to reflect 

the logical mapping of a Java class onto a package containing a class, in case we want to expand 

Jzero into a larger subset of Java in the future:

package hello

 procedure main(argv [ ])

 write("hello, jzero!")

 end

 class hello()

 end

If you attempt to compile and run the above example, you will notice that the preceding code is 

incomplete. In addition to the package hello code, the generated Unicon code needs an ordinary 

main() procedure that starts outside of package hello and invokes the main() procedure within 

the package hello. This main() will be placed in a hello_helper.icn module:
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procedure main(args)

    hello__main ! args

 end

If you are wondering about the curious syntax in the call from main() to package hello's main(), 

the argument to Unicon main() is a list of strings; the code here turns it into the actual parameters 

passed to the package hello's main() procedure using Unicon’s apply operator, binary exclama-

tion (!). This procedure has been declared to accept a variable number of arguments Unicon-style, 

by adding square brackets after the parameter name in the code above. It is one thing to see an 

example and another to write code for it.

The Jzero to Unicon transpiler code generation method
The main transpiler code generation algorithm is a bottom-up post-order traversal of the syntax 

tree. To present it in small chunks for exposition purposes, the traversal is broken into a primary 

method, genunicon(), and helper methods for each non-terminal. The main objective of the 

traversal is to assign the three semantic attributes icncode, staticode, and vardecls; in most 

tree nodes, the only attribute that is assigned is icncode. In Unicon, the genunicon() method in 

tree.icn looks as follows:

method genunicon()

   every (!\kids).genunicon()

   case sym of {

     "ClassDecl":                { genuniClassDecl() }

     "CondAndExpr"|"CondOrExpr"|

     "MulExpr"|"AddExpr":        { genuniBinaryExpr() }

     "RelExpr":                  { genuniRelExpr() }

     # ...

     "QualifiedName":            { genuniQualifiedName() }

     "token":                    { genunitoken() }

     "FormalParm":               { genuniFormalParm() }

     "MethodDeclarator":         { genuniMethodDeclarator() }

     default: {

        icncode := []

        every icncode |||:= (!\kids).icncode

        }

    }

 end
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The preceding code resembles the method gencode() presented in Chapter 9. Tree nodes that have 

any custom role in code generation directly invoke a helper method. The default for non-termi-

nals that do not have custom output semantics is to simply concatenate the code found in all the 

node’s children. The corresponding Java code looks like this:

void genunicon() {

   if (kids != null) for(tree k : kids) k.genunicon();

   switch (sym)  {

   case "ClassDecl":        { genuniClassDecl(); break; }

   case "AddExpr":

   case "MulExpr":          { genuniBinaryExpr(); break; }

   case "RelExpr":          { genuniRelExpr(); break; }

   // ...

   case "QualifiedName":    { genuniQualifiedName(); break; }

   case "token":            { genunitoken(); break; }

   case "FormalParm":       { genuniFormalParm(); break; } 

   case "MethodDeclarator": { genuniMethodDeclarator(); break; }

   default: {

        icncode := new ArrayList<String>();

        if (kids != null) for(tree k:kids)

           icncode.addAll(k.icncode);

        }

    }

 }

The methods that are used to generate code for specific non-terminals must generate the Unicon 

source code that corresponds to the Java code represented in the production rule. We will go 

through the syntax tree and transpiler rules from the bottom up. For each kind of tree node, we 

will present a semantic rule if appropriate, followed by the code.

Transpiling the base cases: names and literals
The genunitoken() method generates Unicon code for terminal symbols. When the same to-

kens are legal in Jzero and in Unicon, the icncode attribute can be set to contain just the source 

code text. In a larger Java subset, or for more complex transpilers, appropriate variable naming 

or translations of literals will require more output construction here. For example, the rules for 

integer or string literals in Jzero and Unicon differ, so how much does a Java string have to be 

altered to turn it into a legal Unicon string? In Unicon, the genunitoken() method looks like this:
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method genunitoken()

   icncode := [ tok.text ]

   case tok.cat of { # more elaborate name mangling or literal translation

     parser.IDENTIFIER: { }

     parser.INTLIT: { }

     parser.STRINGLIT: { }

    # ...

    }

 end

In Java, genunitoken() looks like this:

void genunitoken() {

   icncode = new ArrayList<String>();

   icncode.add( tok.text );

   switch (tok.cat) {

     case parser.IDENTIFIER: { break; }

     case parser.INTLIT: { break; }

    // ...

    }

 }

From genunitoken(), the next larger entities to translate will be various kinds of expressions, 

starting with the highest precedence things such as complex names constructed using one or 

more periods, also known as dot characters: so-called qualified names.

Handling the dot operator
The period or dot operator plays two distinct but similar roles in both Java and Unicon. On the 

one hand, dot is used in so-called qualified names, where a package name is given first, then a dot, 

then a name within that package’s namespace. A similar use of dot is found in Java when a class 

name is followed by a dot followed by a static name within the class. The line between packages 

and classes is a little blurry, and in both cases, most object-oriented languages resolve those uses 

of the dot operator at compile time. On the other hand, the dot operator is also used with objects, 

to pick out a member from an instance, and in the general case, this happens at runtime.

For Jzero, we have a simplified dot operator. The Jzero transpiler will just translate a dot on input 

into a dot on output, except for a few built-ins that have a more direct translation. If you choose to 

implement a more serious object-oriented language, expect to spend more time on the dot operator. 
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This is a reasonable location to implement translations of built-ins like turning Jzero’s System.

out.println() into Unicon’s write(). It is also the place to handle method invocations on built-

in class types in Jzero, such as implementing the .length pseudo-member for arrays. The Unicon 

code for qualified names in the Jzero transpiler is in the method genuniQualifiedName() shown 

below. The order in which System.out.println is detected appears reversed; this is a by-product 

of the shape of the syntax tree that was built. In an occurrence of System.out.println, println 

was attached to the tree last and is viewed from the topmost tree node, while System and out are 

viewed deeper in the tree on the left-hand side:

method genuniQualifiedName()

   if kids[2].icncode[1]=="println" & kids[1].kids[2].icncode[1]=="out" &

     kids[1].kids[1].sym == "token" &

    kids[1].kids[1].icncode[1] == "System" then {

       icncode := [ "write" ]

       }

   else {

     case kids[1].typ.basetype of {

     "array": {

        if kids[2].tok.text ==="length" then {

          icncode := [ "*" ||kids[1].icncode[1] ]

          }

        else stop("don't know how to generate code for array.",

                 kids[2].tok.text)

        }

     "class": {

       icncode := [ kids[1].icncode[1] || "." || kids[2].icncode[1]]

       }

     default: stop("don't know how to generate code for type ",

                  kids[1].typ.str())

     }

   }

 end

In this method, a regular dot operator on a Jzero class type is mapped to a Unicon dot operator. 

The corresponding Java implementation of genuniQualifiedName() is shown here:

void genuniQualifiedName() {

   if (kids[1].icncode.get(0).equals("println") &&
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       kids[0].kids[1].icncode.get(0).equals("out") &&

       kids[0].kids[0].sym.equals("token") &&

       kids[0].kids[0].icncode.get(0).equals("System")) {

     icncode = new ArrayList<String>();

     icncode.add("write");

     }

   else {

     switch (kids[0].typ.basetype) {

     case "array": {

       if (kids[1].tok.text.equals("length")) {

         icncode = new ArrayList<String>();

         icncode.add( "*" + kids[0].icncode.get(0) );

         }

       else {

         System.err.println("don't know how to generate code for array." +

                             kids[1].tok.text);

         System.exit(1);

         }

       }

     case "class": {

       icncode = new ArrayList<String>();

       icncode.add( kids[0].icncode.get(0) + "." + 

                   kids[1].icncode.get(0) );

       }

     default: {

       System.err.println("don't know how to generate code for type " +

                             kids[0].typ.str());

       }

     }

   }

 }

Such a simple operator turned out to be a real can of worms. Hopefully, transpiling other simple 

expressions will not be quite so bad.
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Mapping Java expressions to Unicon
Straight-line Java code will have a straightforward mapping to Unicon. For a transpiler, output 

code might or might not need to be formatted, but in some output languages, care may be required 

to follow rules for line-breaking or indentation. Figure 11.2 shows the semantic rules for expressions.

Figure 11.2: Semantic rules mapping Jzero class to Unicon

The Unicon code for binary arithmetic expressions in the helper function genuniBinaryExpr() 

is shown here. Boolean AND and OR are included as two more binary operators with straight-

forward mappings to Unicon, although the output token for those operators is slightly different 

than in Java, with && turning into & and || turning into |. Fully parenthesizing the output reduces 

the potential for surprise. Although the code for AND and OR are given here along with binary 

operators for many other non-terminals, their semantic rules are presented later, along with 

those for relational expressions:

method genuniBinaryExpr()

      case rule of {

      1320: if typ.str()=="String" then op := "||" else op := "+"

      1321: op := "-"

      1310: op := "*"

      1311: op := "/"

      1312: op := "%"

      1350: op := "&"

      1360: op := "|"

      }

      icncode := ["( "||kids[1].icncode[1]||" "||op||

                 " "||kids[2].icncode[1]||")"]

   end
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The corresponding Java code is shown below:

void genuniBinaryExpr() {

      String op;

      switch (rule) {

      case 1320:

        if (typ.str().equals("String")) op = "||"; else op = "+";

        break;

      case 1321: op = "-"; break;

      case 1310: op = "*"; break;

      case 1311: op = "/"; break;

      case 1312: op = "%"; break;

      case 1350: op = "&"; break;

      case 1360: op = "|"; break;

      }

      icncode = new ArrayList<String>();

      icncode.add("( " + kids[0].icncode.get(0) + " " + op +

                   " " + kids[1].icncode.get(0) + ")");

   }

Besides these binary expressions, the code must consider unary expressions such as -x. While 

a unary minus transpiles as itself, a unary NOT (!) in Jzero translates to a tilde (~) in Unicon:

  method genuniUnaryExpr()

      case rule of {

      1300: op := "-"

      1301: op := "~"

      }

      icncode := ["( "||op||" "||kids[2].icncode[1]||")"]

   end

The corresponding Java code is shown below:

  void genuniUnaryExpr() {

      String op;

      switch (rule) {

      case 1300: op = "-"; break;

      case 1301: op = "~"; break;

      }
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      icncode = new ArrayList<String>();

      icncode.add("( " + op + " " + kids[1].icncode.get(0) + ")");

   }

Other than the wrinkle with the plus operator, binary operators are easy to transpile, an identity 

transformation or, at most, syntactic sugar. Now let’s consider method calls.

Transpiler code for method calls
Mapping a Java method call onto a call to a Unicon procedure or method is straightforward. Calls 

to built-in functions might be handled specially with calls to the runtime system, but for the most 

part, the call syntax uses parentheses in the same manner, handling parameters and return values 

similarly. There are two production rules for method calls, one for names (possibly qualified by 

dots) to the left of the parentheses, and the other for when a more complex expression produces 

the object upon which a dot operator specifies the method. Figure 11.3 shows the semantic rules 

for method calls. The argument list in both rules is optional, so the code should not fail in the 

event of a null value for ArgList.

Figure 11.3: Semantic rules for method calls

Within the method genuniMethodCall(), which production rule is to be used could be determined 

either by directly checking the treenode's rule field, or by checking how many children are present: 

2 or 3. The Unicon implementation of genuniMethodCall() is shown here:

method genuniMethodCall()

         if rule=1290 then {

            icncode := kids[1].icncode ||| ["("] |||

                       kids[2].icncode ||| [")"]

            }

         else { # rule 1291

            icncode := kids[1].icncode ||| [kids[2].text || "("] |||

 		        kids[3].icncode ||| [ ")" ]

            }

 end
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The corresponding Java code from tree.java is shown below:

void genuniMethodCall() {

   icncode = new ArrayList<String>();

   if (rule==1290) {

     icncode.addAll( kids[0].icncode );

     icncode.add( "(" );

     icncode.addAll( kids[1].icncode);

     icncode.add( ")" );

     }

   else { // rule 1291

     icncode.addAll( kids[0].icncode );

     icncode.add( kids[1].text || "(" );

     icncode.addAll( kids[2].icncode );

     icncode.add( ")" );

     }

 }

Are we done transpiling method calls? Not quite. There is the question of how parameters are 

chained together to form argument lists. Just because it is straightforward doesn’t mean we can 

overlook it. The Unicon code for this just consists of list concatenations that place the comma 

between arguments:

method genuniArgList()

    icncode := kids[1].icncode ||| [","] ||| kids[2].icncode

 end

The corresponding Java implementation of genuniArgList() is shown here:

void genuniArgList() {

   icncode = new ArrayList<String>();

   icncode.addAll(kids[0].icncode);

   icncode.add(",");

   icncode.addAll(kids[1].icncode);

 }

There is another kind of expression that we must transpile, and those are assignments, including 

augmented assignments.
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Assignments
A basic level of syntactic sugar is needed to convert Jzero assignments using the = operator into 

Unicon assignments, which use the := operator that is used in languages such as Pascal. The 

Unicon code to perform such a substitution is shown here:

  method genuniAssignment()

         op := kids[2].icncode[1]

         op[find("=", op)] := ":="

         icncode := [kids[1].icncode[1] || op || kids[3].icncode[1]]

   end

The Java code is similar:

void genuniAssignment() {

   op = kids[1].icncode.get(0);

   if (op.equals("=")) op = ":=";

   else op = op.substring(0,op.size-1) + ":=";

   icncode = new ArrayList<String>();

   icncode.add( kids[0].icncode.get(0) + op + kids[2].icncode.get(0));

 }

At this point, we have presented the semantic rules for the expressions. It is time to consider the 

larger statement-level parts of the grammar, such as control structures.

Transpiler code for control structures
The mapping of common control structures in Jzero and Unicon is kept as simple as possible. The 

underlying language control structures take care of determining code locations where control is 

to be transferred. Figure 11.4 shows semantic rules for some common control structures.

Figure 11.4: Semantic rules for transpiling Jzero control structures
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Even with such simple semantic rules, there are at least two tricky parts of which to be aware. 

One is that the output language Unicon is line-sensitive and inserts semi-colons in ways that 

may break the translation if we are not careful. For example, because the reserved word do is 

optional in while loops and can be the start of a new do-while control structure, the language 

might insert a semi-colon after the condition and before a do reserved word on the next line. This 

issue is resolved by concatenating the strings at the ends of certain sublists with the strings at the 

start of the next sublist. The Unicon code corresponding to the IfThenStmt is shown in method 

genuniIfThenStmt():

  method genuniIfThenStmt()

     if kids[2].icncode[1] === "{" then {

       icncode := ["if " || kids[1].icncode[1] || " then {"] |||

                    kids[2].icncode[2:0]

       }

     else

        icncode := ["if " || kids[1].icncode[1] || " then"] |||  
                    kids[2].icncode

   end

The corresponding Java code is as follows:

  void genuniIfThenStmt() {

     icncode = new ArrayList<String>();

     if (kids[1].icncode.get(0).equals("{")) {

       icncode.add("if " + kids[0].icncode.get(0) + " then {";

       for(int i = 1; i < kids[1].icncode.size(); i++)

         icncode.add( kids[1].icncode.get(i) );

       }

     else {

        icncode.add( "if " + kids[0].icncode.get(0) + " then");

        icncode.addAll( kids[1].icncode );

     }

   }

The code for genuniIfThenElseStmt() and genuniWhileStmt() are similar.
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A second tricky part of transpiling Jzero control structures to Unicon is that the semantics of Jzero 

conditional expressions compute Booleans and perform C-style short-circuit evaluation, while 

the semantics of Unicon conditionals are goal-directed and are evaluated for success or failure. 

Despite this, it is easy to map Boolean conditions in Jzero to corresponding Unicon expressions. 

Boolean && and || in Java turn into & and | in Unicon. The not operator, !, becomes the tilde ~ in 

Unicon. The semantic rules are shown in Figure 11.5.

Figure 11.5: Semantic rules for transpiling Jzero Boolean and relational operators

Here is the Unicon implementation of the genuniRelExpr() method, which is called from 

genunicon() to generate code for relational expressions. It depends on the fact that the relational 

operators <, <=, >, and >= are the same in Java and Unicon, and thus the source operator can just 

be copied to the output:

method genuniRelExpr()

         op := kids[2].tok.text

         icncode := [kids[1].icncode[1] || " " || op || " " ||

                    kids[3].icncode[1] ]

 end

This code is fragile as written; it assumes the left and right sides of the relational operator icncode 

attributes are lists of length 1. We may wish to rewrite it to be more robust. The corresponding 

Java code is here:

void genuniRelExpr() {

         String op = kids[1].tok.text;

     icncode = new ArrayList<String>();

         icncode.add(kids[0].icncode.get(0) + " " + op + " " +

                     kids[2].icncode.get(0));

 }
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Earlier, for the plus operator, we saw that it was special-cased to turn into different operators in 

Unicon depending on whether the operands are numeric or strings. Unicon has separate relational 

operators for strings as well, but we do not have a similar special casing required here because 

Java instead uses methods for those operations. We do, however, need to consider equality testing. 

When Java code says ==, what does it mean?  For numbers, it checks if they are bitwise identical. 

For strings and other objects, it checks if they are the same reference. The closest mapping onto 

Unicon is the === operator, although its string semantics are different:

method genuniEqExpr()

         if rule=1340 then op := "===" else op := "~==="

         icncode := [kids[1].icncode[1] || " " || op || " " ||

                    kids[2].icncode[1] ]

 end

The corresponding Java code is below:

void genuniEqExpr() {

   String op;

   if (rule==1340) op = "===" else op = "~===";

   icncode = new ArrayList<String>();

   icncode.add(kids[0].icncode.get(0) + " " + op + " " +

              kids[1].icncode.get(0));

 }

Besides relational expressions such as x < y, conditions may use Boolean expressions containing 

AND, OR, and NOT whose code was shown earlier with binary and unary expressions. There are 

two more productions that arise.

Transpiling Jzero declarations
This section considers two forms of Jzero declarations: first, we will look at methods and then 

variables. A method consists of a header followed by a code body. We can stitch these two non-ter-

minals’ code together by simply concatenating their icncode attributes, as usual. Transpiling the 

code body is discussed later in the Transpiling Jzero block statements section, where we talk about 

grouping sequences of statements together. In this section, we are just worried about the header, 

and the overall location of the method.

It is a simple matter to transform the header line from Java syntax to Unicon. One aspect of 

transpiling the header line itself is that if it is a static method, indicated by production rule 1070, 

it is moved out of the class and called a procedure, while non-static methods in Unicon use the 

reserved word method. 
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We’ll look at constructing the modified header line first, and then the more challenging aspect of 

moving static methods up, out of their class. The Unicon code for transpiling a method header is 

shown in the following method genuniMethodHeader():

method genuniMethodHeader()

   procname := kids[2].kids[1].icncode[1]

   if rule === 1070 then resword := "procedure "

   else resword := "method "

   icncode := [resword || procname || "(" || kids[2].icncode[1] || ")" ]

 end

The corresponding Java implementation of genuniMethodHeader() is shown here. The code again 

depends mainly on whether the production rule for static methods was used:

void genuniMethodHeader() {

   String procname = kids[1].kids[0].icncode.get(0);

   String resword;

   if (rule == 1070) resword = "procedure ";

   else resword = "method ";

   icncode = new ArrayList<String>();

   icncode.add( resword + procname + "(" + kids[1].icncode.get(0) + ")" );

 }

The one line of Unicon code needed for method headers is the least of our concerns. We have 

already mentioned two of the prominent differences between Java and Unicon that both involve 

moving declarations around. In Java, static methods are declared inside classes and local vari-

ables may be declared almost anywhere within a code block. In Unicon, static methods are called 

procedures; procedures are not declared inside classes. Also, in Unicon, local variable declarations 

must appear at the top of the procedure or method before other executable statements. We in-

troduced two semantic attributes to help with this. First, let’s see how the attribute staticcode 

is assigned and used.

In the Jzero grammar, the non-terminal MethodDecl connects the header and body. If the produc-

tion rule for a MethodDecl includes the static keyword (production rule 1070), then the method 

should be placed on the staticcode list; otherwise, it is placed as usual on the icncode list. The 

Unicon code for this originates with the method genuniMethodDecl() as shown here:

method genuniMethodDecl()

         staticcode := []

         icncode := []
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         if kids[1].rule === 1070 then { # public static

            staticcode := kids[1].icncode ||| kids[2].icncode[2:-1] ||| 

                          ["end"]

            }

         else {

            every icncode |||:= \ ((!\kids).icncode)

            put ( icncode, "end")

         }

end

The corresponding Java code for genuniMethodDecl() is as follows:

void genuniMethodDecl() {

   staticcode = new ArrayList<String>();

   icncode = new ArrayList<String>();

   if (kids[0].rule == 1070) { // production rule # for public static

     staticcode.addAll(kids[0].icncode);

     for(int i = 1; i < kids[1].icncode.size()-1; i++)

       staticcode.add( kids[1].icncode[i] );

     staticcode.add( "end" );

     }

   else {

     for(tree k : kids)

       icncode.addAll( k.icncode );

     icncode.add ( "end" );

     }

}

Before we can move on, we must consider how the static code gets from this origin point in 

method declarations up to the location in the tree where it can be placed outside the generated 

class. It turns out that it does not have to go far, logically. A MethodDecl is one of three kinds of 

ClassBodyDecl, which are all chained together into a list of ClassBodyDecls within a ClassBody. 

The transpiler must chain together all the static code found within the ClassBodyDecls. The 

Unicon implementation of this is shown below:

method genuniClassBodyDecls()

         staticcode := kids[1].staticcode ||| kids[2].staticcode

         icncode := kids[1].icncode ||| kids[2].icncode

end
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The Java implementation of genuniClassBodyDecls() is similarly straightforward:

void genuniClassBodyDecls() {

   staticcode = new ArrayList<String>();

   icncode = new ArrayList<String>();

   staticcode.addAll( kids[0].staticcode );

   staticcode.addAll( kids[1].staticcode );

   icncode.addAll( kids[0].icncode );

   icncode.addAll( kids[1].icncode );

}

Having looked at how to move statics outside of the class, it is time to consider how local variable 

declarations are moved up to the top of a procedure or method. It is a bit tempting to not bother; 

Unicon does not require that local variables be declared at all. However, local variable declara-

tions prevent accidental collisions with the global namespace. The data types indicated in local 

variables and parameters, held in kids[1] in the syntax tree, are discarded and replaced by the 

reserved word local. The Unicon code for this is as follows:

  method genuniLocalVarDecl()

         vardecls := [ "local " ] ||| kids[2].icncode

         icncode := []

  end

The corresponding Java code is shown here:

void genuniLocalVarDecl() {

    vardecls = new ArrayList<String>();

    vardecls.add( "local " );

    vardecls.addAll( kids[1].icncode );

    icncode = new ArrayList<String>();

}

The second child of a local variable declaration is a list of variables being declared. The code 

for chaining together a list of variables separated by commas looks similar to what was shown 

earlier for chaining together lists of arguments to a method in genuniArgList(). We can skip 

the code without sacrificing anything.

In this context of declarations, variable names in Jzero may be decorated with additional type 

information, such as specifying that something is an array by suffixing it with square brackets, as 

in int x []. When we write out the corresponding Unicon code, we throw away type information; 

in addition to changing int to local, the square brackets should just disappear. 
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This is accomplished by simply copying up the identifier leaf node’s icncode into the VarDeclarator 

node without appending any brackets. The code for genuniVarDeclarator() is shown below:

method genuniVarDeclarator()

         icncode := kids[1].icncode

 end

The corresponding Java code looks like this:

void genuniVarDeclarator() {

   icncode = kids[0].icncode;

 }

You may be wondering at this point: do we have to initialize empty lists of strings for staticcode, 

and for vardecls, in every node in the entire syntax tree? One answer is that it would be safe to 

do so, but in most nodes, those attributes would go to waste. For the most part, local variable 

declarations only must be percolated through the BlockStmts nodes up to the top of the Block.

Transpiling Jzero block statements
The BlockStmts non-terminal constitutes a linked list of the statements in a given block. We 

might write a genuniBlockStmts() method as follows:

  method genuniBlockStmts()

         icncode := kids[1].icncode ||| kids[2].icncode

         vardecls := (\ (kids[1].vardecls)|[]) ||| 

                     (\ (kids[2].vardecls)|[])

   end

with the parallel Java code reading like this:

void genuniBlockStmts() {

    icncode = new ArrayList<String>();

    icncode.addAll( kids[0].icncode );

    icncode.addAll( kids[1].icncode );

    icncode = new ArrayList<String>();

    vardecls.addAll( kids[0].vardecls );

    vardecls.addAll( kids[1].vardecls );

 }
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Percolating the vardecls attribute up to the Block allows all the vardecls to be explicitly placed 

into the icncode before all the regular output code for executable statements. The Block is nat-

urally enclosed in curly brackets:

method genuniBlock()

         icncode := ["{"]

         every icncode |||:= \ ((!\kids).vardecls) # move decls up front

         every icncode |||:= (!\kids).icncode

         icncode |||:= ["}"]

 end

The Java version of this code is as follows:

void genuniBlock() {

   icncode = new ArrayList<String>();

   icncode.add( "{" );

   for (tree k : kids)

     icncode.addAll( k.vardecls ); // move decls up front

   for (tree k : kids)

      icncode.addAll(k.icncode);

   icncode.add( "}" );

 }

Have you picked up on the one crucial omission from this discussion of moving variable declara-

tions up to the front of the block? What do we do about variables declared inside nested blocks? 

For that matter, what do we do about variables declared inside for loop headers? Unicon certainly 

does not support these features.

A crude answer is to just disallow these features in Jzero. A more satisfying answer might be to 

go into all helper functions for production rules that contain a Block on their righthand side, 

and copy up their vardecls attributes so that they are found in the enclosing Block. If you go 

beyond Jzero in this way to support a larger subset of Java, be prepared to also rename, or per-

form name-mangling on, all such variables declared in nested blocks. The propagating from 

nested blocks to enclosing blocks can be illustrated for if statements by adding a line to our 

genuniIfThenStatement() method:

  method genuniIfThenStmt()

     if kids[2].icncode[1] === "{" then {

       icncode := ["if " || kids[1].icncode[1] || " then {"] |||

                    kids[2].icncode[2:0]

       }
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     else

        icncode := ["if " || kids[1].icncode[1] || " then"] ||| 

                   kids[2].icncode

     vardecls := kids[2].vardecls

   end

The corresponding Java code is as follows:

  void genuniIfThenStmt() {

     icncode = new ArrayList<String>();

     if (kids[1].icncode.get(0).equals("{")) {

       icncode.add("if " + kids[0].icncode.get(0) + " then {";

       for(int i = 1; i < kids[1].icncode.size(); i++)

         icncode.add( kids[1].icncode.get(i) );

       }

     else {

        icncode.add( "if " + kids[0].icncode.get(0) + " then");

        icncode.addAll( kids[1].icncode );

     }

     vardecls = kids[1].vardecls;

   }

Now it is time to look at how methods are assembled to form classes, and how classes are transpiled 

into Unicon packages.

Transpiling a Jzero class into a Unicon package that contains 
a class
For the sake of consistency, we will present the code generation model via semantic rules specify-

ing the values of semantic attributes, as we did in Chapter 9. The semantic rules for the top-level 

Jzero code generation that maps a Java class to a Unicon package with a class inside are shown 

in Figure 11.6.

Figure 11.6: Semantic rules mapping a Jzero class to Unicon
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The code to implement this transpilation of Java classes happens at the very end of our bottom-up 

traversal of the syntax tree. The part that builds the complete translation in the root’s icncode 

attribute is located in a method genuniClassDecl(). The Unicon version of this code is shown here:

# generate public static methods outside the class, then generate the 
class 

 method genuniClassDecl()

   icncode := ["package " || kids[1].icncode[1]]

   icncode |||:= kids[-1].staticcode

   icncode |||:= ["class " || kids[1].icncode[1] || "()"]

   icncode |||:= kids[-1].icncode

 end

The corresponding Java code is given below:

void genuniClassDecl() {

    icncode = new ArrayList<String>();

    icncode.add("package " + kids[1].icncode.get(1));

    icncode.addAll(kids[kids.length-1].staticcode);

    icncode.add("class " + kids[1].icncode.get(1) + "()");

    icncode.addAll(kids[kids.length-1].icncode);

 }

The actual writing out of the code takes place in a class j0 method genunicon(root). Its 

name is deliberately similar to the class tree's genunicon() method, since it calls the root’s 

genunicon() to do the tree traversal, and then writes the results to a file. Here is the Unicon ver-

sion of genunicon(root) from the j0.icn file:

   method genunicon(root)

      root.genunicon()

      basenam := yyfilename[1:find(".java", yyfilename)]

      outfileh := basenam || "_helper.icn"

      if fout := open(outfileh, "w") then {

         write(fout, "procedure main(argv)")

         write(fout, "   ", basenam, "__main ! argv")

         write(fout, "end")

         close(fout)

         }

      outfilename := basenam || ".icn"

      if fout := open(outfilename, "w") then {
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         every s := !(root.icncode) do {

            write(fout, s)

            write(s)

            }

         close(fout)

         system("unicon -s " || outfilename || " " || outfileh)

         }

    end

The corresponding Java code shown here is from j0.java. It required a bunch of imports, added 

to the top of j0.java, for classes FileWriter, BufferedWriter, and PrintWriter, because Java 

loves imports:

void genunicon(parserVal r) {

   tree root = (tree)(r.obj);

   root.genunicon();

   int len = yyfilename.length();

   String basenam = yyfilename.substring(0,length-5);

   String outfileh = basenam + "_helper.icn";

   PrintWriter fout;

   try {

     fout = new PrintWriter(new BufferedWriter(new FileWriter(outfileh)));

     fout.printf("procedure main(argv)\n");

     fout.printf("   " + basenam + "__main ! argv\n");

     fout.printf("end\n");

     fout.close();

     }

   catch (java.io.IOException ioException) {

     System.err.println("can't write "+outfileh);

     System.exit(1);

     }

   String outfilename = basenam + ".icn";

   try {

     fout = new PrintWriter(new BufferedWriter(

                            new FileWriter(outfilename)));

     for(int i=0; i<root.icncode.size(); i++) {

       String s = root.icncode.get(i);

       fout.printf(s + "\n");
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       System.out.println(s);

       }

     fout.close();

After writing the output, j0.java's genunicon() continues by invoking the Unicon compiler. 

This was a one-liner in Unicon and would be so in most high-level languages, but Java culture 

must be different:

    String cmd = "unicon -s " + outfilename + " " + outfileh;

     Process p = Runtime.getRuntime().exec(cmd);

     int eValue=0;

     try {

       eValue = p.waitFor();

     } catch (InterruptedException iException) {

       System.err.println("unicon interrupted");

     }

     System.out.println("unicon exited with status " + 

                        String.valueOf(eValue));

     }

   catch (java.io.IOException ioException) {

     System.err.println("can't write "+outfilename);

     System.exit(1);

     }

 }

Class j0's genunicon(root) is invoked from yyparse() after the root node has been construct-

ed and the semantic analysis is performed on it. The code below that launches transpilation in 

j0gram.y is shared by Unicon and Java implementations:

ClassDecl: PUBLIC CLASS IDENTIFIER ClassBody {

   $$=j0.node("ClassDecl",1000,$3,$4);

   j0.semantic($$);

   j0.genunicon($$);

  } ;

This transpiler turns out to be a lot simpler than generating bytecode or native code instructions; 

for high-level languages from similar language paradigms, a transpiler is probably simpler than 

generating intermediate code. Hopefully, this code will be helpful should you find yourself writing 

a transpiler in the future.



Chapter 11 319

Summary
In this chapter, you learned the basics of preprocessors and transpilers. While a preprocessor 

can be thought of as a transformation that alters code slightly from its input to its output, a 

transpiler turns source code from one high-level language into another high-level language that 

is substantially different.

For any new programming language project that you undertake, you may want to first consider 

the implementation techniques shown in this chapter, either to produce a prototype or as your 

primary implementation. If you write a transpiler, you will get things working fast, and you will 

be able to try it out and determine whether your language semantics work the way that you 

intend. Later on, you may want to write a bytecode interpreter or native code implementation, 

but even if you do, having the transpiler around will be helpful. You can reuse its frontend code, 

while switching the backend over to the intermediate code generator from Chapter 9, followed 

by one of the code generators that are presented next, in Chapters 12 and 13.

Questions
1.	 Java was designed to avoid having a preprocessor, despite resembling C/C++, which fea-

tures a powerful preprocessor that is heavily used. What are some of the disadvantages 

of preprocessors that might have motivated the designers of Java to omit a preprocessor 

from their language?

2.	 The promise of transpilers is to get a new language working very quickly without requiring 

any machine code. What are some of the limitations and pitfalls of this implementation 

approach?

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw




12
Bytecode Interpreters

A new programming language may include novel features that are not supported directly by 

mainstream CPUs. The most practical way to generate code for many programming languages is to 

generate bytecode for an abstract machine whose instruction set directly supports the language’s 

intended domain. This is important because it sets your language free from the constraints of 

what current hardware CPUs know how to do. It also allows the generation of code that is tied 

more closely to the types of problems that you want to solve. If you create your own bytecode in-

struction set, you can execute programs by writing a virtual machine that knows how to interpret 

that instruction set. This chapter covers how to design an instruction set and an interpreter that 

executes bytecode. Because this chapter is tightly connected to Chapter 13, Generating Bytecode, 

you may want to read them both before you dive into the code.

This chapter covers the following main topics: 

•	 Understanding what bytecode is

•	 Comparing bytecode with intermediate code

•	 Building a bytecode instruction set for Jzero

•	 Implementing a bytecode interpreter

•	 Examining iconx, the Unicon bytecode interpreter

Technical requirements
The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-

Your-Own-Programming-Language-Second-Edition/tree/master/ch12

The Code in Action video for the chapter can be found here: https://bit.ly/327bZWn

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch12
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch12
https://bit.ly/327bZWn
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A bytecode interpreter is a piece of software that executes an abstract machine instruction set. 

We are going to learn about bytecode interpreters by looking at a simple bytecode machine for 

Jzero and taking a quick peek at the Unicon virtual machine. But first, let’s explore what we mean 

by bytecode.

Understanding what bytecode is
Bytecode is a sequence of machine instructions encoded in a binary format and written not for 

a CPU to execute, but instead for an abstract (or virtual) machine instruction set that embodies 

the semantics of a given programming language. Although many bytecode instruction sets for 

languages such as Java use a byte as the smallest instruction size, almost all of them include 

longer instructions. Such longer instructions have one or more operands. Since many kinds of 

operands must be aligned at a word boundary with an address that is a multiple of four or eight, 

a better name for many forms of bytecode might be wordcode. The term bytecode is commonly 

used for such abstract machines, regardless of the instruction’s size.

The languages that are directly responsible for popularizing bytecode are Pascal and SmallTalk. 

These languages adopted bytecode for different reasons that remain important considerations 

for programming languages that are defined in terms of their bytecode. Java took this idea and 

made it more widely known throughout the computer industry.

For Pascal, bytecode is used to improve the portability of a language implementation across dif-

ferent hardware and operating systems. It is much easier to port a bytecode interpreter to a new 

platform than to write a new compiler code generator for that platform. If most of a language 

is written in that language itself, the bytecode interpreter may be the only part that has to be 

ported to a new machine.

SmallTalk popularized bytecode for a different reason: to create a layer of abstraction upon which 

to implement novel features that were far removed from the hardware at the time. A bytecode 

interpreter allows a language developer to design new instructions as needed, as well as to define 

runtime system semantics that are present for all the implementations of that language.

To explain what bytecode is, consider the bytecode that’s generated from the following Unicon 

code:

   write("2 + 2 is ", 2+2)

Bytecode breaks down the execution of this expression into individual machine instructions. The 

human-readable representation of the bytecode for this expression might look like the following 

Unicon bytecode, called ucode:
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    mark    L1

    var    0

    str    0

    pnull

    int    1

    int    1

    plus

    invoke    2

    unmark

lab L1

Going line by line, the mark instruction designates the destination label where the execution 

should proceed if any instruction fails. In Unicon, control flow is mostly determined by failure, 

rather than by Boolean conditions and explicit goto instructions. The var instruction pushes a 

reference to variable #0 (write) onto an evaluation stack. Similarly, the str instruction pushes a 

reference to string constant #0 ("2 + 2 is "). The pnull instruction is pushed to provide a space 

on the evaluation stack where the result of an operator (+) may be placed. The int instruction 

pushes a reference to the integer constant in constant region location #1, which is the value 2; 

this is done twice for the two operands of the addition. The plus instruction pops the top two 

stack elements and adds them, placing the result on the top of the stack. The invoke instruction 

performs a call with two arguments. The function to be called was specified on the stack prior 

to the two arguments; in this case, it was the function write that was supplied way back in the 

var instruction. When invoke comes back, the arguments will have been popped, and the top of 

the stack, where the reference to the write function had been pushed, will hold the function’s 

return value.

From the preceding example, you can see that bytecode somewhat resembles intermediate code, 

and that is intentional. So, what is the difference?

Comparing bytecode with intermediate code
In Chapter 9, Intermediate Code Generation, we generated machine-independent intermediate 

code using abstract three-address instructions. Bytecode instruction sets are in between the 

three-address intermediate code and a real hardware instruction set in their complexity. A single 

three-address instruction may map to multiple bytecode instructions. This refers to both the direct 

translation of any instance of a three-address instruction, as well as to the fact that there may be 

several bytecode instruction opcodes that handle various special cases of a given three-address 

opcode. Bytecode is generally more involved than intermediate code, even if it manages to avoid 

the complexities of operand addressing modes found on a lot of CPUs. 
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Many or most bytecode instruction sets explicitly or implicitly use (virtual, logical) registers, 

although bytecode machines are usually far simpler than CPU hardware in terms of the number 

of registers and the register allocation that the compiler must perform to generate code.

Bytecode is generally a binary file format. Binary formats are very difficult for humans to read. 

When talking about bytecode in this chapter, we will provide examples in an assembler-like 

format, but the bytecode itself is all ones and zeros.

Comparing a hello world program in intermediate code and bytecode might give you some idea of 

their similarities and differences. We will use the following hello.java program as an example. 

It just prints a message if you give it command-line arguments, but it contains arithmetic as well 

as control flow instructions:

public class hello {

   public static void main(String argv[]) {

      int x = argv.length;

      x = x + 2;

      if (x > 3) {

         System.out.println("hello, jzero!");

      }

   }

}

The Jzero three-address code for this program looks as follows. Its operands include several kinds 

of memory references, ranging from local variables to code region labels. The main() function 

consists of 11 instructions and 20 operands, averaging almost two operands per instruction:

.string

L0:     string  "\"hello, jzero!\""

.global

        global  global:8,hello

        global  global:0,System

.code

proc    main,0,0

        ASIZE   loc:24,loc:8

        ASN     loc:16,loc:24

        ADD     loc:32,loc:16,imm:2

        ASN     loc:16,loc:32

L75:    BGT     L76,loc:16,imm:3
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        GOTO    L77

L76:    PARM    strings:0

        FIELD   loc:40,global:0,class:0

        PARM    loc:40

        CALL    PrintStream__println,1

L77:    RET

end

The JVM bytecode for this program, as produced by compiling the program with javac and then 

disassembling it with the javap -c command, is shown here (comments have been removed). 

The main() function consists of 14 instructions with four operands, which equates to less than a 

third of an operand per instruction:

public class hello {

  public hello();

    Code:

       0: aload_0

       1: invokespecial #1

       4: return

  public static void main(java.lang.String[]);

    Code:

       0: aload_0

       1: arraylength

       2: istore_1

       3: iload_1

       4: iconst_2

       5: iadd

       6: istore_1

       7: iload_1

       8: iconst_3

       9: if_icmple     20

      12: getstatic     #2

      15: ldc           #3

      17: invokevirtual #4

      20: return

}
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The instructions in this main() method illustrate some characteristics of their underlying Java 

bytecode interpreter virtual machine. It is a stack machine. The load and store families of in-

structions push and pop a variable between a numbered slot in the main memory region and the 

top of the stack, where expressions are evaluated. This instruction set is typed, with mnemonic 

prefixes for each of the built-in scalar atomic types of the Java language (i for integer, f for float, 

a for array, and so on). It has object-oriented conventions, such as specifying that local vari-

able #0 is the current object, so the instruction aload_0 pushes a reference to the current object 

(known as this or self). It has built-in instructions for special purposes such as the arraylength 

instruction for returning the length of an array. Seven integers from -1 through 5 have opcodes 

that push those constants: iconst_1, iconst_2, iconst_3, etc. An instruction such as iadd pops 

two values, adds them, and then pushes the result.

We will present a simpler bytecode instruction set in this chapter, but it is nice to know what 

the most brilliant minds in the industry are churning out. Now, let’s look at a simpler bytecode 

instruction set that’s suitable for Jzero.

Building a bytecode instruction set for Jzero
This section describes a simple file format and instruction set for Jzero code, generated from 

three-address intermediate code. This is very much a toy instruction set. For the language that 

you create, you instead might decide to use (possibly a subset of) a real instruction set such as 

the Java bytecode instruction set. Java bytecode is a complicated format; if it wasn’t, we wouldn’t 

be going to the trouble of presenting something simpler. The instruction set presented here is 

slightly more capable than Jzero uses, to allow for common extensions.
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Defining the Jzero bytecode file format
The Jzero bytecode format consists of a header, followed by a data section, followed by a sequence 

of instructions. Jzero bytecode files are interpreted as a sequence of 8-byte words in little-endian 

format. The header consists of an optional self-execution script, a magic word, a version number, 

and the word offset of the first instruction, relative to the magic word. A self-execution script is 

a set of commands written in some platform-dependent language that invokes the interpreter, 

feeding the Jzero file to it as a command-line argument. If present, the self-execution script must 

be padded if necessary to comprise a multiple of 8 bytes. The magic word is 8 bytes containing 

the "Jzero!!\0" string. The version number is another 8 bytes containing a version such as 1.0 

padded with NUL bytes, as in "1.0\0\0\0\0\0". The word offset of the first instruction would, at 

its smallest, be 3; this number is relative to the magic word. A word offset of 3 indicates an empty 

constant section of 0 words. After the magic word, the version word, and the word offset, execution 

starts at the instruction whose offset is given in the third word. Figure 12.1 illustrates the memory 

layout for the shortest Jzero program. Each row denotes one word of eight bytes, and each rect-

angle contains one byte, with the byte offset shown in a small font in the upper-left corner, and 

the byte contents printed in the center. In this figure, after the three-word header and the empty 

data section, the fourth word is a HALT instruction, whose first byte is the code for HALT: "\x01".

Figure 12.1: Memory layout for the shortest Jzero program

After the header, there is an optional static data section, which, in Jzero, includes static variables 

as well as constants, including string literals. In a more serious production language, there might 

be several kinds of static data sections. For example, there might be one subsection for read-only 

data, one for data that starts uninitialized and doesn’t need to physically occupy space in the 

file on disk, and a third for statically initialized (non-zero) data. For Jzero, we will just allow one 

section on disk for all of that.
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After the data section, the rest of the file consists of instructions. Every instruction in Jzero format 

is a single 64-bit word containing an opcode (8 bits), an operand region (8 bits), and an operand 

(48 bits). The operand region and operand are not used in all opcodes. Table 12.1 shows the opcodes 

that are defined in the Jzero instruction set:

Table 12.1: The Jzero instruction set
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Compare the Jzero instruction set with the set of instructions defined for intermediate code in 

Chapter 9, Figure 9.2. The intermediate code instruction set is higher-level, allowing up to three 

operands. The Jzero instruction set is lower-level and instructions have zero or one operand.

The operand region byte is treated as a signed 8-bit value. For non-negative values, the Jzero 

format defines the following operand regions:

•	 region 0 == no operand (R_NONE).

•	 region 1 == absolute (R_ABS): The operand is a word offset relative to the magic word.

•	 region 2 == immediate (R_IMM): The operand is the value.

•	 region 3 == stack (R_STACK): The operand is a word offset relative to the current stack 

pointer.

•	 region 4 == heap (R_HEAP): The operand is a word offset relative to the current heap pointer.

The bytecode interpreter source code needs to be able to refer to these opcodes and operand re-

gions by name. In Unicon, a set of $define symbols could be used, but instead, a set of constants 

in a singleton class called Op is used to keep the code similar in Unicon and Java. The Op.icn file, 

which contains the Unicon implementation, is shown here:

class Op(HALT, NOOP, ADD, SUB, MUL, DIV, MOD, NEG, PUSH,

  POP,

  CALL, RETURN, GOTO, BIF, LT, LE, GT, GE, EQ, NEQ, LOCAL,

  LOAD, STORE, R_NONE, R_ABS, R_IMM, R_STACK, R_HEAP)

initially

  HALT := 1;  NOOP := 2; ADD := 3; SUB := 4; MUL := 5

  DIV := 6; MOD := 7; NEG := 8; PUSH := 9; POP := 10

  CALL := 11; RETURN := 12; GOTO := 13; BIF := 14; LT := 15

  LE := 16; GT := 17; GE := 18; EQ := 19; NEQ := 20

  LOCAL := 21; LOAD := 22; STORE := 23

  R_NONE := 0; R_ABS := 1; R_IMM := 2

  R_STACK := 3; R_HEAP := 4

  Op := self

end

The corresponding Java class looks like this:

public class Op {

  public final static short HALT=1, NOOP=2, ADD=3, SUB=4,

    MUL=5, DIV=6, MOD=7, NEG=8, PUSH=9, POP=10, CALL=11,
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    RETURN=12, GOTO=13, BIF=14, LT=15, LE=16, GT=17, GE=18,

    EQ=19, NEQ=20, LOCAL=21, LOAD=22, STORE=23;

  public final static short R_NONE=0, R_ABS=1, R_IMM=2,

    R_STACK=3, R_HEAP=4;

}

Having a set of opcodes is all well and good, but the more interesting differences between the 

three-address code and bytecode lie in the semantics of the instructions. We will discuss this later 

in the Executing instructions section. Before we get to that, you need to know more about how a 

stack machine operates, as well as a few other implementation details.

Understanding the basics of stack machine operation
Like Unicon and Java, the Jzero bytecode machine uses a stack machine architecture. Most of the 

instructions implicitly read or write values to or from the stack. Popping to read, and pushing to 

write values is an expected side-effect in a stack machine. For example, consider the ADD instruc-

tion. To add two numbers, you push them onto the stack and execute an ADD instruction. The 

ADD instruction itself takes no operands; it pops two numbers, adds them, and pushes the result.

Now, consider a function call with n parameters whose syntax looks like this:

    arg0 (arg1, …, argN)

On a stack machine, this can be implemented by the sequence of instructions shown here:

    push reference to function arg0

    evaluate (compute and push) arg1

    . . .

    evaluate (compute and push) argN

    call n

The function call will use its operand (n) to locate arg0, the address of the function to be called. 

When the function call returns, all the arguments will be popped and the function return value 

will be on the top of the stack, in the location that previously held arg0. Now, let’s consider some 

other aspects of how to implement a bytecode interpreter.

Implementing a bytecode interpreter
A bytecode interpreter runs the following algorithm, which implements a fetch-decode-execute 

loop in software. Most bytecode interpreters use at least two registers almost continuously: an 

instruction pointer and a stack pointer. The Jzero machine also includes a base pointer register 

to track function call frames and a heap pointer register that holds a reference to a current object.
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While the instruction pointer is referenced explicitly in the following fetch-decode-execute loop 

pseudocode, the stack pointer is used almost as frequently, but it’s more often used implicitly as 

a byproduct of the instruction semantics of most opcodes:

load the bytecode into memory

initialize interpreter state

repeat {

   fetch the next instruction, advance the instruction pointer

   decode the instruction 

   execute the instruction

}

Bytecode interpreters are usually implemented in a low-level systems programming language 

such as C, rather than a high-level applications language such as Java or Unicon. The sample 

implementations will perhaps feel somewhat iconoclastic to hardened systems programmers for 

this reason. Everything in Java is object-oriented, so the bytecode interpreter is implemented in 

a class named bytecode. The most native representation of a raw sequence of bytes in Unicon is 

a string, while in Java, the most native representation is an array of bytes.

To implement the bytecode interpreter algorithm, this section presents each of the pieces of the 

algorithm in separate subsections. First, let’s consider how to load bytecode into memory.

Loading bytecode into memory
To load bytecode into memory, the bytecode interpreter must obtain the bytecode via an input/

output of some kind. Typically, this will be done by opening and reading from a named local file. 

When executable headers are used, a launched program opens itself and reads itself in as a data 

file. The Jzero bytecode is defined as a sequence of 64-bit binary integers, but this representation 

is more native in some languages than in others.

In Unicon, loading a file might look like this. The loaded file contents are returned as the return 

value from method loadbytecode(), or the method fails:

class j0machine(code, ip, stack, data, finstr, sp, bp, hp, op, opr, opnd)

  method loadbytecode(filename)

    sz := stat(filename).st_size

    f := open(filename) | stop("cannot open ", filename)

    s := reads(f, sz) | stop("cannot read from ", filename)

    close(f)

    s ? {
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      if tab(find("Jzero!!\01.0\0\0\0\0\0")) then {

        return tab(0)

        }

      else stop("file ", filename, " is not a Jzero file")

      }

  end

  …

end

The call to reads() in this example reads the entire bytecode file into a single contiguous se-

quence of bytes. In Unicon, this is represented as a string. The corresponding Java uses an array 

of bytes, with a ByteBuffer wrapper to provide easy access to the words within the code. The 

loadbytecode() method within j0machine.java looks like this. The method returns whether 

the codebuf was loaded or not:

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.nio.charset.StandardCharsets;

import java.nio.ByteBuffer;

public class j0machine {

  public static byte[] code, stack;

  public static ByteBuffer codebuf, stackbuf;

  . . .

  public static boolean loadbytecode(String filename)

    throws IOException {

      code = Files.readAllBytes(Paths.get(filename));

      byte[] magstr = "Jzero!!\01.0\0\0\0\0\0".getBytes(

                          StandardCharsets.US_ASCII);

      int i = find(magstr, code);

      if (i>=0) {

        codebuf = ByteBuffer.wrap(code);

        return true;

      }

      else return false;

    }

}
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Finding the magic string within a Java byte array requires the following helper method:

public static int find(byte[]needle, byte[]haystack) {

   int i=0;

   for( ; i < haystack.length - needle.length+1; ++i) {

        boolean found = true;

        for(int j = 0; j < needle.length; ++j) {

           if (haystack[i+j] != needle[j]) {

               found = false;

               break;

           }

        }

        if (found) return i;

     }

   return -1;

}

In addition to loading bytecode into memory and before starting execution, the bytecode inter-

preter must initialize its registers.

Initializing the interpreter state
The bytecode interpreter state includes the memory regions, instruction and stack pointers, and 

a small amount of constant or static data used by the interpreter. The init() method allocates 

and initializes the code region by calling the loadbytecode() method and allocates a stack region. 

The init() method sets the instruction register to 0, indicating that execution will start at the 

first instruction in the code region. The stack is initialized to be empty.

In Unicon, initialization consists of the following init() method within the j0machine class. For 

static variables, Unicon must allocate a separate static data region because the string type that is 

used to load the bytecode is immutable. Both it and the bytecode interpretation stack are imple-

mented as lists of integers; this exploits the fact that Unicon version 13 and higher implements 

lists of integers in a contiguous block of memory:

  method init(filename)

    if not (code := loadbytecode(filename) then

      stop("cannot open ", filename)

    Op()

    ip := 16
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    ip := finstr := 8*getOpnd()

    data := Data(code[25:ip+1])

    stack := list()

  end

The corresponding Java code is as follows. The allocation of a 100,000-word stack is somewhat 

arbitrary:

  public static void init(String filename)

    throws IOexception {

      ip = sp = 0;

      if (! loadbytecode(filename)) {

         System.err.println("cannot open ", filename);

         System.exit(1);

         }

      stack = new byte[800000];

      stackbuf = ByteBuffer.wrap(stack);

    }

Program executions in Jzero start with the execution of a function named main(). This is a function 

in the Jzero bytecode, not in the Java implementation of the bytecode interpreter.

When the Jzero main() function runs, it expects to have a normal activation record on the stack, 

where parameters can be accessed. The easiest way to provide this is to initialize the instruction 

pointer to a short sequence of bytecode instructions that call main(), and exit after it returns. To 

set this up, you can initialize the stack, and point the instruction pointer at a CALL instruction 

that calls main, followed by a HALT instruction.

In the case of Jzero, main() has no parameters and the start sequence is always:

    PUSH main

    CALL    0

    HALT

Since the startup sequence is the same for every program, it would be possible to embed this 

bytecode sequence into the virtual machine interpreter code itself, and some bytecode machines 

do this. The catch is that the code offset (address) of main() will vary from program to program 

unless it is hardwired, and the linker is forced to always place main() in the same location. 
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In the case of Jzero, it is sufficient and acceptable for the startup sequence to always begin the 

code section, at the word offset specified in the header. Now, let’s consider how the interpreter 

fetches the next instruction.

Fetching instructions and advancing the instruction pointer
A register ip, called the instruction pointer, holds the location of the current instruction. Bytecode 

interpreters can represent this as a variable that denotes a pointer into the code, or an integer 

index, viewing the code as an array. In Jzero, it is a byte offset from the magic word. An instruction 

fetch in bytecode is an operation that reads the next instruction in the code. This includes the 

opcode that must be read, as well as any additional bytes or words that have operands for some 

instructions. In Unicon, this fetch() method is located in the j0machine class. It looks as follows:

   method fetch()

      op := ord(code[1+ip])

      opr := ord(code[2+ip])

      if opr ~= 0 then opnd := getOpnd()

      ip +:= 8

   end

The corresponding Java version of the fetch() method looks like this:

  public static void fetch() {

      op = code[ip];

      opr = code[ip+1];

      if (opr != 0) { opnd = getOpnd(); }

      ip += 8;

  }

The fetch() method depends on the getOpnd() method, which reads the next word from the 

code. In Unicon, the getOpnd() method might be implemented as follows:

  method getOpnd()

    return signed(reverse(code[ip+3+:6]))

  end

The corresponding Java implementation of the getOpnd() method does a lot of bit shifting and 

OR operations:

  public static long getOpnd() {

    long i=0;
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    if (codebuf.get(ip+7) < 0) i = -1;

    for(int j=7;j>1;j--) i = (i<<8) | codebuf.get(ip+j);

    return i;

  }

Now that we’ve looked at instruction fetching, let’s look at how instruction decoding is performed.

Instruction decoding
The decoding step is a big deal in hardware CPUs; in a bytecode interpreter, it is no big deal, but 

it needs to be fast. You do not want a long chain of if-else-if statements in the main loop that is 

going to execute extremely frequently. You want decoding to take a small constant amount of time, 

regardless of the number of opcodes in your instruction set, so usually, you should implement 

it with either a table lookup or a switch or case control structure. A Unicon implementation of 

instruction decoding can be seen in the case expression in the following interp() method, which 

implements the fetch-decode-execute loop:

  method interp()

    repeat {

      fetch()

      case (op) of {

         Op.HALT: { stop("Execution complete.") }

         Op.NOOP: { . . .  }

         . . .

         default: { stop("Illegal opcode " + op) }

         }

      }

  end

The corresponding Java code looks like this:

  public static void interp() {

    for(;;) {

      fetch();

      switch (op) {

        case Op.HALT: { stop("Execution complete."); break; }

        case Op.NOOP: { break; }

        . . .

        default: { stop("Illegal opcode " + op); }
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        }

      }

  }

The key pieces of the interpreter loop that remain to be shown are the implementation of the var-

ious instructions. A couple of examples have been given here that depend on the stop() method 

to implement the execution of the HALT instruction. In Unicon, stop() is a built-in, but in Java, 

it can be implemented as follows:

  public static void stop(String s) {

    System.err.println(s);

    System.exit(1);

  }

The next section describes the rest of the execute portion of the fetch-decode-execute cycle.

Executing instructions
For each of the Jzero instructions, their execution consists of filling in the body of the correspond-

ing case. In Unicon, the ADD instruction might look like this case branch:

Op.ADD: {

   val1 := pop(stack); val2 := pop(stack)

   push(stack, val1 + val2)

}

The corresponding Java implementation is as follows:

case Op.ADD: {

   long val1 = stackbuf.getLong(sp--);

   long val2 = stackbuf.getLong(sp--);

   stackbuf.putLong(sp++, val1 + val2);

   break;

}

Similar code applies for SUB, MUL, DIV, MOD, LT, and LE.

The PUSH instruction takes a memory operand and pushes it onto the stack. The challenging part 

of this (in Unicon and Java, where pointers are being faked) is the interpretation of the operand 

to fetch a value from memory. This is performed by a separate dereferencing method. Internal 

helper functions such as deref() are part of the runtime system and will be covered in the Writing 

a runtime system for Jzero section. 
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The Unicon implementation of the PUSH instruction is as follows:

Op.PUSH: {

   val := deref(opr, opnd)

   push(stack, val)

}

The equivalent Java code looks like this:

case Op.PUSH: {

   long val = deref(opr, opnd);

   push(val);

   break;

}

The POP instruction removes a value from the stack and stores it in a memory location designated 

by a memory operand. The Unicon implementation of the POP instruction is as follows:

Op.POP: {

   val := pop(stack)

   assign(opnd, val)

}

The equivalent Java code looks like this:

case Op.POP: {

   long val = pop();

   assign(opnd, val);

   break;

}

The GOTO instruction sets the instruction pointer register to a new location. In Unicon, this is just 

as straightforward as you would expect:

Op.GOTO: {

   ip := opnd

}

The equivalent Java code looks like this:

case Op.GOTO: {

   ip = (int)opnd;

   break;

}
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The conditional branch instruction, BIF (branch-if), pops the top of the stack. If it is non-zero, 

then it sets the instruction pointer register to a new location, such as a GOTO instruction. In Unicon, 

the implementation is as follows:

Op.BIF: {

   if pop(stack)~=0 then

      ip := opnd

}

The equivalent Java code looks like this:

case Op.BIF: {

   if (pop() != 0)

       ip = (int)opnd;

   break;

}

The call instruction is also like GOTO. It saves an address indicating where execution should resume 

after a return instruction. The function to call is given in an address just before the n parameters 

on the top of the stack. A non-negative address in the function slot is the location where the 

instruction pointer must be set. If the function is negative, it is a call to runtime system function 

number -n. This is shown in the following Unicon implementation of the CALL instruction:

Op.CALL: {

   f := stack[1+opnd]

   if f >= 0 then {

      push(stack, ip) # save old ip

      push( stack, bp) # save old bp

      bp := *stack     # set new bp

      ip := f

     }

   else if f = -1 then do_println()re

}

The equivalent Java code looks like this:

case Op.CALL: {

   long f;

   f = stackbuf.getLong(sp-8-(int)(8*opnd));
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   if (f >= 0) {

      push( ip);

      push( bp);

      bp = sp;

      ip = (int)f;

      }

   else if (f == -1) do_println();

   else { stop("no CALL defined for " + f); }

   break;

}

The return instruction is also a GOTO, except it goes to a location that was previously stored on 

the stack:

Op.RETURN: {

   while *stack > bp do pop(stack)

   bp := pop(stack)

   ip := pop( stack )

}

The equivalent Java code looks like this:

case Op.RETURN: {

   sp = bp;

   bp = (int)pop();

   ip = (int)pop();

   break;

}

The Jzero interpreter’s execute operation is pretty short and sweet. Some bytecode interpreters 

would have additional instructions for input/output, but we are delegating those tasks to a small 

set of functions that can be called from the generated code. We’ll cover those runtime functions 

shortly, but first, we’ll look at the main() method, which starts the Jzero interpreter from the 

command line.

Starting up the Jzero interpreter
The main() function that launches the Jzero interpreter lives in a module named j0x. This launcher 

is short and sweet. The Unicon code looks like this, and it can be found in j0x.icn:

procedure main(argv)



Chapter 12 341

  if not (filename := argv[1]) then

    stop("usage: j0x file[.j0]")

  if not (filename[-3:0] == ".j0") then argv[1] ||:= ".j0"

  j0machine := j0machine()

  j0machine.init(filename)

  j0machine.interp()

end

The corresponding Java code in j0x.java looks like this:

public class j0x {

  public static void main(String[] argv) {

    if (argv.length < 1) {

      System.err.println("usage: j0x file[.j0]");

      System.exit(1);

      }

    String filename = argv[0];

    if (! filename.endsWith(".j0"))

      filename = filename + ".j0";

    try {

      j0machine.init(filename);

    } catch(Exception ex) {

      System.err.println("Can't initialize. Exiting.");

      System.exit(1);

    }

    j0machine.interp();

  }

}

We will see how well this interpreter runs shortly. But first, let’s look at how built-in functions 

are incorporated into the Jzero runtime system.

Writing a runtime system for Jzero
In a programming language implementation, the runtime system is the code that is included to 

provide basic functionalities needed for the generated code to run. Generally, the more high-level 

the language is and the greater its distance from the underlying hardware, the larger the runtime 

system. Since Jzero is a toy language, its toy runtime system is incomplete and only supports a 

few internal helper functions such as deref() and some basic functions for input and output. 
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These functions are written in the implementation language (in our case, Unicon or Java), not 

the Jzero language. Here is the deref() method in Unicon. Additional runtime system functions 

are left as exercises for the reader:

  method deref(reg, od)

    case reg of {

      Op.R_ABS: {

        if od < finstr then return data.word(od)

        else return code[od]

        }

      Op.R_IMM: { return od }

      Op.R_STACK: { return stack[bp+od] }

      default: { stop("deref region ", reg) }

    }

  end

Each region has different dereferencing code that is appropriate to how that region is stored. The 

corresponding Java implementation of deref() looks like this:

    public static long deref(int reg, long od) {

    switch(reg) {

    case Op.R_ABS: { return codebuf.getLong((int)od); }

    case Op.R_IMM: { return od; }

    case Op.R_STACK: { return stackbuf.getLong(bp+(int)od); }

    default: { stop("deref region " + reg); }

    }

    return 0;

    }

In the case of built-in functions, we must be able to call them from the generated Jzero code. The 

implementation of built-in functions such as System.out.println() and how they are called 

from the bytecode interpreter will be covered in Chapter 14, Implementing Operators and Built-In 

Functions. Now, it is finally time to look at how to run the Jzero bytecode interpreter.

Running a Jzero program
At this point, we need to be able to test our bytecode interpreter, but we haven’t presented the 

code generator that generates this bytecode yet! For this reason, most of the testing for this chap-

ter’s bytecode interpreter will have to wait until the next chapter, where we will present the code 

generator. For now, here is a hello world program. The source code is as follows:
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public class hello {

   public static main(String argv[]) {

      System.out.println("hello");

   }

}

The corresponding Jzero bytecode might look something like this. One word is shown per line; 

the lines in hexadecimal show each byte as two hex digits. The opcode is in the leftmost byte, 

then the operand region byte, and then the operand in the remaining 6 bytes:

"Jzero!!\0"

"1.0\0\0\0\0\0"

0x0000040000000000

"hello\0\0\0"

0x0902380000000000                push main

0x0B02000000000000                call 0

0x0100000000000000                halt

0x0902FFFFFFFFFFFF                push -1 (println)

0x0902180000000000                push "hello"

0x0B02010000000000                call 1

0x0C02000000000000                return 0

If this is written in binary to a file called hello.j0, then executing the j0x hello command (or 

running java j0x hello for the Java version) will write out hello, as expected. This tiny but 

concrete example should whet your appetite for the much more interesting examples that we 

will generate in the next chapter. In the meantime, compare the simplicity of Jzero with some of 

the more interesting features that can be found by examining the Unicon bytecode interpreter.

Examining iconx, the Unicon bytecode interpreter
The Unicon language and its predecessor, Icon, share a common architecture and implementation 

in the form of a bytecode interpreter and runtime system program named iconx. Compared to 

the Jzero bytecode interpreter in the previous section, iconx is large and complex and has the 

benefit of real-world use over a sustained period. Compared to the Java virtual machine, iconx 

is small and simple, and it’s relatively accessible for studying. A thorough description of iconx 

can be found in The Implementation of Icon and Unicon: a Compendium. This section can be viewed 

as a brief introduction to that work.
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Understanding goal-directed bytecode
Unicon has an unusual bytecode. A brief example was provided earlier in this chapter in the 

Understanding what bytecode is section. The language is goal-directed. All expressions succeed 

or fail. Many expressions, called generators, can produce additional results on demand when a 

surrounding expression fails. Backtracking is built into the bytecode interpreter to save the state 

of such generator expressions and resume them later on if needed.

Under the covers, goal-directed expression evaluation can be implemented in many ways, but 

Unicon’s bytecode instruction set, which it inherits largely from Icon, has very unusual semantics 

that mirror the goal direction found in the source language. Chunks of instructions are marked 

with information to tell them where to go if they fail. Within such chunks of instructions, the 

state of generators is saved on a spaghetti stack, and if an expression fails, the most recently 

suspended generator is resumed.

Leaving type information in at runtime
In Unicon, variables can hold any type of value, and values know what type they are. This con-

tributes to the flexibility of the language and supports polymorphic code, at the cost of slower 

execution that requires more memory to run. In the C implementation, all variables, including 

ones stored in structures such as lists or records, are represented in a descriptor, declared to be of 

the struct descrip type. struct descrip contains two words: a dword or descriptor word that 

mainly holds type information and a vword or value word that holds the value or a pointer to the 

value. The C implementation of this struct is shown here:

struct descrip {

   word dword;

   union {

      word integr;

      double realval;

      char *sptr;

      union block *bptr;

      dptr descptr;

      } vword;

   };
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Strings are special-cased in dword; for a string, the dword contains the string length; the sign bit of 

that word is a flag that indicates whether the value is a non-string, which is to say whether a type 

information code is present. Numbers are special-cased in vword of a descriptor; for integers and 

real numbers, the value word contains the value; for all other types, the value word is a pointer to 

the value. Three different kinds of pointers are used, and the pointer to a union block can point 

at any of a couple dozen or so different Unicon data types. Which field of the vword union to use 

is decided in all cases by inspecting the dword.

Fetching, decoding, and executing instructions
In the Unicon bytecode interpreter, the fetch-decode-execute loop lives in a C function named 

interp(). Consistent with this chapter, this consists of an infinite loop with a switch statement 

inside it. One difference between Unicon instructions and Jzero, as described in this chapter, is 

that Unicon opcodes are generally a half-word in size, and if they contain an operand, it is gener-

ally a full word following that half-word opcode. Since many instructions have no operand, this 

may make the code more compact, and since operands are full words, they can contain a native 

C pointer rather than an offset relative to a base pointer for a given memory region. Unicon by-

tecode is computed by the compiler and stored in the executable on disk using offsets, and when 

they first execute, the offsets are converted into pointers and the opcode is modified to indicate 

that they now contain pointers. This clever self-modifying code poses extra pain for thread safety, 

and it means bytecode cannot be executed from constant or read-only memory.

Crafting the rest of the runtime system
Another difference between iconx and the Jzero interpreter presented in this chapter is that the 

Unicon bytecode interpreter has an enormous runtime system consisting of numerous sophisticat-

ed capabilities, such as high-level graphics and networking. Where the Jzero bytecode interpreter 

might be 80% of the code, with 20% left to the runtime system, the interp() function at Unicon’s 

core might be only 5% of the code, with the other 95% being the implementation of the many 

built-in functions and operators. This runtime system is written in a language called Runtime 

Language (RTL). RTL is a kind of superset of C with special features to support the Unicon type 

system, type inferencing, and automatic type conversion rules.

This section presented a brief introduction to the Unicon bytecode interpreter implementation. 

You saw that programming language bytecode interpreters are often a lot more interesting and 

complex than the Jzero interpreter. They may involve novel control structures, high-level and/or 

domain-specific data types, and more.
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Summary
This chapter presented the essential elements of bytecode interpreters. Knowing how to imple-

ment a bytecode interpreter frees you to generate flexible code, without having to worry about 

hardware instruction sets, registers, or addressing modes.

First, you learned that the definition of an instruction set includes the opcodes and rules for 

processing any operands in those instructions. You also learned how to implement generic stack 

machine semantics, as well as bytecode instructions that correspond to domain-specific language 

features. Then, you learned how to read and execute bytecode files, including interchangeably 

working with sequences of bytes and words in both Unicon and Java.

Given the existence of a bytecode interpreter, in the next chapter, we will discuss generating byte-

code from intermediate code so that we can run programs that are compiled using our compiler!

Questions
1.	 A bytecode interpreter could use an instruction set with up to three addresses (operands) 

per instruction, such as three-address code. Instead, the Jzero interpreter uses zero or one 

operands per instruction. What are the pros and cons of using three-address code in the 

bytecode interpreter, just as it is used in intermediate code?

2.	 On real CPUs and in many C-based bytecode interpreters, bytecode addresses are repre-

sented by literal machine addresses. However, the bytecode interpreters that were shown 

in this chapter implement bytecode addresses as positions or offsets within allocated 

blocks of memory. Is a programming language that does not have a pointer data type at a 

fatal disadvantage in implementing a bytecode interpreter, compared to a language that 

does support pointer data types?

3.	 If code is represented in memory as an immutable string value, what constraints does 

that impose on the implementation of a bytecode interpreter?
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Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:
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Generating Bytecode

In this chapter, we continue with code generation, taking the intermediate code from Chapter 

9, Intermediate Code Generation, and generating bytecode from it. When you translate from in-

termediate code into a format that will run, you are generating final code. Conventionally this 

happens at compile time, but it could occur later—at link time, load time, or runtime. We will 

generate bytecode in the usual way at compile time. This chapter and the following chapter on 

generating native code present you with two additional forms of final code that you can choose 

besides transpiling to another high-level language as described in Chapter 11.

Translation from intermediate code to bytecode is performed by walking through a list of inter-

mediate instructions, translating each intermediate code instruction into one or more bytecode 

instructions. A straightforward loop is used to traverse the list, with a different chunk of code for 

each intermediate code instruction. Although the loop used in this chapter is simple, generating 

the final code remains very important as the culminating essential skill you must acquire to bring 

your new programming language to life.

This chapter covers the following main topics: 

•	 Converting intermediate code to Jzero bytecode

•	 Comparing bytecode assembler with binary formats

•	 Linking, loading, and including the runtime system

•	 Unicon example: bytecode generation in icont

With the functionality that we build in this chapter, we will be able to generate code that runs 

on the bytecode interpreter presented in the previous chapter.
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Technical requirements
The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-

Your-Own-Programming-Language-Second-Edition/tree/master/ch13

The Code in Action video for the chapter can be found here: https://bit.ly/3oR6zGt

Converting intermediate code to Jzero bytecode
The Jzero intermediate code generator from Chapter 9, Intermediate Code Generation, traversed a 

tree and created a list of intermediate code as a synthesized attribute in each tree node, named 

icode. The intermediate code for the whole program is the icode attribute in the root node of the 

syntax tree. In this section, we will use this list to produce our output bytecode. To generate byte-

code, the gencode() method in the j0 class calls a new method in this class, named bytecode(), 

and passes it the intermediate code in root.icode as its input. The Unicon gencode() method 

that invokes this functionality in j0.icn looks like the following code block. The two highlight-

ed lines at the end of the following code snippet are added for bytecode generation, verified by 

simple text output:

   method gencode(root)

      root.genfirst()

      root.genfollow()

      root.gentargets()

      root.gencode()

      labeltable := table()

      bcode := bytecode(root.icode)

      if \textoutput then

         every (! (\bcode)).print()

      else

         genbytecode()

   end

The bytecode() method takes in an icode list, and its return value is a list whose elements are 

objects that represent bytecode instructions. These elements are instances of the byc class, which 

stands for bytecode. If the textoutput global flag has been set, the bytecode is printed out in text 

form; a binary format is output by default. The corresponding Java code for the gencode() method 

is shown in the following code snippet. Output generation performed in the if statement is a 

little more convoluted in this case:

   public static void gencode(parserVal r) {

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch13
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch13
https://bit.ly/3oR6zGt
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      tree root = (tree)(r.obj);

      root.genfirst();

      root.genfollow();

      root.gentargets();

      root.gencode();

      labeltable = new HashMap<>();

      methodAddrPushed = false;

      ArrayList<byc> bcode = bytecode(root.icode);

      if (textoutput) {

        if (bcode != null) {

          for (int i = 0; i < bcode.size(); i++)

            bcode.get(i).print();

          }

        }

      else genbytecode(bcode);

   }

Now, let’s examine the code for the byc class.

Adding a class for bytecode instructions
We could represent our bytecode literally, using a 64-bit word in the same format presented in 

Chapter 12, Bytecode Interpreters. Representing bytecode instructions as objects instead of 64-bit 

words facilitates output in both human-readable text and binary form. The list-of-objects rep-

resentation also makes analysis for final code optimization more convenient.

The byc class resembles the tac class from Chapter 9, Intermediate Code Generation, but instead 

of an operation code (opcode) and fields for up to three operands, it just represents an opcode, 

an operand region, and—if present—an operand, as described in Chapter 12, Bytecode Interpreters. 

The class also contains several methods, including ones for printing in text and binary forms. 

The print() and printb() methods will be presented in the section titled Comparing bytecode 

assembler with binary formats. Here is an outline of the byc Unicon class from byc.icn:

class byc(op, opreg, opnd)

   method print() … end

   method printb() … end

   method addr(a) … end

initially(o, a)

   op := o; addr(a)

end
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The corresponding Java class in byc.java looks like this:

public class byc {

   int op, opreg;

   long opnd;

   public byc(int o, address a) {

      op=o; addr(a);

   }

   public void print() { … }

   public void printb() { … }

   public void addr(address a) { … }

}

As a part of this byc class, we need a method named addr() that provides a mapping from three-ad-

dress code addresses to bytecode addresses. Let’s examine this next.

Mapping intermediate code addresses to bytecode 
addresses
Although the instruction sets are quite different, the addresses in the intermediate and final code 

denote approximately the same thing. Since we design both the intermediate code and bytecode, 

we can define addresses in bytecode to be a lot closer to intermediate code addresses than will be 

the case when we are mapping from intermediate code to native code in the next chapter. In any 

case, the region and offset from the address class from Chapter 9, Intermediate Code Generation, 

must be mapped onto opreg and opnd in the byc class. This is handled by an addr() method in 

the byc class that takes an instance of the address class as a parameter and sets opreg and opnd. 

The Unicon code in byc.icn looks like this:

method addr(a)

   if /a then opreg := Op.R_NONE

   else case a.region of {

   "loc": { opreg := Op.R_STACK; opnd := a.offset }

   "glob": { opreg := Op.R_ABS; opnd := a.offset }

   "const": { opreg := Op.R_ABS; opnd := a.offset }

   "lab": { opreg := Op.R_ABS; opnd := a.offset }

   "obj": { opreg := Op.R_HEAP; opnd := a.offset }

   "imm": { opreg := Op.R_IMM; opnd := a.offset }

   }

end
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The corresponding Java method in byc.java is shown here:

public void addr(address a) {

   if (a == null) opreg = Op.R_NONE;

   else switch (a.region) {

   case "loc": { opreg = Op.R_STACK; opnd = a.offset; break; }

   case "glob": { opreg = Op.R_ABS; opnd = a.offset;  break; }

   case "const": { opreg = Op.R_ABS; opnd = a.offset; break; }

   case "lab": { opreg = Op.R_ABS; opnd = a.offset;   break; }

   case "obj": { opreg = Op.R_HEAP; opnd = a.offset;  break; }

   case "imm": { opreg = Op.R_IMM; opnd = a.offset;   break; }

   }

}

Given the byc class, one more helper function is needed in order to formulate the bytecode() code 

generator method. We need a convenient factory method for generating bytecode instructions 

and attaching them to the bcode list. We will call this method bgen().

The bgen() method in the j0 class is similar to gen() from the tree class; it produces a one-ele-

ment list containing a byc instance. The Unicon code looks like this:

method bgen(o, a)

   return [byc(o, a)]

end

The corresponding Java implementation looks like this:

public ArrayList<byc> bgen(int o, address a) {

   ArrayList<byc> L = new ArrayList<byc>();

   byc b = new byc(o, a);

   L.add(b);

   return L;

}

Now, finally, it’s time to present the bytecode generator.

Implementing the bytecode generator method
The Unicon implementation of the bytecode() method in the j0 class is shown next. The im-

plementation must fill in one case branch for each opcode in the three-address instruction set 

given in Chapter 9, Intermediate Code Generation. There will be a lot of cases, so we present each 

one separately. The outline of the entire method is as follows. 
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The case bodies for the various instructions make use of a singleton class named Op that provides 

names for the opcodes, such as Op.ADD. The Op class constructor is replaced by its singleton in-

stance at the top of the bytecode() method, after which bytecode translations of instructions 

are placed onto an output list named rv that is bytecode()'s return value:

method bytecode(icode)

    if type(Op)=="procedure" then Op()

    rv := []

    every i := 1 to *\icode do {

       instr := icode[i]

       case instr.op of {

          "ADD": { ... append translation of ADD to return val }

          "SUB": { ... append translation of SUB to return val }

          ...

         }

      }

   return rv

end

The Java implementation of bytecode() is shown here:

  public static ArrayList<byc> bytecode(ArrayList<tac> icode)

  {

    ArrayList<byc> rv = new ArrayList<byc>();

    for(int i=0; i<icode.size(); i++) {

      tac instr = icode.get(i);

      switch(instr.op) {

      case "ADD": { ... append translation of ADD to rv }

      case "SUB": { ... append translation of SUB to rv }

        ...

        }

      }

    return rv;

   }

Within the framework of this bytecode() method, we now get to provide translations for each 

of the three-address instructions. We will start with simple expressions.
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Generating bytecode for simple expressions
The different cases for each three-address opcode have many elements in common, such as the 

pushing of values from memory onto the evaluation stack. The case for addition perhaps shows 

the most common translation pattern. In Unicon, addition is handled like this:

"ADD": {

   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

     j0.bgen(Op.PUSH, instr.op3) ||| j0.bgen(Op.ADD) |||

     j0.bgen(Op.POP, instr.op1)

}

This code reads operand 2 and operand 3 from memory and pushes them onto the stack. The 

actual ADD instruction works entirely from the stack. The result is then popped off the stack and 

placed into operand 3. In Java, the implementation of addition consists of the following code:

case "ADD": {

   rv.addAll(j0.bgen(Op.PUSH, instr.op2));

   rv.addAll(j0.bgen(Op.PUSH, instr.op3));

   rv.addAll(j0.bgen(Op.ADD, null));

   rv.addAll(j0.bgen(Op.POP, instr.op1));

   break;

}

The intermediate code instruction set presented in Chapter 9, Intermediate Code Generation, defines 

19 three-address instructions that must be translated to final code. The final code generation 

pattern illustrated by the preceding ADD instruction is used for the other arithmetic instructions. 

For a unary operator such as NEG, the pattern is slightly simplified, as we can see here:

"NEG": {

   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

     j0.bgen(Op.NEG) ||| j0.bgen(Op.POP, instr.op1)

}

In Java, the implementation of negation consists of the following code:

case "NEG": {

   rv.addAll(j0.bgen(Op.PUSH, instr.op2));

   rv.addAll(j0.bgen(Op.NEG, null));

   rv.addAll(j0.bgen(Op.POP, instr.op1));
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   break;

}

An even simpler instruction such as ASN may be worth special-casing when you design the in-

struction set of your bytecode machine, but for a stack machine you can stick with the same script 

and simplify the preceding pattern further, as illustrated in the following code snippet:

"ASN": {

   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

     j0.bgen(Op.POP, instr.op1)

}

In Java, the implementation of assignment might look like this:

case "ASN": {

   rv.addAll(j0.bgen(Op.PUSH, instr.op2));

   rv.addAll(j0.bgen(Op.POP, instr.op1));

   break;

}

Code consisting of arithmetic expressions and assignments is the core of most programming lan-

guages. Now, it is time to look at code generation for some other intermediate code instructions, 

starting with the ones used for manipulating pointers.

Generating code for pointer manipulation
Three of the intermediate code three-address instructions defined in Chapter 9, Intermediate 

Code Generation, pertain to the use of pointers: ADDR, LCON, and SCON. The ADDR instruction turns 

an address in memory into a piece of data that can be manipulated to perform operations such 

as pointer arithmetic. It translates to a bytecode instruction named LOAD, as illustrated in the 

following code snippet:

"ADDR": {

   bcode |||:= j0.bgen(Op.LOAD, instr.op1)

}

In Java, the implementation of the ADDR instruction consists of this code:

case "ADDR": {

   rv.addAll(j0.bgen(Op.LOAD, instr.op1));

   break;

}
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The LCON instruction reads from memory pointed at by other memory, as illustrated here:

"LCON": {

   bcode |||:= j0.bgen(Op.LOAD, instr.op2)

   bcode |||:= j0.bgen(Op.POP, instr.op1)

}

In Java, the implementation of the LCON instruction consists of the following code:

case "LCON": {

   rv.addAll(j0.bgen(Op.LOAD, instr.op2));

   rv.addAll(j0.bgen(Op.POP, instr.op1));

   break;

}

The SCON instruction writes to memory pointed at by other memory, as illustrated here:

"SCON": {

   bcode |||:= j0.bgen(Op. STORE, instr.op2) |||

               j0.bgen(Op.POP, instr.op1)

}

In Java, the implementation of the SCON instruction consists of the following code:

case "SCON": {

   rv.addAll(j0.bgen(Op.STORE, instr.op2));

   rv.addAll(j0.bgen(Op.POP, instr.op1));

   break;

}

These instructions are important for supporting structured data types such as arrays. Now, let’s 

consider bytecode code generation for control flow, starting with the GOTO family of instructions.

Generating bytecode for branches and conditional branches
Seven of the intermediate code instructions pertain to conditional and unconditional branch 

instructions. The simplest of these is the unconditional branch or GOTO instruction. The GOTO 

instruction assigns a new value to the instruction pointer register. It should be no surprise that 

the GOTO bytecode is the implementation of the intermediate code GOTO instruction. The Unicon 

code for translating GOTO intermediate code into GOTO bytecode is shown here:

"GOTO": {
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   bcode |||:= j0.bgen(Op.GOTO, instr.op1)

}

In Java, the implementation of the GOTO instruction consists of the following code:

case "GOTO": {

   rv.addAll(j0.bgen(Op.GOTO, instr.op1));

   break;

}

The conditional branch instructions in the three-address code are translated down into simpler 

final code instructions. For the instruction set bytecode presented in the previous chapter, this 

means pushing operands onto the stack prior to the conditional branch instruction bytecode. 

The Unicon implementation of the BLT instruction looks like this:

"BLT": {

   bcode |||:= j0.bgen(Op.PUSH, instr.op2) |||

     j0.bgen(Op.PUSH, instr.op3) ||| j0.bgen(Op.LT) |||

     j0.bgen(Op.BIF, instr.op1)

}

In Java, the generation of bytecode for the BLT instruction consists of the following code:

case "BLT": {

   bcode.addAll(j0.bgen(Op.PUSH, instr.op2));

   bcode.addAll(j0.bgen(Op.PUSH, instr.op3));

   bcode.addAll(j0.bgen(Op.LT, null));

   bcode.addAll(j0.bgen(Op.BIF, instr.op1));

   break;

}

This pattern is employed for several of the three-address instructions, with slightly simpler code 

used for BIF and BNIF. Now, let’s consider the more challenging forms of control flow transfer 

that relate to method calls and returns.

Generating code for method calls and returns
Three of the three-address instructions handle the very important topic of function and method 

calls and returns. A sequence of zero or more PARM instructions pushes values onto the stack, the 

CALL instruction performs a method call, and the RET instruction returns from a method to the 

caller. 



Chapter 13 359

But this three-address code calling convention must be mapped down onto the underlying in-

struction set, which in this chapter is a bytecode stack machine instruction set that requires the 

address of the procedure to be called to be pushed (in a stack slot where the return value will be 

found), prior to pushing other parameters. We could go back and modify our three-address code 

to fit the stack machine better, but then it would not fit so well for x86_64 native code.

The PARM instruction is a simple push, except when it is the first parameter and the procedure 

address is needed, as illustrated in the following code snippet:

"PARM": {

   if /methodAddrPushed then {

      every j := i+1 to *icode do

         if icode[j].op == "CALL" then {

            if icode[j].op1 === "PrintStream__println" then {

               bcode |||:= j0.bgen(Op.PUSH, address("imm", -1))

            else {

               bcode |||:= j0.bgen(Op.PUSH, icode[j].op1)

            }

            break

         }

      methodAddrPushed := 1

      }

   bcode |||:= j0.bgen(Op.PUSH, instr.op1)

}

The every loop looks for the nearest CALL instruction and pushes its method address. In Java, the 

implementation of the PARM instruction is similar, as we can see here:

case "PARM": {

   if (methodAddrPushed == false) {

      for(int j = i+1; j<icode.size(); j++) {

         tac callinstr = icode.get(j);

         if (callinstr.op.equals("CALL")) {

            if (callinstr.op1.str().equals("PrintStream__println:0")) {

               rv.addAll(j0.bgen(Op.PUSH, new address("imm", -1)));

            } else {

               rv.addAll(j0.bgen(Op.PUSH, callinstr.op2));

            }

            break;
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         }

      methodAddrPushed = true;

      }

   }

   rv.addAll(j0.bgen(Op.PUSH, instr.op1));

   break;

}

Having pushed the method address ahead of time, the CALL instruction is straightforward. After 

the call, the op1 destination in the three-address code is popped from the stack, as with other 

expressions. The op2 source field is the method address that was used prior to the first PARM in-

struction. The op3 source field gives the number of parameters, which is used as is as the operand 

in CALL: bytecode, as illustrated in the following code snippet:

"CALL": {

   bcode |||:= j0.bgen(Op.CALL, instr.op2)

   methodAddrPushed := &null

}

In Java, the implementation of the CALL instruction consists of the following code:

case "CALL": {

   rv.addAll(j0.bgen(Op.CALL, instr.op2));

   methodAddrPushed = false;

   break;

}

The Unicon implementation of the RETURN instruction looks like the following code snippet. This 

code does not distinguish between a void return with no return value and a non-void return. A 

bytecode interpreter designer could have a separate instruction for returning with no return 

value, but perhaps most folks would just return a 0 in that case, and the caller would just not 

use the bogus return value:

"RETURN": {

   bcode |||:= j0.bgen(Op.RETURN, instr.op1)

}

In Java, the implementation of the RETURN instruction consists of the following code:

case "RETURN": {

   rv.addAll(j0.bgen(Op.RETURN, instr.op1));
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   break;

}

Generating code for method calls and returns is not too difficult. Now, let’s consider how to handle 

pseudo-instructions in the three-address code.

Handling labels and other pseudo-instructions in 
intermediate code
Pseudo-instructions do not translate into code, but they are present in the linked list of three-ad-

dress instructions and require consideration in the final code. The most common and obvious 

pseudo-instruction is label. If the final code is being generated in a human-readable assembler 

format, labels can be generated as part of the output in whatever format the target requires. A 

hash table named labeltable associates all the label names with byte offsets in the code. During 

the traversal of the list of instructions, label names obtained from the three-address code are 

mapped to how far (in bytes) into the generated code we have reached at this point. In Unicon, 

this is expressed in this way:

"LAB": {

   labeltable[instr.op1.offset] := *bcode * 8

}

This is the corresponding code in Java:

case "LAB": {

   labeltable.put("L"+String.valueOf(instr.op1.offset), rv.size() * 8);

   break;

}

For final code generated in a binary format, labels require some additional handling since they 

must be replaced by corresponding byte offsets or addresses.

Since a label is really a name or alias for the address of a particular instruction, in a binary byte-

code format it is typically replaced by byte offsets in some form. As the final code is generated, a 

table containing the mapping between labels and offsets is constructed.

The past several sections produced a data structure containing a representation of the bytecode 

and then showed how various three-address instructions are translated. Now, let’s move on to 

producing the code in textual and binary formats.
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Comparing bytecode assembler with binary formats
Bytecode machines tend to use simpler formats than native code, where binary object files are 

the norm. Some bytecode machines, such as Python, hide their bytecode format entirely or make 

it optional. Others, such as Unicon, use a human-readable assembler-like text format for com-

piled modules. In the case of Java, they seem to have gone out of their way to avoid providing 

an assembler, to make it more difficult for other languages to generate code for the Java virtual 

machine (VM).

In the case of Jzero and its machine, space limits motivate us to keep things as simple as possible. 

The byc class defines two output methods: print() for human-friendly text format and printb() 

for machine-friendly binary format. You can decide for yourself which one you prefer for any 

given application.

Printing bytecode in assembler format
The print() method in the byc class is similar to the one used in the tac class. One line of output 

is produced for each element in the list. The Unicon implementation of the print() method in 

the byc class is shown here. The f parameter, which defaults to the standard output, specifies 

the name:

method print(f:&output)

   write(f, "\t", nameof(), " ", addrof()) |

     write(&errout, "can't print ", image(self), " op ", image(op))

end

The corresponding Java implementation is shown here. Method overloading is used to make the 

parameter optional:

public void print(PrintStream f) {

   f.println("\t" + nameof() + " " + addrof());

}

public void print() { print(System.out); }

The text-based print() methods just punt off most of the work to helper methods that pro-

duce human-readable representations of the opcode and the operand. The Unicon code for the 

nameof() method that maps opcodes back to strings is shown in the following example. A table 

is stored as a static variable inside the nameof() method; the table is initialized the first time the 

nameof() method is called:

method nameof()
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   static opnames

   initial opnames := table(Op.HALT, "halt", Op.NOOP, "noop",

      Op.ADD, "add", Op.SUB, "sub", Op.MUL, "mul",

      Op.DIV, "div", Op.MOD, "mod", Op.NEG, "neg",

      Op.PUSH, "push", Op.POP, "pop", Op.CALL, "call",

      Op.RETURN, "return", Op.GOTO, "goto", Op.BIF, "bif",

      Op.LT, "lt", Op.LE, "le", Op.GT, "gt", Op.GE, "ge",

      Op.EQ, "eq", Op.NEQ, "neq", Op.LOCAL, "local",

      Op.LOAD, "load", Op.STORE, "store")

   return opnames[op]

end

The corresponding Java code from the byc.java file shown here uses a HashMap. In contrast with 

the Unicon implementation, in Java, the static variable and the static code block that initializes 

it are placed outside of the nameof() method within the byc class:

  static HashMap<Short,String> ops;

  static { ops = new HashMap<>();

    ops.put(Op.HALT,"halt"); ops.put(Op.NOOP,"noop");

    ops.put(Op.ADD,"add"); ops.put(Op.SUB,"sub");

    ops.put(Op.MUL,"mul"); ops.put(Op.DIV, "div");

    ops.put(Op.MOD,"mod"); ops.put(Op.NEG, "neg");

    ops.put(Op.PUSH,"push"); ops.put(Op.POP, "pop");

    ops.put(Op.CALL, "call"); ops.put(Op.RETURN, "return");

    ops.put(Op.GOTO, "goto"); ops.put(Op.BIF, "bif");

    ops.put(Op.LT, "lt"); ops.put(Op.LE, "le");

    ops.put(Op.GT, "gt"); ops.put(Op.GE, "ge");

    ops.put(Op.EQ, "eq"); ops.put(Op.NEQ, "neq");

    ops.put(Op.LOCAL, "local"); ops.put(Op.LOAD, "load");

    ops.put(Op.STORE, "store");

}

public String nameof() {

   return ops.get(op);

}

Another helper function called from the print() method is the addrof() method, which prints 

a human-readable representation of an address based on the operand region and operand fields. 

Its Unicon implementation is shown here:

method addrof()
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   case opreg of {

      Op.R_NONE | &null: return ""

         Op.R_ABS : return "@" || sprint("%x", opnd)

      Op.R_IMM: return string(opnd)

      Op.R_STACK: return "stack:" || opnd

      Op.R_HEAP: return "heap:" || opnd

      default: return string(opreg) || ":" || opnd

      }

end

The corresponding Java code for addrof() is shown here:

public String addrof() {

  switch (opreg) {

  case Op.R_NONE: return "";

  case Op.R_ABS: return "@"+ java.lang.Long.toHexString(opnd);

  case Op.R_IMM: return String.valueOf(opnd);

  case Op.R_STACK: return "stack:" + String.valueOf(opnd);

  case Op.R_HEAP: return "heap:" + String.valueOf(opnd);

  }

  return String.valueOf(opreg)+":"+String.valueOf(opnd);

}

Now, let’s look at the corresponding binary output.

Printing bytecode in binary format
The printb() methods are organized similarly, but where print() needs names of things, printb() 

needs to put all the bits in a row and output a binary word. Its Unicon implementation is shown 

below. Unicon output functions write strings. The built-in char(i) function takes an integer and 

returns a string encoding of that integer. For example, char(65) returns "A":

method printb(f:&output)

   writes(f, char(op), char(\opreg|0))

   x := (\opnd | 0)

   every !6 do {

     writes(f, char(iand(x, 255)))

     x := ishift(x, -8)

     }

end
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The corresponding Java implementation of printb() is shown here. The code originally cast 

values to (byte) but I found, counterintuitively, that I had to modify the code to use (char):

public void printb(PrintStream f) {

   long x = opnd;

   f.print((char)op);

   f.print((char)opreg);

   for(int i = 0; i < 6; i++) {

      f.print((char)(x & 0xff));

      x = x>>8;

      }

}

public void printb() { printb(System.out); }

In this section, we considered how to output our code in binary format to external storage. The 

contrast between text and binary formats was stark, with binary formats being more work, at 

least from a human perspective. Now, let’s look at other issues necessary for program execution 

beyond the generated code. This includes linking generated code with other code, especially the 

runtime system.

Linking, loading, and including the runtime system
In a separately compiled native code language, the output binary format from the compile step 

is not usually executable. Machine code is output in an object file that must be linked together 

with other modules, and addresses between them resolved, to form an executable. The runtime 

system is included at this point, by linking in object files that come with the compiler, not just 

other modules written by the user. In the old days, loading the resulting executable was a trivial 

operation. In modern systems, it is more complex due to things such as shared object libraries.

A bytecode implementation often has substantial differences from the traditional model just de-

scribed. Java performs no link step, or perhaps you can say that it links code in at load time. The 

Java runtime system might be considered sharply divided between a large amount of functionality 

that is built into the Java VM (JVM) interpreter and an also-large amount of functionality that 

must be loaded, both bytecode and native code, to run various parts of the standard Java language. 

From an outsider’s perspective, one of the surprising things in Java is the enormous number of 

import statements a developer must place at the top of every file that uses things in Java’s stan-

dard libraries. Almost all Java classes of non-trivial size and complexity use a lot of functionality 

from Java’s standard libraries, so using many import statements is typical.
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In the case of Jzero, severe limitations keep all this as simple as possible. There is no separate 

compilation or linking. Loading is kept extremely simple and was covered in the previous chapter. 

The runtime system is built into the bytecode interpreter, another dodge to enable the language 

to avoid linking. Now, let’s look at bytecode generation in Unicon, another real-world bytecode 

implementation that does things far differently than either Java or Jzero.

Unicon example – bytecode generation in icont
Unicon’s bytecode translator outputs human-readable text in ucode files. The ucode format serves 

as both an assembler and object file format in the Unicon ecosystem. Such ucode files are initially 

generated, and then linked and converted into binary icode format by a C program named icont 

that is invoked by the Unicon translator. The icont program plays the role of code generator for 

Unicon. Its back-end functions as an assembler and linker to form a complete bytecode program 

in binary format. Here are some of the details.

A C function about 400 lines long named gencode() in icont’s lcode.c module reads lines of 

ucode text and turns them into binary format following the code outline shown below. For each 

line, an opcode is read using the getopc() function. After that, a gigantic switch statement emits 

different binary code appropriate to different instruction opcodes.

It is no accident that there is an interesting similarity between this pseudo-code and the fetch-de-

code-execute loop used in the bytecode interpreter. Here, we are fetching text bytecode from input, 

decoding the opcode, and writing binary bytecode with slight differences in format depending 

on the bytecode. Although the Unicon bytecode instruction set has close to 125 different opcodes, 

the switch statement emits code in the same format for similar opcodes and contains only about 

25 distinct code blocks for different types of opcodes. Around 67 opcodes share the same code 

emission pattern as Op_Plus in the example below:

void gencode() {

    while ((op = getopc(&name)) != EOF) {

      switch(op) {

      ...

      case Op_Plus:

         newline();

         lemit(op, name);

         break;

      ...

      }
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   }

}

The lemit() function and about seven related functions with the lemit*() prefix are used to 

append bytecode within a contiguous array of bytes in binary format. Labels associated with 

instructions are turned into byte offsets. Forward references to labels that have not been encoun-

tered yet are placed in linked lists and backpatched later when the target label is encountered. 

The C code for lemitl() emits an instruction with a label, as shown here:

static void lemitl(int op, int lab, char *name)

   {

   misalign();

   if (lab >= maxlabels)

      labels  = (word *) trealloc(labels, NULL, &maxlabels, 

        sizeof(word), lab - maxlabels + 1, "labels");

   outop(op);

   if (labels[lab] <= 0) {      /* forward reference */

      outword(labels[lab]);

      labels[lab] = WordSize - pc;

      }

   else outword(labels[lab] - (pc + WordSize));

   }

Opcodes are generally short; in Unicon bytecode, opcodes can easily fit in a 16- or 32-bit value 

and could be made to fit in a byte if so desired. In the absence of operands, multiple instruc-

tions might fit in a single word. On the other hand, operands are big. Many CPU architectures 

process larger values such as 64-bit integers only when those values are word-aligned. As you 

may guess from its name, the misalign() function generates no-op instructions as needed in 

order to ensure that instructions with operands are emitted at offsets where their operand will 

start on a word boundary. The first if statement grows the array table if needed. The second if 

statement handles a label that is a forward reference to an instruction that does not exist yet, by 

inserting it onto the front of a linked list of instructions that will have to be backpatched when 

the instructions are all present.

The guts of the binary code layout are done by outop() and outword(), to output an opcode and an 

operand that are of integer and word length, respectively. These macros may be defined differently 

on different platforms, but on most machines, they simply call functions named intout() and 

wordout(). Note in the following code snippet that the binary code is in machine-native format 

and is different on central processing units (CPUs) with different word sizes or endianness. 
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This gives good performance at the cost of bytecode portability.  Some popular languages, such 

as Java, make the opposite design decision and preserve portability at all costs:

static void intout(int oint)

   {

   int i;

   union {

      int i;

      char c[IntBits/ByteBits];

      } u;

   CodeCheck(IntBits/ByteBits);

   u.i = oint;

   for (i = 0; i < IntBits/ByteBits; i++)

      codep[i] = u.c[i];

   codep += IntBits/ByteBits;

   pc += IntBits/ByteBits;

   }

After all this glorious example C code, you will probably be glad to get back to Unicon and Java. 

But C really does make lower-level binary manipulation somewhat simpler than it is in Unicon 

or Java. The moral of the story is learn and use the right tools for each kind of job.

Summary
This chapter showed you how to generate bytecode for software bytecode interpreters. The skills 

you learned include how to traverse a linked list of intermediate code and, for each intermediate 

code opcode and pseudo-instruction, how to convert it into instructions in a bytecode instruction 

set. There were big differences between the semantics of the three-address machine and the byte-

code machine. Many intermediate code instructions were converted into three or more bytecode 

machine instructions. The handling of CALL instructions was a bit hairy, but it is important for 

you to perform function calls in the manner required by the underlying machine. While learning 

all this, you also learned how to write out bytecode in text and binary formats.

The next chapter presents an alternative that is more attractive for some languages: generating 

native code for a mainstream CPU.

Questions
1.	 Describe how intermediate code instructions with up to three addresses are converted 

into a sequence of stack machine instructions that contain at most one address.
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2.	 If a particular instruction (say it is instruction 15, at byte offset 120) is targeted by five 

different labels (for example, L2, L3, L5, L8, and L13), how are the labels processed when 

generating binary bytecode?

3.	 In intermediate code, a method call consists of a sequence of PARM instructions followed 

by a CALL instruction. Does the described bytecode for doing a method call in bytecode 

match up well with the intermediate code? What is similar and what is different?

4.	 CALL instructions in object-oriented (OO) languages such as Jzero are always preceded by 

a reference to the object (self or this) on which the methods are being invoked… or are 

they? Explain a situation in which the CALL method instruction may have no object refer-

ence, and how the code generator described in this chapter should handle that situation.

5.	 Our code for pushing method addresses at the first PARM instruction assumed that no 

nested PARM…CALL sequences occur inside a surrounding PARM…CALL sequence. Can we 

guarantee that to be the case for examples such as f(0, g(1), 2)?

6.	 The Java language popularized the idea that running identical bytecode regardless of the 

CPU word sizes or endianness was a top priority: portability trumps performance. The 

Unicon bytecode machine takes the opposite view. Which is correct? Is it possible to have 

the best of both worlds? How?

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw




14
Native Code Generation

This chapter shows you how to take the intermediate code from Chapter 9, Intermediate Code Gen-

eration, and generate native code. The term native refers to whatever instruction set is provided 

by hardware on a given machine. This chapter presents a simple native code generator for x64, a 

dominant architecture on laptops and desktops.

This chapter covers the following main topics:

•	 Deciding whether to generate native code

•	 Introducing the x64 instruction set

•	 Using registers

•	 Converting intermediate code to x64 code

•	 Generating x64 output

The skills developed here include basic register allocation, instruction selection, writing assembler 

files, and invoking the assembler and linker to produce a native executable. The functionality built 

into this chapter generates code that runs natively on typical computers.

Technical requirements
The code for this chapter is available on GitHub: https://github.com/PacktPublishing/Build-

Your-Own-Programming-Language-Second-Edition/tree/master/ch14

The Code in Action video for the chapter can be found here: https://bit.ly/2Zdky0I

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch14
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition/tree/master/ch14
https://bit.ly/2Zdky0I
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Deciding whether to generate native code
Generating native code is more work than bytecode but enables faster execution. Native code may 

also use less memory or electricity. Native code pays for itself if end users save time or money. 

However, targeting a specific central processing unit (CPU) sacrifices portability. You may want to 

implement bytecode first, and only generate native code if the language becomes popular enough 

to justify the effort. However, there are other reasons to generate native code. You may be able to 

write your runtime system using the facilities provided for another compiler. For example, our 

Jzero x64 runtime system is built using the GNU’s Not Unix (GNU) C library. Now, let’s look at 

some of the specifics of the x64 architecture.

Introducing the x64 instruction set
This section provides a brief overview of the x64 instruction set. You are encouraged to consult 

Advanced Micro Devices (AMD) or Intel’s architecture programmer’s manuals for more infor-

mation. Douglas Thain’s book Introduction to Compilers and Language Design, available at http://

compilerbook.org, has helpful x64 material.

x64 is a complex instruction set with many backward-compatibility features. This chapter covers 

the subset of x64 that is used to build a basic Jzero code generator. We are using AT&T assembler 

syntax so that our generated output can be converted into the binary object file format by the 

GNU assembler. This is for the sake of multiplatform portability.

x64 has hundreds of instructions with names such as ADD for addition or MOV to move (copy) a 

value to a new location. When an instruction has two operands, at most, one may be a reference 

to main memory. x64 instructions can have a suffix to indicate how many bytes are being read or 

written, although the name of a register in the instruction often makes the suffix redundant. Jzero 

primarily uses the x64 instruction suffix Q (or q) for 64-bit quadword operations. A 64-bit word 

is a quad based on the late-1970s Intel 16-bit instruction set. We use the following instructions 

and pseudo-instructions in this chapter. Some of the instructions use the stack pointer register 

%rsp. The names of the other x64 registers are given in the next section.

http://compilerbook.org
http://compilerbook.org
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Table 14.1: Instructions for the examples in this chapter

Now, it’s time to define a class to represent these instructions in memory.

Adding a class for x64 instructions
The x64 class represents operation code (opcode) and operands as allowed in x64. An operand 

may be a register or reference to a value in memory. You can see an illustration of this class in the 

following Unicon code snippet from x64.icn:

class x64(op, opnd1, opnd2)

   method print() ... end

initially(o, src, dest)

   op := o; opnd1 := src; opnd2 := dest

end
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The corresponding Java class in x64.java looks like this. The source and destination operands 

opnd1 and opnd2 are of type x64loc, a class for representing native x64 locations in memory and/

or registers. Class x64loc is described later in this chapter in the section titled Mapping interme-

diate code address to x64 locations:

public class x64 {

   String op;

   x64loc opnd1, opnd2;

   public x64(String o, Object src, Object dst) {

      op=o; opnd1 = loc(src); opnd2 = loc(dst); }

   public x64(String o, Object opnd) {

      op=o; opnd1 = loc(opnd); }

   public x64(String o) { op=o; }

   public void print() { ... }

}

This x64 class is where we map three-address code addresses to x64 addresses.

Mapping memory regions to x64 register-based address 
modes
To implement the code, global/static, stack, and heap memory regions on x64, we decide how to 

access memory in each memory region. x64 instructions allow operands to be either a register 

or a memory address. Many address modes are supported in x64, some of which are for legacy 

compatibility or arcane specialized uses. Jzero keeps things as simple as possible and typically 

just adds an offset constant to a register to compute the address indirectly, as illustrated here:

Table 14.2: Memory access modes used in this chapter

In immediate mode, the value is in the instruction. There are limits to how large a value can be 

represented in immediate mode, but on a 64-bit processor, these limits can be large. In indirect 

mode, main memory is relative to an x64 register. The various memory regions are accessed as 

offsets relative to different registers. Global and static memory are accessed relative to the in-

struction pointer, locals are accessed relative to the base pointer, and heap memory is accessed 

relative to a heap pointer register. Let’s look more broadly at how registers are used.
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Using registers
Main memory access is slow. Performance is heavily impacted by how registers are used. Optimal 

register allocation is nondeterministic polynomial-time complete (NP-complete) – very difficult. 

Optimizing compilers expend great effort on register allocation to make the generated code very 

efficient; the generated code might or might not be optimal. That is beyond the scope of this book.

x64 has 16 general-purpose registers, illustrated in the following table. Many registers have a 

special role. Arithmetic is performed on an accumulator register, rax. Several of the x64 registers 

have multiple names for accessing from 8 bits to all 64 bits of the register. This appears mainly 

to be for backward compatibility with legacy x86 code. In any case, Jzero only uses the 64-bit 

versions of registers, plus whichever 8-bit registers are necessary for strings. In AT&T syntax, 

register names are preceded by a percentage sign, as in %rax:

Table 14.3: x64 registers

Many registers are saved as part of a call instruction. The more registers there are, the slower 

it is to perform function calls. These issues are determined by the calling conventions of the 

compiler. Jzero only saves modified registers prior to a given call. Before we get to the actual code 

generator, let’s consider a bit further how native code uses registers.
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Starting from a null strategy
The minimal register strategy is the null strategy, which maps intermediate code addresses down 

to x64 addresses. Values are loaded into the rax accumulator register to perform operations on 

them. Results go immediately back to main memory.

The rbp base pointer and the rsp stack pointer manage activation records, which are also called 

frames. The current activation record revolves around the rbp base pointer register. The current 

local region on the stack lies between the base pointer and the stack pointer. Figure 14.1 shows an 

x64 stack layout. The stack grows downward from higher addresses to lower ones by subtracting 

from the stack pointer. Parameters and locals are referenced as offsets relative to the base pointer; 

parameters are positive offsets while local variables are found at negative offsets.

Figure 14.1: x64 stack, managed as a sequence of activation records, growing downward
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x64 tweaks the classical stack layout slightly. Six registers, rdi through r9 are used to pass the 

first six parameters. The null strategy stores parameters to memory when a function call starts. 

The div instruction uses the rdx register, so besides being used to pass parameter #3, rdx is also 

required for div instructions. The null strategy is not affected by this design quirk.

Assigning registers to speed up the local region
Jzero maps registers rdi-r14 onto the first 88 bytes of the local region. As it walks the three-address 

instructions, the code generator tracks for each register if a value is loaded and if it was modified 

from the corresponding main memory location. The code generator uses the value in the register 

until that register is used for something else.

Here is a class named RegUse that tracks the main memory locations’ corresponding register, if 

any, and whether its value has been modified since it was last loaded in main memory. The Unicon 

implementation of RegUse in RegUse.icn is shown here:

class RegUse (reg, offset, loaded, dirty)

   method load()

      if \loaded then fail

      loaded := 1

      return j0.xgen("movq", offset||"(%rbp)", reg)

   end

   method save()

      if /dirty then fail

      dirty := &null

      return j0.xgen("movq", reg, offset||"(%rbp)")

   end

end

The reg field denotes the string register name; offset is the byte offset relative to the base pointer. 

The loaded and dirty Boolean flags track whether the register contains the value and whether 

it has been modified, respectively. The load() and save() methods do not load and save; they 

generate instructions to load and save the register and set the loaded and dirty flags accordingly. 

The corresponding Java code looks like this:

public class RegUse {

   public String reg;

   int offset;

   public boolean loaded, dirty;

   public RegUse(String s, int i) {
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     reg = s; offset=i; loaded=dirty=false;

   }

   public ArrayList<x64> load() {

      if (loaded) return null;

      loaded = true;

      return j0.xgen("movq", offset+"(%rbp)", reg);

   }

   public ArrayList<x64> save() {

      if (!dirty) return null;

      dirty = false;

      return j0.xgen("movq", reg, offset+"(%rbp)");

   }

}

A list of instances of the RegUse class is held in a variable named regs in the j0 class so that for 

each of the first words in the local region, the corresponding register is used appropriately. The 

list is constructed in Unicon, as follows:

off := 0

regs := [: RegUse("%rdi"|"%rsi"|"%rdx"|"%rcx"|"%r8"|

         "%r9"|"%r10"|"%r11"|"%r12"|"%r13"|"%r14", off-:=8) :]

This Unicon code is showing off a bit. The | alternator produces all the register names for sep-

arate calls to RegUse(), triggered and captured by the [: :] list comprehension operator. One 

x64 tricky bit is that the offsets are all negative integers because the stack grows downward. In 

Java, this initialization is performed in RegUse.java, as shown here:

RegUse [] regs = new RegUse[]{ new RegUse("%rdi", -8),

   new RegUse("%rsi", -16), new RegUse("%rdx", -24),

   new RegUse("%rcx", -32), new RegUse("%r8", -40),

   new RegUse("%r9",-48), new RegUse("%r10", -56),

   new RegUse("%r11", -64), new RegUse("%r12", -72),

   new RegUse("%r13", -80), new RegUse("%r14", -88) };

The data structure operates on basic block boundaries, storing modified registers in memory 

and clearing loaded flags whenever a label or a branch instruction occurs. At the top of a called 

function, the loaded and dirty flags of parameters are set to true, indicating values that must 

be saved to the local region before that register can be reused. Now, it’s time to look at how each 

intermediate code element is converted into x64 code.
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Converting intermediate code to x64 code
The intermediate code generator from Chapter 9, Intermediate Code Generation, placed the interme-

diate code for the whole program in the icode attribute at the root of the syntax tree. A Boolean 

named isNative says whether to generate bytecode, as shown in the previous chapter, or native 

x64 code. To generate x64 code, the gencode() method in the j0 class calls a new method in this 

class, named x64code(), and passes it the intermediate code in root.icode as its input. Output 

x64 code is placed in a j0 list variable named xcode. The Unicon gencode() method that invokes 

this functionality in j0.icn looks like this:

   method gencode(root)

      root.genfirst()

      root.genfollow()

      root.gentargets()

      root.gencode()

      

      labeltable := table()

      methodAddrPushed := &null

      if \isNative then {

         xcode := x64code(root.icode)

         genx64code()

         }

      else {

         bcode := bytecode(root.icode)

         genbytecode(bcode)

       }

   end

The new highlighted code layers the native alternative around the previous generation of by-

tecode, which is still available from the command-line option. The x64code() method takes in 

an icode list, and its return value is a list of x64 class objects. In this example, the resulting x64 

code is printed out in textual form; we let an assembler do the work for us to produce a binary 

format. The corresponding Java code for the gencode() method found in j0.java is shown here:

   public static ArrayList<x64> xcode;

   public static void gencode(parserVal r) {

      tree root = (tree)(r.obj);

      root.genfirst();

      root.genfollow();
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      root.gentargets();

      root.gencode();

      labeltable = new HashMap<>();

      methodAddrPushed = false;

      if (isNative) {

         xcode = x64code(root.icode);

         genx64code();

      } else {

         ArrayList<byc> bcode = bytecode(root.icode);

         if (bcode != null) {

            genbytecode(bcode);

            }

      }

   }

Now, let’s examine how intermediate code addresses become x64 memory references.

Mapping intermediate code addresses to x64 locations
Addresses in intermediate code are abstract (region, offset) pairs represented in the address 

class from Chapter 9, Intermediate Code Generation. The corresponding x64loc class represents 

x64 locations that include addressing mode information or a register to use. The Unicon imple-

mentation in x64loc.icn looks like this:

class x64loc(reg, offset, mode)

initially(x,y,z)

   if \z then { reg := x; offset := y; mode := z }

   else if \y then {

      if x === "imm" then { offset := y; mode := 5 }

      else if x === "lab" then { offset := y; mode := 6 }

      else {

         reg := x; offset := y

         if integer(y) then mode := 3 else mode := 4

         }

      }

   else {

      if integer(x) then { offset := x; mode := 2 }

      else if string(x) then { reg := x; mode := 1 }

      else stop("bad x64loc ", image(x))
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   }

end

The reg field is the string register name, if there is one. The offset field is either an integer offset or 

a string name from which the offset is calculated. mode is 1 for a register, 2 for an absolute address, 

and 3 for a register and an integer offset. Mode 4 is for a register and a string offset name, 5 is for 

an immediate value, and 6 is for a label. The Java implementation in x64loc.java looks like this:

public class x64loc {

  public String reg;  Object offset;

  public int mode;

  public x64loc(String r) { reg = r; mode = 1; }

  public x64loc(int i) { offset=(Object)Integer(i); mode=2; }

  public x64loc(String r, int off) {

    if (r.equals("imm")) {

      offset=(Object)Integer(off); mode = 5; }

    else if (r.equals("lab")) {

      offset=(Object)Integer(off); mode = 6; }

    else { reg = r; offset = (Object)Integer(off); mode = 3; }

  }

  public x64loc(String r, String s) {

    reg = r; offset = (Object)s; mode=4; 

  }

}

The Java code has constructors for different memory types. The region and offset of the address 

class must be mapped onto an instance of the x64loc class that is an operand in the x64 class. 

This is done by a loc() method in the j0 class that takes an address as a parameter and returns 

an x64loc instance. The Unicon code for loc() in j0.icn looks like this:

method loc(a)

   if /a then return

   case a.region of {

   "loc": { if a.offset <= 88 then return loadreg(a)

            else return x64loc("rbp", -a.offset) }

   "glob": { return x64loc("rip", a.offset) }

   "const": { return x64loc("imm", a.offset) }

   "lab": { return x64loc("lab", a.offset) }

   "obj": { return x64loc("r15", a.offset) }
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   "imm": { return x64loc("imm", a.offset) }

   }

end

As the code converts an address to an x64loc instance, local region offsets are converted into 

negative values, since the stack grows downward. The Java methods in j0.java are shown here:

public static x64loc loc(String s) { return new x64loc(s);}

public static x64loc loc(Object o) {

   if (o instanceof String) return loc((String)o);

   if (o instanceof address) return loc((address)o);

   return null;

}

public static x64loc loc(address a) {

   switch (a.region) {

   case "loc": { if (a.offset <= 88) return loadreg(a);

                else return x64loc("rbp", -a.offset); }

   case "glob": { return x64loc("rip", a.offset); }

   case "const": { return x64loc("imm", a.offset); }

   case "lab": { return x64loc("lab", a.offset); }

   case "obj": { return x64loc("r15", a.offset); }

   case "imm": { return x64loc("imm", a.offset); }

   default: { semErr("x64loc unknown region"); return null; }

   }

}

A loadreg() helper method is used for local offsets in the first 88 bytes. If the value is not already 

present in its designated register, a movq instruction is emitted to place it there, as illustrated in 

the following code snippet:

method loadreg(a)

  r := a.offset/8 + 1

  if / (regs[r].loaded) then {

    every put(xcode,

             !xgen("movq",(-a.offset)||"(%rbp)",regs[r].reg))

    regs[r].loaded := "true"

    }

  return x64loc(regs[a.offset/8+1].reg)

end
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The Java implementation of loadreg() is shown here:

public static x64loc loadreg(address a) {

  long r = a.offset/8;

  if (!regs[r].loaded) {

    xcode.addAll(xgen("movq",

            String.valueOf(-a.offset)+"(%rbp)", regs[r].reg));

    regs[r].loaded = true;

    }

    return x64loc(regs[a.offset/8+1].reg);

}

Given the x64 class, one more helper function is needed in order to formulate the x64code() code 

generator method. We need a convenient factory method to generate x64 instructions. This xgen() 

method converts source and destination operands into x64loc instances, which may add movq 

instructions to load values into registers. The Unicon code looks like this:

method xgen(o, src, dst)

   return [x64(o, loc(src), loc(dst))]

end

There are many versions of the corresponding Java implementation shown here, handling cases 

where the source or destination are addresses or the string names of registers:

public static ArrayList<x64> l64(x64 x) {

    return new ArrayList<x64>(Arrays.asList(x)); }

public static ArrayList<x64> xgen(String o){ return l64(new x64(o)); }

public static ArrayList<x64> xgen(String o, address src, address dst) {

    return l64(new x64(o, loc(src), loc(dst))); }

public static ArrayList<x64> xgen(String o, address opnd) {

    return l64(new x64(o, loc(opnd))); }

public static ArrayList<x64> xgen(String o, address src, String dst) {

    return l64(new x64(o, loc(src), loc(dst))); }

public static ArrayList<x64> xgen(String o, String src, address dst) {

    return l64(new x64(o,loc(src),loc(dst))); }

public static ArrayList<x64> xgen(String o, String src, String dst) {

    return l64(new x64(o,loc(src),loc(dst))); }

public static ArrayList<x64> xgen(String o, String opnd) {

    return l64(new x64(o, loc(opnd))); }
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In the preceding code snippet, the l64() method just creates a single ArrayList element contain-

ing an x64 object. The rest are just many implementations of xgen() that take different parameter 

types. Now, finally, it’s time to present the x64 code generator method.

Implementing the x64 code generator method
The Unicon implementation of the x64code() method in the j0 class looks like this. The imple-

mentation must fill in one case branch for each opcode in the three-address instruction set. There 

will be a lot of cases, so we present each one separately in the sections to follow, starting with 

the first one shown here:

method x64code(icode)

    every i := 1 to *\icode do {

       instr := icode[i]

       case instr.op of {

          "ADD": { ... append translation of ADD to xcode }

          "SUB": { ... append translation of SUB to xcode }

          . . .

         }

      }

end

The Java implementation of x64code() is shown here:

public static void x64code(ArrayList<tac> icode) {

   int parmCount = -1;

    for(int i=0; i<icode.size(); i++) {

      tac instr = icode.get(i);

      switch(instr.op) {

      case "ADD": { ... append translation of ADD to xcode}

      case "SUB": { ... append translation of SUB to xcode}

        ...

        }

      }

   }

Within the framework of this x64code() method, we now provide translations for each of the 

three-address instructions. We will start with simple expressions.
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Generating x64 code for simple expressions
The cases for three-address opcode have many elements in common. The code for addition shows 

many common elements. Note that this is for integer addition. Floating point or other kinds of ad-

dition would be represented by different intermediate code instructions and result in the selection 

of different x64 native instructions. In Unicon, the x64 code for integer addition is created like this:

"ADD": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

                     xgen("addq", instr.op3, "%rax") |||

                     xgen("movq", "%rax", instr.op1) }

In this code, operand 2 is read from memory into register rax. The x64 ADD instruction has many 

variations; this instance of ADD reads operand 3 from memory and adds it to what is already in 

rax, treating the register as an accumulator register. The result is then placed into operand 3. In 

Java, the implementation of addition consists of the following code:

case "ADD": { xcode.addAll(xgen("movq", instr.op2, "%rax"));

              xcode.addAll(xgen("addq", instr.op3, "%rax"));

              xcode.addAll(xgen("movq", "%rax", instr.op1));

              break; }

There are 19 or so three-address instructions. The final code generation pattern illustrated by the 

preceding ADD instruction is used for the other arithmetic instructions. For a unary operator such 

as NEG, the pattern is slightly simplified, as we can see here:

"NEG": {  xcode |||:= xgen("movq", instr.op2, "%rax") |||

              xgen("negq", "%rax") |||

              xgen("movq", "%rax", instr.op1) }

In Java, the implementation of negation consists of the following code:

case "NEG": { xcode.addAll(xgen("movq", instr.op2, "%rax"));

              xcode.addAll(xgen("negq", "%rax"));

              xcode.addAll(xgen("movq", "%rax", instr.op1));

              break; }

An even simpler instruction such as ASN may be worth treating as a special-case, since x64 code 

features direct memory-to-memory move instructions, but one option is to stick with the same 

script and simplify the preceding pattern further, like this:

"ASN": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

                     xgen("movq", "%rax", instr.op1) }
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In Java, the implementation of an assignment might look like this:

case "ASN": { xcode.addAll(xgen("movq", instr.op2, "%rax"));

              xcode.addAll(xgen("movq", "%rax", instr.op1));

              break; }

Expressions are the most common elements in code. The next category is pointers.

Generating code for pointer manipulation
Three of the three-address instructions pertain to the use of pointers: ADDR, LCON, and SCON. The 

ADDR instruction turns an address in memory into a piece of data that can be manipulated to 

perform operations, such as pointer arithmetic. It pushes its operand, an address reference in 

one of the memory regions, as if it were an immediate mode value. The code is illustrated in the 

following snippet:

"ADDR": { xcode |||:= xgen("leaq", instr.op2, "%rax")

          xcode |||:= xgen("%rax", instr.op1) }

In Java, the implementation of the ADDR instruction consists of the following code:

case "ADDR": { xcode.addAll(xgen("leaq", instr.op2, "%rax"));

               xcode.addAll(xgen("%rax", instr.op1));

               break; }

The LCON instruction reads from memory pointed at by other memory, as follows:

"LCON": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

                      xgen("movq", "(%rax)", "%rax") |||

                      xgen("movq", "%rax", instr.op1) }

In Java, the implementation of the LCON instruction consists of the following code:

case "LCON": { xcode.addAll(xgen("movq", instr.op2, "%rax"));

               xcode.addAll(xgen("movq", "(%rax)", "%rax"));

               xcode.addAll(xgen("movq", "%rax", instr.op1));

               break; }

The SCON instruction writes to memory pointed at by other memory, as follows:

"SCON": { xcode |||:= xgen("movq", instr.op2, "%rbx") |||

                      xgen("movq", instr.op1, "%rax")

                      xgen("movq", "%rbx", "(%rax)") }
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In Java, the implementation of the SCON instruction consists of the following code:

case "SCON": { xcode.addAll(xgen("movq", instr.op2, "%rbx"));

               xcode.addAll(xgen("movq", instr.op1, "%rax"));

               xcode.addAll(xgen("movq", "%rbx", "(%rax)"));

               break; }

These instructions are important to support structured data types such as arrays. Now, let’s con-

sider bytecode code generation for control flow, starting with the GOTO instruction.

Generating native code for branches and conditional 
branches
Seven intermediate code instructions pertain to branch instructions. The simplest of these is 

the unconditional branch or GOTO instruction. The GOTO instruction assigns a new value to the 

instruction pointer register. It should be no surprise that the GOTO bytecode is the implementation 

of the three-address GOTO instruction, as illustrated in the following code snippet:

"GOTO": {  xcode |||:= xgen("goto", instr.op1) }

In Java, the implementation of the GOTO instruction consists of the following code:

case "GOTO": { xcode.addAll(xgen("goto", instr.op1)); 

               break; }

The conditional branch instructions in the three-address code are translated down into simpler 

final code instructions. For the x64 instruction set, this means executing a compare instruction 

that sets condition codes prior to one of the x64 conditional branch instructions. The Unicon 

implementation of the BLT instruction looks like this:

"BLT": { xcode |||:= xgen("movq", instr.op2, "%rax") |||

                     xgen("cmpq", instr.op3, "%rax") |||

                     xgen("jle", instr.op1) }

In Java, the implementation to generate bytecode for the BLT instruction consists of the following 

code:

case "BLT": { xcode.addAll(xgen("movq", instr.op2, "%rax"));

              xcode.addAll(xgen("cmpq", instr.op3, "%rax"));

              xcode.addAll(xgen("jle", instr.op1));

              break; }
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This pattern is employed for several of the three-address instructions. Now, let’s consider the 

more challenging forms of control flow transfer that relate to method calls and returns.

Generating code for method calls and returns
Three of the intermediate code instructions handle the very important topic of function and 

method calls and returns. A sequence of zero or more PARM instructions pushes values onto the 

stack, after which the CALL instruction performs a method call. From inside the called method, 

the RET instruction returns from a method to the caller.

This three-address code calling convention must be mapped down onto the underlying x64 

instruction set, preferably with the standard calling conventions on that architecture, which 

requires the first six parameters to be passed into specific registers.

To pass parameters into correct registers, the PARM instruction must track which parameter number 

it is. The Unicon code for the PARM instruction consists of the following:

"PARM": { if /parmCount then {

             parmCount := 1

             every j := i+1 to *icode do

                if icode[j].op == "CALL" then break

                parmCount +:= 1

             }

          else parmCount -:= 1

          genParm(parmCount, instr.op1) }

For the first parameter, the every loop counts the number of parameters before the CALL instruc-

tion. The genParm() method is called with the current parameter number and the operand. In 

Java, the implementation of the PARM instruction is similar, as we can see here:

case "PARM": { if (parmCount == -1) {

                  for(int j = i+1; j<icode.size(); j++) {

                     tac callinstr = icode.get(j);

                     if (callinstr.op.equals("CALL"))

                        break;

                     parmCount++;

                     }

                  }

               else parmCount--;

               genParm(parmCount, instr.op1);

               break; }
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The preceding cases for parameters depend on a genParm() method that generates code, depend-

ing on the parameter number. Before loading registers for a new function call, register values that 

have been modified must be saved to their main memory locations, as follows. Since save() clears 

the dirty flag when it generates a register save instruction, multiple calls to genParm() will only 

save registers once for a given call:

method genParm(n, addr)

   every (!regs).save() 

   if n > 6 then xcode |||:= xgen("pushq", addr)

   else xcode |||:= xgen("movq", addr, case n of {

      1: "%rdi"; 2: "%rsi"; 3: "%rdx";

      4: "%rcx"; 5: "%r8";   6: "%r9"

   })

end

The corresponding Java implementation of genParm() looks like this:

public static void genParm(int n, address addr) {

   for (RegUse x : regs) x.save();

   if (n > 6) xcode.addAll(xgen("pushq", addr));

   else {

      String s = "error:" + String.valueOf(n);

      switch (n) {

      case 1: s = "%rdi"; break; case 2: s = "%rsi"; break;

      case 3: s ="%rdx"; break; case 4: s = "%rcx"; break;

      case 5: s = "%r8"; break; case 6: s = "%r9"; break;

      }

      xcode.addAll(xgen("movq", addr, s));

   }

}

The CALL instruction is next. After the call, the op1 destination in the three-address code is saved 

from the rax register. The op2 source field is the method address that was used prior to the first 

PARM instruction. The op3 source field gives the number of parameters, which is not used on x64. 

The code is illustrated in the following snippet:

"CALL": { xcode |||:= xgen("call", instr.op3)

          xcode |||:= xgen("movq", "%rax", instr.op1)

          parmCount := &null }
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In Java, the implementation of the CALL instruction looks like this:

case "CALL": { xcode.addAll(xgen("call", instr.op3));

               xcode.addAll(xgen("movq", "%rax", instr.op1));

               parmCount = -1;

               break; }

The Unicon implementation of the RETURN instruction looks like this:

"RETURN": { xcode |||:= xgen("movq", instr.op1, "%rax") |||

                 xgen("leave") ||| xgen("ret", instr.op1) }

In Java, the implementation of the RETURN instruction looks like this:

case "RETURN":{ xcode.addAll(xgen("movq", instr.op1, "%rax"));

                xcode.addAll(xgen("leave"));

                xcode.addAll(xgen("ret", instr.op1)); 

                break; }

Generating code for method calls and returns is not too difficult. Now, let’s consider how to handle 

the pseudo-instructions in the three-address code.

Handling labels and pseudo-instructions
Pseudo-instructions such as labels do not translate into code, but they are present in the linked 

list of three-address instructions and require consideration in the final code. The most common 

and obvious pseudo-instruction is a label. If the final code is generated in a human-readable 

assembler format, labels can be generated almost as-is, modulo any format differences such as 

name mangling that might be necessary to make them legal in the assembler file. If we were 

generating the final code in a binary format, labels would require precise calculation at this point 

and would be entirely replaced by actual byte offsets in the generated machine code. The code 

is illustrated here:

"LAB": { every (!regs).save()

         xcode |||:= xgen("lab", instr.op1) }

In Java, the equivalent implementation is shown here:

case "LAB": { for (RegUse ru : regs) ru.save();

              xcode.addAll(xgen("lab", instr.op1)); break; }

As a representative of other types of pseudo-instructions, consider which x64 code to output for 

the beginnings and ends of methods. 
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At the beginning of a method in intermediate code, all you’ve got is the pseudo-instruction proc 

x,n1,n2. The Unicon code for this pseudo-instruction is shown here. Several of the assembler 

directives beginning with the prefix .seh are beyond the scope of this book and will not be dis-

cussed, other than to mention that they support structured exception handling:

"proc": {

   n := ((\(instr.op2)).integr() + (\(instr.op3)).integr()) * 8

   xcode |||:= xgen(".text") |||

               xgen(".globl", instr.op1.region) |||

               xgen(".def\t" || instr.op1.region ||

                    ";\t.scl\t2;\t.type\t32;\t.enddef") |||

               xgen(".seh_proc\t" || instr.op1.region) |||

               xgen("lab", instr.op1.region) |||

               xgen("pushq", "%rbp") |||

               xgen(".seh_pushreg\t%rbp") |||

               xgen("movq", "%rsp", "%rbp") |||

               xgen(".seh_setframe\t%rbp, 0") |||

               xgen("subq", "$" || \n, "%rsp") |||

               xgen(".seh_stackalloc\t" || n) |||

               xgen(".seh_endprologue")

   if instr.op1.region === "main" then

      xcode |||:= xgen("call", "__main")

   every i := !((\(instr.op2)).intgr()) do

      regs[i].loaded := regs[i].dirty := "true"

   /i := 0

   every j := i+1 to 11 do

      regs[i].loaded := regs[i].dirty := &null

}

Line by line in the preceding code, the assignment to n calculates the total number of local region 

bytes, including space for parameters passed in registers but copied into stack memory if the 

method calls another method. The .text directive tells the assembler to write to the code section. 

The .globl directive states that the method name should be linkable to other modules. The .def, 

.scl, .type, and.enddef directives introduce the symbol as a function. The lab directive declares 

the (mangled) function name as an assembler label, which is to say that the mangled name can 

be used as a reference to this function entry point in the code region. The pushq instruction saves 

the previous base pointer on the stack. The movq instruction establishes the base pointer for the 

new function at the current stack top.
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The subq instruction allocates memory by moving the stack pointer further down by that amount 

in the stack. The if statement inserts a call to __main() to initialize the runtime system when 

program execution starts from main(). The two loops mark used parameters while noting that 

the other registers are clear. In Java, the corresponding code for a method header looks like this:

case "proc": {

   int n = 0;

   if (instr.op2 != null) n += instr.op2.intgr();

   if (instr.op3 != null) n += instr.op3.intgr();

   n *= 8;

   xcode.addAll(xgen(".text"));

   xcode.addAll(xgen(".globl", instr.op1.region));

   xcode.addAll(xgen(".def\t" + instr.op1.region +

                     ";\t.scl\t2;\t.type\t32;\t.endef"));

   xcode.addAll(xgen(".seh_proc\t" + instr.op1.region));

   xcode.addAll(xgen("lab", instr.op1.region));

   xcode.addAll(xgen("pushq", "%rbp"));

   xcode.addAll(xgen(".seh_pushreg\t%rbp"));

   xcode.addAll(xgen("movq", "%rsp", "%rbp"));

   xcode.addAll(xgen(".seh_setframe\t%rbp, 0"));

   xcode.addAll(xgen("subq", "$"+n, "%rsp"));

   xcode.addAll(xgen(".seh_stackalloc\t"+n));

   xcode.addAll(xgen(".seh_endprologue"));

   if (instr.op1.region.equals("main"))

      xcode.addAll(xgen("call","__main"));

   int j = 0;

   if (instr.op2 != null)

      for ( ; j < instr.op2.offset; j++)

         regs[j].loaded = regs[j].dirty = true;

   for (; j < 11; j++)

      regs[j].loaded = regs[j].dirty = false;

   break;

}

The end pseudo-instruction is somewhat simpler, as we can see here. We do not want to fall off the 

end of a method, so if the function does not end with a return statement, we emit instructions to 

restore the old frame pointer and return, along with assembler directives for the end of a function:

"end": {
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   if xcode[-1].op ~== "ret" then

      Xcode |||:= xgen("leave") ||| xgen("ret")

   Xcode |||:= xgen(".seh_endproc")

}

The matching Java implementation of the end pseudo-instruction is shown here:

case "end": {

   if (! Xcode.get(xcode.size()-1).op.equals("ret")) {

      xcode.addAll(xgen("leave"));

      xcode.addAll(xgen("ret"));

      }

   xcode.addAll(xgen(".seh_endproc"));

   break;

}

The last few sections produced a data structure containing a representation of the bytecode and 

then showed how various three-address instructions are translated. Now, let’s move on to pro-

ducing the output native x64 code from a list of x64 objects.

Generating x64 output
As with many traditional compilers, the native code for Jzero will be produced by carrying out the 

following steps. First, we will write out a linked list of x64 objects in a human-readable assembler 

language with the .s extension. We then invoke the GNU assembler to turn that into a binary 

object file format with the .o extension. An executable is constructed by invoking a linker, which 

combines a set of .o files specified by the user with a set of .o files containing runtime library code, 

and data referenced from the generated code. This section presents each of these steps, starting 

with producing the assembler code.

Writing the x64 code in assembly language format
This section provides a brief description of the x64 assembler format as supported by the GNU 

assembler, which uses AT&T syntax. Instructions and pseudo-instructions occur on a line by 

themselves with a tab (or eight spaces) of indentation on the left. Labels are an exception to 

this rule, as they contain no leading spaces of indentation and consist of an identifier followed 

by a colon. Pseudo-instructions begin with a period. After the mnemonic for the instruction or 

pseudo-instruction, there may be a tab or spaces followed by zero, one, or two comma-separated 

operands, depending on the requirements of the instruction.
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As an example of all this, here is a simple x64 assembler file containing a function that does 

nothing and returns a value of 42. In the assembler, this is how it might look:

        .text

        .globl  two

        .type   two, @function

two:

.LFB0:

        pushq   %rbp

        movq    %rsp, %rbp

        movl    $42, -4(%rbp)

        movl    -4(%rbp), %eax

        popq    %rbp

        ret

.LFE0:

        .size   two, .-two

The j0 class has a method named x64print() that outputs a list of x64 objects into a text file 

in this format. As you can see in the Unicon code from j0.icn shown next, it calls the print() 

method on each of the x64 objects in the xcode list:

method x64print()

   every (!xcode).print()

end

The Java implementation of x64print() in the j0.java file is shown here:

public static void x64print() {

   for(x64 x : xcode) x.print();

}

Having shown how the assembler code is written, it’s time to look at how to invoke the GNU 

assembler to produce an object file.

Going from native assembler to an object file
Object files are binary files containing actual machine code. An assembler file written out in the 

preceding section is assembled using the as command, as shown here:

as --gstabs+ -o two.o two.s
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In this command line, --gstabs+ is a recommended option that includes debugging information. 

-o two.o is an option that specifies the output filename.

The resulting two.o binary file is not readily understandable by humans as-is but can be viewed 

using various tools. Just for fun, the first 102 bytes of ones and zeros from two.o are shown in 

the following screenshot; each row shows six bytes, with the American Standard Code for In-

formation Interchange (ASCII) interpretation shown on the right. The screenshot shows you 

the ones and zeros in text form, thanks to a tool named xxd that prints the bits out literally in 

textual form. Of course, a computer usually processes them from 8 to 64 bits at a time, without 

first transliterating them into text form:

Figure 14.2: Binary representations are not human-friendly, but computers prefer them

It is not a coincidence that bytes 2–4 of the file say ELF. Executable and Linkable Format (ELF) 

is one of the more popular multiplatform object file formats, and the first four bytes identify the 

file format. Suffice it to say that such binary file formats are important to machines but difficult 

for humans. Now, let’s consider how object files are combined to form executable programs.

Linking, loading, and including the runtime system
The task of combining a set of binary files to produce an executable is called linking. This is 

another subject about which an entire book could be written. For Jzero, it is a very good thing 

that under either Linux or by using the Mingw64 Windows version of gcc, we can let the ld GNU 

linker program do the work. It takes a -o file option to specify its output filename, and then any 

number of .o object files. 



Native Code Generation396

The object files for a working executable include a startup file that will initialize and call main(), 

often called crt1.o, followed by the application files, and then zero or more runtime library files. 

If we build a Jzero runtime library named libjzero.o, the ld command line might look like this:

ld -o hello /usr/lib64/crt1.o hello.o -ljzero

If your runtime library calls functions in a real C library, you will have to include them as well. A 

full ld-based link of a runtime system built on top of the GNU Compiler Collection’s (GCC’s) 

glibc looks like this:

ld -dynamic-linker /lib64/ld-linux-x86-64.so.2 \

   /usr/lib/x86_64-linux-gnu/crt1.o \

   /usr/lib/x86_64-linux-gnu/crti.o \

   /usr/lib/gcc/x86_64-linux-gnu/7/crtbegin.o \

   hello.o -ljzero \

   -lc /usr/lib/gcc/x86_64-linux-gnu/7/crtend.o \

   /usr/lib/x86_64-linux-gnu/crtn.o

Your users would not often have to type this command line itself, since it would be boiled into 

your compiler’s linker invocation code. However, it has the fatal flaws of being non-portable and 

version-dependent. To use an existing GCC C library from within your runtime system, you might 

prefer to let an existing GCC installation perform your linking for you, by baking something like 

this into your compiler’s linker invocation code:

gcc -o hello hello.o

The linker must assemble one big piece of binary code from several binary object code inputs. In 

addition to bringing together all the instructions in the object files, the linker’s primary job is to 

determine the addresses of all the functions and global variables in the executable. The linker 

must also provide a mechanism for each object file to find the addresses of functions and vari-

ables from other object files. Whether you use ld or gcc to invoke the linker, your compiler may 

need a mechanism by which it can find your runtime library, as denoted by the -ljzero library 

references in the ld example above.

For functions and variables that are not defined in user code but are instead part of the language 

runtime system, the linker must have a mechanism to search the runtime system and incorporate 

as much of it as is needed. The runtime system includes startup code that will initialize the runtime 

system and set things up to call main(). It may include one or more object files that are always 

linked to any executable for that language. Most importantly, the linker provides a way to find 

and link in only those portions of the runtime system that are explicitly called from the user code.
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In modern systems, things have gotten more complicated over time. It is standard to defer various 

aspects of linking and loading to runtime, particularly to allow processes to share library code 

that has already been loaded for use by other processes.

Summary
This chapter showed you how to generate native code for x64 processors. Among the skills you 

learned, the main task was to traverse a linked list of intermediate code and convert it into in-

structions in the x64 instruction set. In addition, you learned how to write out x64 code in the 

GNU assembler format. Lastly, you learned how to invoke the assembler and linker to turn the 

native code into an ELF object and executable file format. 

The next chapter looks in more detail at the task of implementing new high-level operators and 

built-in functions in your language’s runtime system.

Questions
1.	 What are the main new concepts that become necessary to generate x64 native code, 

compared with bytecode?

2.	 What are the advantages and disadvantages of supplying the addresses of global variables 

as offsets relative to the %rip instruction pointer register?

3.	 One of the big issues affecting the performance of modern computers is the speed of 

performing function calls and returns. Why is function call speed important? In which 

circumstances is the x64 architecture able to perform fast function calls and returns? 

Are there aspects of the x64 architecture that seem likely to slow down function calling?

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw
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Implementing Operators and 
Built-In Functions

New programming languages are invented because, occasionally, new ideas and new computa-

tional capabilities are needed to solve problems in new application domains. Libraries of func-

tions or classes are the most common means of extending mainstream languages with additional 

computational capabilities, but adding a library is not always sufficient.

This chapter describes how to support very high-level and domain-specific language features 

by adding operators and functions that are built into the language. The following chapter will 

discuss adding control structures.

Adding operators and built-in functions may shorten and reduce what programmers must write to 

solve certain problems in your language, improve its performance, or enable language semantics 

that would otherwise be difficult. This chapter illustrates the ideas within the context of Jzero, 

emphasizing the string and array types. By way of comparison, the later sections describe how 

operators and functions are implemented in Unicon.

This chapter will cover the following main topics:

•	 Implementing operators

•	 Writing built-in functions

•	 Integrating built-ins with control structures

•	 Developing operators and functions for Unicon



Implementing Operators and Built-In Functions400

In this chapter, you will learn how to write parts of the runtime system that are too complex to 

be instructions in the instruction set. You will also learn how to add domain-specific capabilities 

to your language. Let’s start with how to implement high-level operators!

Implementing operators
Operators are expressions that compute a value. Simple operators that compute their results via 

a few instructions on the underlying machine were covered in the preceding chapters. This sec-

tion describes how to implement an operator that takes many steps. You can call these operators 

composite operators. In this case, the underlying generated code may perform calls to functions 

that run natively on the underlying machine.

It may be useful to compare implementing composite operators that are built into to the language, 

as we are discussing in this chapter, with the feature of operator overloading in some languages 

such as C++. Operator overloading allows composite operators to be implemented, usually for 

new user-defined types, as part of a program’s source code. The purpose of operator overloading 

is usually to enable arbitrary new user-defined types to use the same concise arithmetic notation 

enjoyed by primitive atomic types in a language. However, since they are implemented in the 

source language, they can only do things the source language knows how to do. Also, operator 

overloading systems usually only allow new definitions of existing operators with prescribed 

precedence and association rules.

When you build a new programming language, there are three languages involved. The language 

you are writing is called the source language. The language that you generate as output is called 

the target language. The language that you are writing your language processing tool in is called 

the implementation language.

This chapter is about functions called from generated code to perform composite built-in operators 

that are written in the implementation language rather than the source language. For example, 

let’s consider Jzero as our source language. The implementation language may be Unicon if we 

are running our Jzero programs on a bytecode interpreter written in Unicon. But the implemen-

tation language might be C if we are running our Jzero programs by generating native code and 

linking that native code to a runtime system written in C.

Operators written in the implementation language may be lower level and do things that are 

impossible in the source language. For example, parameter-passing rules might be different in 

the implementation language than they are in the programming language that you are creating. 

As new built-ins in your language, the operators being discussed here are not limited to new 

definitions of existing operators for new types; you can add completely new operators if you are 

willing to add new tokens and new grammar rules to specify their precedence and association.
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If you are wondering when you should make a new computation into an operator, you can refer 

to Chapter 2, Programming Language Design. Rather than repeat that material, we will note that 

operators are generally constrained to operate on, at most, three operands, and that most oper-

ators use one or two operands. Perhaps a note of caution is also needed: adding new definitions 

for operators that may be completely unrelated to their customary uses may reduce the semantic 

transparency of your language, making it harder to read and maintain programs that are written 

in it, since a new developer may misinterpret the code that they are looking at.

If you can leverage analogies to arithmetic that will let programmers in your new language reuse 

appropriate familiar operators for your new computations, great. Otherwise, you are expecting 

programmers to learn and memorize new patterns, which is asking a lot. You can add hundreds 

of operators to your language, but human brains will not memorize that many. If you try to 

introduce more operators than we have keyboard keys, for example, your language may fail to 

achieve widespread popularity due to the excessive cognitive load. Now, let’s consider to what 

extent the act of adding new operators to a language relates to, or follows because of, adding 

new hardware capabilities.

Comparing adding operators to adding new hardware
In the same way that you may discover that a common computation of yours might deserve to 

be an operator in your language, hardware designers might realize that computers should sup-

port a common computation with native instructions. When language designers realize that a 

computation should be an operator in their language, that makes that computation a candidate 

for hardware implementation. Similarly, when hardware designers implement a common com-

putation in their hardware, language designers should ask whether that computation should be 

supported directly with operators or some other specialized syntax. Here is an example.

Before the 80486 in 1994, most PCs did not come with hardware capable of directly performing 

floating-point calculations; on some platforms, a floating-point co-processor was an expensive 

add-on needed only for scientific computing. If you were implementing a compiler, you probably 

implemented a floating-point data type in software as a set of functions. These runtime system 

functions were called from generated code but were transparent to the programmer. A program 

that declared two float variables, f1 and f2, and executed the f1 + f2 expression would compute 

the floating-point sum without noting that the generated code included function calls that might 

be slower by 10x, 100x, or more compared with adding two integers.
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Here is another example that may be a sore point for some readers. After a program called Doom 

created enormous demand for 3D graphics in the 1990s, GPUs were developed. GPUs now support 

computations far beyond their original scope of games and similar 3D programs. However, GPU 

programming is not supported directly in most mainstream languages, and the steep learning 

curve and difficult programming for GPUs have lessened and slowed their enormous impact. To 

summarize: there is a rich juicy gray area in between those operators that should be built into 

the programming language to make programming simple, as well as operators that should be 

built into the hardware. Now, let’s learn how to add compound operators by adding one to Jzero: 

string concatenation.

Implementing string concatenation in intermediate code
For Jzero, the string type is essential but was not implemented in the preceding chapters on code 

generation or bytecode interpretation, which focused on integer computation. The String class 

has a concatenation operator that we must implement. Some computers support concatenation 

in hardware for some string representations. For Jzero, String is a class and concatenation is 

comparable to a method – either a factory method or a constructor since it returns a new string 

rather than modifying its arguments.

In any case, it is time to implement s1+s2, where s1 and s2 are strings. For intermediate code, 

we can add a new instruction called SADD. If you don’t want to add a new instruction, you can 

generate code that calls a method for string concatenation, but we are going to run with an in-

termediate code instruction for this example. The code generation rule for the plus operator will 

generate different code depending on the type. Before we can implement that, we must modify 

the check_types() method in the tree class so that the s1 string plus the s2 string is legal and 

computes a string. In the Unicon implementation, change the lines in tree.icn where addition 

is type-checked to allow the String type, as follows:

   if op1.str() === op2.str() === ("int"|"double"|"String")

      then return op1

In the Java implementation, add the following OR in tree.java:

   if (op1.str().equals(op2.str()) &&

       (op1.str().equals("int") ||

        op1.str().equals("double") ||

        op1.str().equals("String")))

      return op1;
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Having modified the type checker to allow string concatenation, the intermediate code gener-

ation method, genAddExpr(), is similarly extended. The Unicon modifications in tree.icn are 

highlighted in the method body shown here:

method genAddExpr()

  addr := genlocal()

  icode := kids[1].icode ||| kids[2].icode

  if typ.str() == "String" then {

    if rule ~= 1320 then

      j0.semErr("subtraction on strings is not defined")

    icode |||:= gen("SADD", addr,

        kids[1].addr, kids[2].addr)

    }

  else icode |||:= gen(if rule=1320 then "ADD" else "SUB",

      addr, kids[1].addr, kids[2].addr)

end

The check for production rule 1320 is because the String type does not support subtraction. The 

corresponding Java modifications in tree.java are as follows:

void genAddExpr() {

  addr = genlocal();

  icode = new ArrayList<tac>();

  icode.addAll(kids[0].icode); icode.addAll(kids[1].icode);

  if (typ.str().equals("String")) {

    if (rule != 1320)

      j0.semErr("subtraction on strings is not defined");

    icode.addAll(gen("SADD", addr,

                      kids[0].addr,kids[1].addr);

    }

  else icode.addAll(gen(((rule==1320)?"ADD":"SUB"),

                        addr, kids[0].addr, kids[1].addr));

}

At this point, we have added an intermediate code instruction for string concatenation. Now, it 

is time to implement it in the runtime system. First, we will consider the bytecode interpreter.
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Adding String concatenation to the bytecode interpreter
Since the bytecode interpreter is software, we can simply add bytecode instructions for string 

operations, as we did for intermediate code. An opcode for the SADD instruction must be added 

to Op.icn and Op.java, along with SPUSH and SPOP instructions to push and pop strings. We 

must modify the bytecode generator to generate a bytecode SADD instruction for an intermediate 

code SADD instruction. In the bytecode() method in j0.icn, the Unicon implementation looks 

as follows:

  "SADD": {

    bcode |||:= j0.bgen(Op.SPUSH, instr.op2) |||

                j0.bgen(Op.SPUSH, instr.op3) |||

                j0.bgen(Op.SADD) |||

                j0.bgen(Op.SPOP, instr.op1)

    }

If this looks like the code for the ADD instruction, that is the point. As with the ADD instruction, the 

final code consists mainly of converting a three-address instruction into a sequence of one-address 

instructions. The Java implementation in j0.java is shown here:

  case "SADD": {

    rv.addAll(j0.bgen(Op.SPUSH, instr.op2));

    rv.addAll(j0.bgen(Op.SPUSH, instr.op3));

    rv.addAll(j0.bgen(Op.SADD, null));

    rv.addAll(j0.bgen(Op.SPOP, instr.op1));

    break;

    }

We must also implement the bytecode instruction for SADD, which means we must add it to the 

bytecode interpreter. Since the Unicon and Java implementation languages both have high-level 

string types with semantics similar to Jzero, we can hope that implementation will be simple. 

If the Jzero representation of a String in the j0x bytecode interpreter is an underlying imple-

mentation language string, then the implementation of the SADD instruction will just perform 

string concatenation. However, in most languages, the source language semantics differ from the 

implementation language, so it is usually necessary to implement a representation of the source 

language type that models source language semantics in the underlying implementation language.
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Having issued that warning, let’s see if we can implement Jzero strings as plain Unicon and Java 

strings. To implement string concatenation in bytecode, we push two strings onto the stack with 

SPUSH, concatenate them with SADD, and pop the result with SPOP. The SPUSH instruction is the 

same as PUSH on Unicon but will be different on Java:

Op.SPUSH: {

   val := deref(opr, opnd)

   push(stack, val)

}

The corresponding Java implementation of SPUSH in j0machine.java looks like the following. The 

stackbuf variable is a ByteBuffer that was sized for holding a good number of 64-bit integer 

values, but now, we must decide how to use it to also hold strings. If we store the actual string 

contents in stackbuf, we are not implementing a stack anymore – we are implementing a heap 

and it will be a can of worms. Instead, we store an integer code in stackbuf that we can use to 

obtain the string by looking it up in a string pool:

case Op.SPUSH: {

   String val = sderef(opr, opnd);

   long l = stringpool.put(val);

   stackbuf.putLong(sp++, l);

   break;

}

The SADD instruction in the interp() method in j0machine.icn is almost the same as that of 

the ADD integer:

Op.SADD: {

   val1 := pop(stack); val2 := pop(stack)

   push(stack, val1 || val2)

}

This Unicon implementation relies on the fact that the Unicon value stack does not care if you 

sometimes push integers and sometimes push strings. Unicon has an underlying string region 

where memory for the strings’ underlying contents is stored, and the bytecode interpreter uses 

that implicitly.
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The corresponding Java implementation in j0machine.java is shown below. Two strings are 

fetched from the string pool by popping their keys off the stack, and the new string constructed 

from their concatenation is placed in the string pool. Its key is pushed on the stack:

case Op.SADD: {

   String val1 = stringpool.get(stackbuf.getLong(sp--));

   String val1 = stringpool.get(stackbuf.getLong(sp--));

   long val3 = stringpool.put(val1 + val2);

   stackbuf.putLong(sp++, val3);

}

This code depends on the stringpool class, which uses unique integers to store and retrieve 

strings. These unique integers are references to the string data that can be conveniently stored 

on stackbuf, but now, the Java implementation requires the stringpool class, so here it is in the 

stringpool.java file. For any string, the way to retrieve its unique integer is to look it up in the 

pool. Once it’s been issued like this, a unique integer can be used to retrieve the string on demand:

public class stringpool {

   static HashMap<String,Long> si;

   static HashMap<Long,String> is;

   static long serial;

   static { si = new HashMap<>(); is = new HashMap<>(); }

   public static long put(String s) { … }

   public static String get(long L) { … }

}

This class requires the following pair of methods. The put() method inserts strings into the pool. 

If the string is already in the pool, its existing integer key is returned. If the string is not already 

in the pool, the serial number is incremented and that number is associated with the string:

public static long put(String s) {

   if (si.containsKey(s)) return si.get(s);

   serial++;

   si.put(s, serial);

   is.put(serial, s);

   return serial;

}

The get() method retrieves a String from stringpool:
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public static String get(long L) {

   return is.get(L);

}

Now, it is time to look at how to implement this operator for native code.

Adding String concatenation to the native runtime system
The Jzero native code is much lower level than the bytecode interpreter. Implementing the Jzero 

String class semantics from scratch in C is a big job. Jzero uses an extremely simplified subset of 

the Java String class, for which we only have room to describe the highlights. Here is an under-

lying C representation of a String class for use in Jzero:

struct String {

   struct Class *cls;

   long len;

   char *buf;

};

Within this struct, cls is a pointer to an as-yet-undefined structure for class information, len 

is the length of the string, and buf is a pointer to data. The Jzero string concatenation might be 

defined as follows:

struct String *j0concat(struct String *s1, struct String *s2){

   struct string *s3 = alloc(sizeof struct String);

   s3->buf = allocstring(s1->len + s2->len);

   strncpy(s3->buf, s1->buf, s1->len);

   strncpy(s3->buf + s1->len, s2->buf, s2->len);

   return s3;

}

This code raises as many questions as it answers, such as what the difference is between alloc() 

and allocstring(); we will get to those shortly. But it is a function that we can call from the 

generated native code via this addition in j0.icn:

  "SADD": {

    bcode |||:= xgen("movq", instr.op2, "%rdi") |||

                xgen("movq", instr.op3, "%rsi") |||

                xgen("call", "j0concat") |||

                xgen("movq", "%rax", instr.op1)

    }
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The corresponding Java implementation in j0.java is shown here:

  case "SADD": {

    rv.addAll(xgen("movq", instr.op2, "%rdi"));

    rv.addAll(xgen("movq", instr.op3, "%rsi"));

    rv.addAll(xgen("call", "j0concat"));

    rv.addAll(xgen("movq", "%rax", instr.op1));

    break;

    }

Here, you can see that substituting a function call to implement an immediate code instruction is 

straightforward. Let’s compare this with the code that is generated for built-in functions, which 

we will present next.

Writing built-in functions
Low-level languages such as C have no built-in functions; they have standard libraries that con-

tain functions available to all programs. Linking a function to your program and calling it is 

conceptually the same action, whether it is a library function or a user-defined function. The 

higher the language level, the more conspicuous the difference between what is written for its 

runtime system in a lower-level implementation language and what is written by end users in 

the language itself. Let’s consider how to implement built-ins in the bytecode interpreter.

Adding built-in functions to the bytecode interpreter
Let’s implement System.out.println() in the bytecode interpreter. One of our design options is 

to implement a new bytecode machine instruction for each built-in function, including println(). 

This doesn’t scale well to thousands of built-in functions. We could implement a callnative 

instruction, providing us with a way to identify which built-in function we want to call. Some 

languages implement an elaborate interface for calling native code functions and implement 

println() (or some lower-level building block function) as a wrapper function written in Jzero 

that uses the native calling interface.

For Jzero, as described in the Running a Jzero program section of Chapter 12, Bytecode Interpreters, 

we chose to use the existing call instruction, with special function values to denote built-in 

functions. The special values we chose were small negative integers where a function entry point 

address would normally go. So, the function call mechanism must be built to look for small neg-

ative integers to distinguish between method types and do the correct thing for user-defined 

and built-in methods.
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Let’s look at the do_println() method, which we suggested in Chapter 12, Bytecode Interpreters. 

For Jzero, this runtime system method is hardwired to write to standard output, much like puts() 

in C. The string to be written is on the stack; it’s no longer on the top since the call instruction 

pushed a function return address. In Unicon, do_println() might be implemented as follows:

method do_println()

   write(stack[2])

end

In Java, the do_println() method would look something like this:

public static do_println() {

   long l = stackbuf.getLong(sp-1)

   String s = stringpool.get(l);

   System.out.println(s);

}

Built-in functions in bytecode are simple. Now, let’s look at writing built-in functions for native 

code.

Writing built-in functions for use with the native code 
implementation
Now, it is time to implement System.out.println() for the native code Jzero implementation. 

In a Java compiler, it would be a method of the System.out object, but for Jzero, we can do what-

ever is expedient. We can write a native function named System_out_println() in assembler, 

or if our generated native code adheres carefully to the calling conventions of a C compiler on 

the same platform, we can write it in C, put it in our Jzero runtime library, and link it to the 

generated assembler modules to form our executable. The function takes one string argument, 

struct String *, as shown in the previous section. Here is an implementation; you can put it 

in the System_out_println.c file:

#include <stdio.h>

void System_out_println(struct String *s) {

   for(int i = 0; i < s->len; i++) putchar(s->buf[i]);

   putchar('\n');

}
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The more interesting part of all this is how the generated code gets access to this and other built-

in native functions. You can compile it via the following command line for gcc:

gcc -c System_out_println.c

You can add the System_out_println.o output file to an archive library named libjzero.a with 

the following command line:

ar cr libjzero.a System_out_println.o

The preceding two command lines are not executed within your compiler at each compile or link 

time; instead, they are run when the Jzero compiler itself is being built, alongside potentially 

many other bits of the operator or built-in function library code. They create a library archive file 

called libjzero.a. This archive file can be linked to Jzero’s generated code using the ld or gcc 

command, as described in Chapter 14, Native Code Generation, in the Linking, loading, and including 

the runtime system section.

The -lsomefile command-line option expands to match libsomefile.a so that our runtime can 

be invoked as -ljzero. Now, how does the Jzero compiler find the runtime library, which may 

be installed anywhere? The answer will vary by operating system, and some of the convenient 

options require administrative privileges. If you can copy libjzero.a into the same directory 

that’s used by your linker for other system libraries such as C:\Mingw\lib on Windows or /usr/

lib64 on Linux, you may find that everything works great. If that is not an option, you may resort 

to environment variables or command-line options, either to inform the linker where the library 

is or to inform the Jzero compiler itself on the Jzero command line where the runtime library can 

be found. Adding built-in functions like this is important because not every language addition 

can be made in the form of an operator. Similarly, not every language addition is best formulated 

as a function. Sometimes, such operators and built-in functions are more effective when they’re 

part of new control structures that support some new problem domain. Let’s consider how these 

operators and functions might profit from being integrated with syntactic additions in the form 

of control structures.

Integrating built-ins with control structures
Control structures are usually bigger things than expressions, such as loops. They are often 

associated with novel programming language semantics or new scopes in which specialized 

computations occur. Control structures provide a context in which a statement (often, this is a 

compound statement consisting of a whole block of code) is executed. This can be whether (or 

how many times) it is executed, on what associated data the code is computing, or even what 

semantics to apply during the evaluation of the operators. 
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Sometimes, these control structures are explicitly and solely used for your new operators or 

built-in functions, but often, the interactions are implicit byproducts of the problem-solving 

that your language enables.

Whether a given block of code is executed, selecting which of several blocks to execute or executing 

code repeatedly are the most traditional control structures, such as if statements and loops. The 

most likely opportunities for operators or functions to interact with these constructs include a 

special iterator syntax to control loops using your domain values, and a special switch syntax to 

select block(s) of code to execute.

The Pascal WITH statement is an old but good example of associating some data with a chunk of 

code that uses that data. The syntax is WITH r DO statement. A WITH statement attaches some 

record, r, to a statement – usually, this is a compound statement – within which the record’s fields 

are in scope, and a field named x need not be prefixed by an accessor expression, such as r.x. This 

is a low-level building block that object orientation (and associated self or this references) is 

based on, but Pascal allows such object attachments for individual statements, a finer granularity 

than method calls. Pascal also allows multiple objects to be associated with the same block of 

code via nested WITH statements.

We can illustrate some of the considerations of interacting with control structures by considering 

the implementation of a for loop, which iterates over the characters in strings. Because Java is not 

perfect, you cannot write the syntax – that is, for(char c:s) statement – to execute statement 

once for each element of s, but you can write for(char c:s.toCharArray()) statement.

So, Java arrays interact nicely with the for control structure, but the Java String class is not as 

nice. There is an Iterable interface, but strings do not work with it without jumping through 

extra hoops. When you design your language, try to make common tasks straightforward. A sim-

ilar comment would apply to accessing String elements. Nobody wants to write s.charAt(i) 

when they could be writing s[i]; this is a good argument for operator support. An example of 

integrating a built-in function with a control structure by providing parameter defaults will 

be provided in the next section. But first, let’s look at how operators and built-in functions are 

implemented for Unicon.

Developing operators and functions for Unicon
Unicon is a very high-level language with many built-in features. For such languages, it will make 

sense to do some engineering work to simplify creating its runtime system. The purpose of this 

section is to share a bit about how this was done for Unicon, for comparison purposes. Unicon’s 

operators and built-in functions are implemented using RTL, which stands for Runtime Language. 
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RTL is a superset of C developed by Ken Walker to facilitate type inference in the Icon runtime 

system; Unicon inherits it from Icon. RTL writes out C code, so it is almost a very specialized form 

of C preprocessor that maintains a database in support of type inferencing.

Operators and functions in RTL look like C code, with many pieces of special syntax. There is syntax 

support for associating different pieces of C code, depending on the data type of the operands. 

To allow for type inferencing, the Unicon result type that’s produced by each chunk of C code 

is declared. The RTL language also has syntax support, which makes it easy to specify when an 

operand type conversion needs to take place. In addition, each chunk of C code is marked with 

syntax to specify whether to inline it in the generated code or execute the specified code via a 

C function call. First, we will describe how to write operators in RTL, along with their special 

considerations. After that, we will learn how to write Unicon built-in functions in RTL, which 

are coded much like operators.

Writing operators in Unicon
After various clever macro expansions and omitting #ifdefs, the addition operator in Unicon 

looks as follows. The following code shows three different forms of addition for C (long) integers, 

arbitrary precision integers, and floating-point. In the actual implementation, there is a fourth 

form of addition, for array-at-a-time data-parallel addition:

   operator{1} + add(x, y)

      declare { C_integer irslt; }

      arith_case (x, y) of {

         C_integer: { abstract { return integer }

            inline { … }

            }

         integer: { abstract { return integer }

            inline { … }

            }

         C_double: { abstract { return real }

            inline { … }

            }

         }

   end

In the preceding code, the special RTL case statement for arithmetic operators, called arith_case, 

is performed at compile time by the Unicon optimizing compiler, while in the bytecode interpreter, 

it is an actual switch statement that executes at runtime. 
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Hidden within arith_case, a set of language-wide standard automatic type conversion rules is 

applied; for example, strings are converted into their corresponding numbers if possible.

The case for regular C integer addition checks the validity of its result and triggers arbitrary pre-

cision addition, as per the middle case on integer overflow. The outline of this case body looks 

like this; some #ifdefs have been omitted for the sake of readability:

   irslt = add(x,y, &over_flow);

   if (over_flow) {

      MakeInt(x,&lx);

      MakeInt(y,&ly);

      if (bigadd(&lx, &ly, &result) == RunError)

          runerr(0);

      return result;

      }

   else return C_integer irslt;

The add() function is called to perform regular integer addition. If there is no overflow, the inte-

ger result that is returned by add() is valid and is returned. By default, RTL returns from Unicon 

operators and functions using a generic Unicon value that can hold any Unicon type. If a C prim-

itive type is returned instead, it must be specified. In the preceding code, return at the end is 

annotated in RTL to indicate that a C integer is being returned.

If the call to add() overflows, the C integers x and y are placed in Unicon descriptor structures 

using the macro MakeInt(), and then passed as parameters into the function bigadd(), which 

performs arbitrary precision addition and stores the answer in the descriptor result. Here is the 

Unicon runtime’s implementation of the add() function, which performs integer addition and 

checks for overflow. There is no more RTL extended syntax going on here, just references to mac-

ros for the 2^63-1 and -2^63 values. Someone was probably careful when they wrote this code:

word add(word a, word b, int *over_flowp)

{

   if ((a ^ b) >= 0 &&

       (a >= 0 ? b > MaxLong - a : b < MinLong - a)) {

      *over_flowp = 1;

      return 0;

      }

   else {
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     *over_flowp = 0;

     return a + b;

     }

}

This is pretty straightforward C code, except for (a^b), the exclusive OR operator, which is a way 

of asking if the values are both positive or both negative. In addition to computing the sum, this 

function writes a Boolean value to the address given in its third parameter to report whether an 

integer overflow has occurred.

Because it does not have to check for overflow, the floating-point real number addition branch 

of arith_case, denoted by C_double in RTL, is much simpler. Instead of calling a helper function, 

the real number addition is done inline using the regular C + operator:

return C_double (x + y);

We have omitted the corresponding implementation of the arbitrary precision addition function, 

bigadd(), which is called in this operator, which is many pages long. If you want to add arbitrary 

precision arithmetic to your language, you should read about the GNU Multiple Precision (GMP) 

library, which lives at https://gmplib.org/. Now, let’s consider a few of the issues that come 

up when writing built-in functions for Unicon.

Developing Unicon’s built-in functions
Unicon’s built-in functions are also written in RTL (and C) and, as in the case of operators, the code 

for each function can be designated to be inlined or placed in a function that may be called. Built-in 

functions are longer than operators, on average, but perhaps in most cases, the RTL function syntax 

exists as an advanced form of wrapper that enables a C function to be called from Unicon, with 

conversions between the type representations of Unicon values and C values as needed. Unlike 

operators, many functions have multiple parameters for which designated default values may be 

specified via special syntax. As an example, here is the code for Unicon’s string analysis function, 

any(), which succeeds if the character at the current position within a string is a member of a set 

of characters specified in its first parameter. The RTL reserved word, function, declares a Unicon 

built-in function instead of a regular C function. The {0,1} syntax indicates how many results 

this function can produce. In the case of any(), the function may produce either zero results (it 

fails) or one result; any() is fallible but it is not a generator. The if-then statement specifies that 

the first parameter must be convertible into a cset. If not, a runtime error occurs. 

https://gmplib.org/
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The body reserved word specifies that the generated code should call a function here, rather than 

inline the code. Since the code block is small, choosing body instead of inline is a debatable choice 

here. If the Testb() macro expands to be quite long, the decision to use body might be justified:

function{0,1} any(c,s,i,j)

   str_anal( s, i, j )

   if !cnv:tmp_cset(c) then

      runerr(104,c)

   body {

      if (cnv_i == cnv_j)

         fail;

      if (!Testb(StrLoc(s)[cnv_i-1], c))

         fail;

      return C_integer cnv_i+1;

      }

end

In addition to the bits of RTL syntax, macros play a huge role. str_anal is a macro that sets 

up a string for analysis, defaulting parameters 2–4 to the current string scanning environment. 

str_anal also ensures that s is a string and that i and j are integers, converting them into those 

types if necessary, and issuing a runtime error if an incompatible value is passed in. String scan-

ning environments are created by the string scanning control structure; the location under study 

within the string can be moved around by other string scanning functions. Adding domain-specific 

control structures such as string scanning will be presented in the next chapter. This example 

serves to motivate them. One reason to use new control structures is to make operators and built-

in functions more powerful and concise.

In this section, we presented a few highlights that show how Unicon’s operators and built-in 

functions are implemented. A lot of the issues in the runtime system of a very high-level language 

were found to revolve around the big semantic difference between the source language (Unicon) 

and the implementation language (in Unicon’s case, C). Depending on the level of the language 

you are creating and the language you write its implementation in, you may find it useful to 

resort to similar techniques.
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Summary
This chapter showed you how to write high-level operators and built-in functions for the runtime 

system of your language. One of the main points that you are to take away is that the implemen-

tation of operators and functions can range from completely different to almost entirely the same, 

depending on the language you are inventing.

The examples in this chapter taught you how to write code in your runtime system that will be 

called from generated code. You also learned how to decide when to make something a runtime 

function instead of just generating the code for it using instructions.

The next chapter will continue the topic of implementing built-in features by exploring domain 

control structures.

Questions
1.	 It is mathematically provable that every computation that you could implement as an 

operator or built-in function can be implemented instead as a library method, so why 

bother implementing high-level operators and built-in functions?

2.	 What factors must you consider if you are deciding between making a new operator or a 

new built-in function?

3.	 There were probably some good reasons why Java decided to give strings only partial 

operator and control structure support, despite strings being important and supported 

better in languages such as Icon and Unicon (and Python, which was influenced by Icon). 

Can you suggest some of the reasons for this?

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw
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The code generation that was presented in the previous chapters covered basic conditional and 

loop control structures, but domain-specific languages often have unique or customized seman-

tics that merit introducing novel control structures. Adding a new control structure is usually 

substantially more difficult than adding a new function or operator. However, when they are 

effective, the addition of domain control structures is a large part of what makes domain-specific 

languages worth developing instead of just writing class libraries. The examples in this chapter 

should support this assertion, but it is based on the Sapir-Whorf hypothesis, which claims that 

language influences and constrains what we are able to think. Programming languages that are 

Turing complete can compute anything, but that does not mean they are equally practical for all 

jobs. Adding domain control structures can make your language the most practical choice for 

some new application domains that are not well-served by existing languages.

This chapter covers the following main topics:

•	 Knowing when a new control structure is needed

•	 Processing text using string scanning

•	 Rendering graphics regions

The first section will help you learn how to determine when a domain control structure is needed. 

The second and third sections will present two example domain control structures.

This chapter will give you a better idea of when and how to implement new control structures as 

needed in your language design. More importantly, you will learn how to walk the thin line that 

balances the need to stick with generating familiar code for familiar structures and the need to 

reduce programmers’ effort in new application domains by introducing novel semantics.
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Java and its Jzero subset do not have comparable domain control structures, so the examples 

in this chapter come from Unicon and its predecessor, Icon. While this chapter outlines their 

implementation, at times using code examples, you are reading this chapter for the ideas rather 

than reading so you can type the code in and see it run. First, let’s re-examine when a new control 

structure is justified.

Knowing when a new control structure is needed
If you google the definition of a control structure, it will say something like “control structures 

determine the order in which one or more chunks of code execute.” This definition is fine for traditional 

mainstream languages. It focuses on control flow, and it addresses two kinds of control structures: 

choosing which (or whether) to execute and code (loops) that can repeat under some conditions. 

The if statements and while loops that we implemented for Jzero earlier in this book are good 

examples.

Higher-level languages tend to have a more nuanced view of control structures. For example, in 

a language with built-in backtracking, the order in which chunks of code may execute becomes 

more complicated. This book will paraphrase Ralph Griswold’s definition of a control structure 

in the Icon programming language: a control structure is an expression containing two or more 

subexpressions in which one subexpression is used to control the execution of another subex-

pression. That definition is more general and more powerful than the traditional mainstream 

definition provided in the previous paragraph. A control structure can be not just about the order 

in which chunks of code execute but also the context in which chunks of code execute.

The phrase “control the execution” in Griswold’s definition can be interpreted as broadly and as 

loosely as you want. Instead of just whether a chunk of code executes, or which chunk of code, 

or how many times, a control structure can determine how the code executes. This could mean 

introducing new scopes where names are interpreted differently, adding new operators, changing 

the behavior of existing operators, or a myriad of other possibilities.

A new control structure is needed when there are one or more major programming pain points. 

Often, pain points arise when people start writing software in support of a new class of computer 

hardware or for a new application domain. Often, the first support for new hardware or a new 

application domain comes in the form of a function or class library written for a mainstream lan-

guage. The pain might be because the library design is suboptimal, in which case, maybe it should 

just be fixed if that’s possible. Alternatively, the pain might be because the mainstream language 

is ill-suited to the task, or because the new hardware or application domain is inherently complex.
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Awareness or knowledge of an application domain’s pain points may or may not exist at language 

design time, but when writing for a new application domain in a language that predates that 

domain by decades, the language certainly couldn’t anticipate domain programmers’ needs. More 

often, the awareness of pain points is generated from early substantial experiences as developers 

attempt to write software for that domain.

Pain points are often due to complexity, frequent and pernicious bugs, code duplication, or several 

other famous bad smells or anti-patterns. Some code smells are described in Refactoring: Improving 

the Design of Existing Code, by Martin Fowler. Anti-patterns are described at antipatterns.com 

and in several books referenced on that site.

Individual programmers or programming projects may be able to reduce their code smells or avoid 

anti-patterns by performing code refactoring, but when the use of application domain libraries 

entails that most or all applications in that domain face such problems, an opportunity for one 

or more domain control structures becomes conspicuous. We will see interesting examples of 

control structures affecting how code executes later in this chapter. Let’s start with a simple one.

Many general-purpose libraries have an API with the same parameters repeated across tens or 

even hundreds of related functions. Applications that use these APIs may feature many calls where 

the same sequence of parameters is provided to the library over and over. The classic Microsoft 

Windows Graphics API is a good example of this. Things such as windows, device contexts, colors, 

line styles, and brush patterns are provided repeatedly to many drawing calls. You can write any 

code you want, but when you call GetDC() to acquire a device context, there had better be exactly 

one corresponding call to ReleaseDC(). A lot of the code in between those two points will pass 

that device context as a parameter over and over.

For the sake of reducing the network traffic involved, Win32’s open-source counterpart known as 

Xlib, the C library for writing applications under the X Window System, placed several common 

graphic drawing elements into a graphics context object that reduces the number of redundant 

parameters that need to be passed in each graphics call. Even with this clever feature, the Xlib 

API remains quite complex and contains a lot of parameter redundancy.

The designers of libraries are, in some cases, brilliant, but their APIs still might be relatively hostile 

to ordinary developers, with steep learning curves. Before the advent of graphical user interface 

builders that generated this code for us, creating graphical user interfaces disproportionately 

slowed down development and increased the cost of developing many graphic applications, and 

it lured many coders into poor practices such as block copying and modifying vast swaths of user 

interface code.

antipatterns.com


Domain Control Structures420

For a language where a new control structure is not an option, the problem of excessive redundant 

parameters may be unavoidable. If you build a language, a control structure is a real option for 

addressing this issue.

Pain points become a target for a new control structure when they can be solved within the domain 

that you are supporting. In that case, the new control structures can be seen as a by-product of 

traditional languages’ lack of support for that domain. If your application domain has a corpus 

of existing libraries and applications written in a mainstream language, you can study that code 

to look for its pain points and craft control structures that ameliorate them in your programming 

language. If your application domain is quite new and no mainstream language APIs and appli-

cation base are available, you might resort to guessing or writing example programs in your new 

language to look for pain points. Let’s look at a novel control structure where these principles 

were applied successfully: string scanning in the Icon and Unicon languages.

Scanning strings in Icon and Unicon
Unicon inherits this domain control structure from its immediate predecessor, Icon. In Icon and 

Unicon, a control structure called string scanning is invoked by the s ? expr syntax. Within 

expr, the string s is the scanning subject and it is referenced by a global keyword called &subject. 

Within the subject string, a current analysis position, which is stored in the &pos keyword, denotes 

the index location in the subject string where that string is being scanned. The position starts at 

the beginning of the string and can be moved back and forth, typically working its way toward 

the end of the string. For example, in the following program, s contains "For example, suppose 

string s contains":

procedure main()

   s := "For example, suppose string s contains"

   s ? {

      tab(find("suppose"))

      write("after tab()")

   }

end

Now, let’s say we were adding the above-mentioned scanning control structure:

s ? { … }
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The &subject and &pos keywords would initially be in the following state:

Figure 16.1: Subject and position at the start of a scan

The tab() function moves scanning forward by setting the string’s scanning position to 14, the 

result produced by the find() function. The subsequent analysis would commence from the 

word suppose, as shown in the following screenshot:

Figure 16.2: Subject and position after advancing to the start of the string “suppose”

This mechanism is very general and allows for a variety of pattern-matching algorithms. Now, 

it is time to dive into the details of how this control structure is utilized through its operations.

Scanning environments and their primitive operations
A (subject, position) pair is called a scanning environment. Within the string scanning control 

structure, there’s one operator, two built-in position-moving functions, and six built-in functions 

that analyze the subject string. The six built-in string analysis functions are summarized in the 

following table. They are described in more detail in Appendix, Unicon Essentials:

Figure 16.3: Built-in analysis functions of the string scanning control structure
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The two built-in functions that move the position are named move() and tab(). The move(n) 

function slides the position index over by n letters relative to the current position, where positive 

n moves from left to right and negative n moves backward from right to left. The tab(n) function 

is an absolute move, setting the position to an index, n, within the subject. The position-moving 

built-in functions are commonly used in combination with the string analysis functions. For 

example, find("suppose") returns the index at which the "suppose" string may be found, and 

tab(find("suppose")) sets the position to that location. In the example shown in Figure 16.1, 

executing tab(find("suppose")) would be one of many ways that the scanning environment 

might be set to the state shown in Figure 16.2. Another way to get there would be to execute the 

following code:

tab(upto(',')) & move(1) & tab(match(" "))

It is typical to combine the string analysis primitives in such a fashion to form larger and more 

complex patterns. The language’s built-in backtracking process, called goal-directed evaluation, 

means that earlier partial matches will undo themselves if a latter part of a pattern match fails, 

leaving the position unchanged.

The tab(match(s)) combination is deemed so useful that a unary prefix operator, =, is defined for 

it. This is not to be confused with the binary = operator, which performs a numeric comparison. In 

any case, the =s expression is equivalent to tab(match(s)). This set of primitives was invented for 

Icon and preserved in Unicon. Unicon adds a complementary mechanism here (a SNOBOL-style 

pattern type, featuring regular expressions as its literals). You may be wondering whether addi-

tional operators for other common combinations of string analysis and position-moving functions 

would add expressive power to string scanning.

Icon and Unicon’s string scanning control structure contrasts strongly with the monolithic pat-

tern-matching operations found in other string processing languages. String scanning is a more 

general mechanism than regular expressions, in which ordinary code can be mixed into the middle 

of the pattern match. The following string scanning example extracts proper nouns from the S 

string and stores them in a list, L:

S ? { L := []

   while tab(upto(&ucase)) do

      put(L, tab(many(&letters)))

}

The preceding while loop discards characters until an uppercase letter is found. It treats each 

such uppercase letter as the start of a proper name and places the name in a list. 
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This is not as concise as I might hope for, but it’s extremely general and flexible. Let’s look at 

how this control structure reduces the excess redundant parameters for string analysis functions.

Eliminating excessive parameters via a control structure
String scanning provides a standard set of default parameter values for the string analysis func-

tions that are built into the language. These functions all end with three parameters: the subject 

string, the start position, and the end position. These parameters default to the current scanning 

environment, which consists of the subject string, &subject, the current position, &pos, and 

the end of the subject string. As a trivial example, the call find("suppose") searches for the 

string "suppose", but within what string? Starting from where? And searching until when? Out-

side a string scanning environment, the call requires up to four parameters and might look like 

find("suppose", subject, startpos, endpos). By itself, the control structure enables calls to 

find() to be shorter and more readable. Within a larger string analysis task, these extra parame-

ters recur over and over in many string analysis functions. The string scanning control structure 

addresses one of the pain points in string analysis. However, parameter simplification is not the 

entirety of the impact and purpose of string scanning.

The current string scanning environment is visible within called functions and has a dynamic 

scope. It is common, and simple, to write helper functions that perform a part of a string analysis 

task, without having to pass the scanning environment around as parameters.

Scanning environments may be nested. As part of a scanning expression or helper function, when 

a substring requires further analysis, this can be performed by introducing another string scanning 

expression. When a new scanning environment is entered, the enclosing scanning environment 

must be saved and restored when the nested sub-environment is exited. This nesting behavior is 

preserved in Icon and Unicon’s novel goal-directed expression semantics, in which expressions 

can be suspended and later resumed implicitly. The scanning environment is saved and restored 

on the stack. These operations are finer-grained but also depend on the procedure activity on the 

stack, such as procedure calls, suspends, resumes, returns, and failures.

For those who want more details, string scanning has been described extensively in other venues, 

such as Griswold and Griswold’s The Icon Programming Language, 3rd edition. The implementa-

tion is described in Section 9.6 of The Implementation of Icon and Unicon. In addition to saving and 

restoring scanning environments on the stack, two bytecode machine instructions are used to 

simplify code generation for this control structure. When you add a control structure, it is fair 

game to add intermediate and/or bytecode instructions to support it. Now, let’s look at a second 

and completely unrelated domain control structure that we introduced into Unicon as part of its 

3D graphics facilities: rendering regions.
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Rendering regions in Unicon
This section describes a control structure called rendering regions, which was added to Unicon 

while writing this book. Since this feature is new, we will look at it in some detail. The rendering 

region control structure has been on Unicon’s to-do list for a long time but adding a control 

structure can be a bit difficult, especially if the semantics are non-trivial, so it took writing this 

chapter to get around to it. First, though, we need to set the scene.

Rendering 3D graphics from a display list
Unicon’s 3D graphics facilities specify what is to be drawn via a series of calls to a set of built-in 

functions, and an underlying runtime system renders code written in C and OpenGL that draws the 

scene as many times per second as possible. The Unicon functions and C render code communicate 

using a display list. Mainly, the Unicon functions place primitives on the end of the display list, 

and the rendering code traverses the display list and draws these primitives as quickly as possible.

In OpenGL’s C API, there is a similar-sounding display list mechanism that serves to pre-package 

and accelerate sets of primitives by placing them on the GPU in advance, reducing the CPU-GPU 

bottleneck. However, Unicon is a dynamic language that prioritizes flexibility over performance. 

To manipulate the display list at the Unicon application code level, the Unicon display list is a 

regular Unicon list managed by the CPU, rather than a C OpenGL display list managed on the GPU.

Even managed on the CPU, the Unicon display list is a great improvement over just executing all 

the Unicon code to render a scene in each frame. This is because traversing the display list and 

drawing all the primitives from it can be performed entirely by C code in the Unicon runtime 

system and can be heavily optimized. In contrast, executing the Unicon code to render a scene 

incurs the overhead of the bytecode virtual machine interpretation… repeatedly, at whatever 

frame rate the code can run – hopefully, 60 frames per second or faster.

When Unicon’s 3D facilities were first created, every graphic primitive in the display list was 

rendered every frame. This worked well for small scenes. For scenes with many primitives, it 

becomes impractical to reconstruct the display list from scratch on each frame. New capabilities 

were needed to enable applications to make rapid changes and be selective about which prim-

itives on the display list will be rendered. Those capabilities’ final form was non-obvious when 

we started. Now, let’s look at how rendering regions started as a function API.
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Specifying rendering regions using built-in functions
Selective rendering was introduced in Unicon initially using a function named WSection(). The 

W character in this function name stands for window and is a common prefix for many of Unicon’s 

built-in functions about graphics and window systems, so this is the (window) section function. 

A call to WSection() with a string parameter s defines the beginning of a section named s, and 

a second call to WSection() with no parameter marks the end of the most recent open section, 

defining the bounds of a rendering region. Rendering regions make it easy to turn on or off whole 

collections of 3D primitives on the display list between each frame, without having to reconstruct 

the display list or insert or delete elements. It is common to nest rendering regions inside each 

other, for example, to introduce additional levels of detail that can be enabled as an object and 

viewer draw nearer to each other.

The call to WSection(s) that begins a new rendering region introduces a display list record with 

a skip field that can be turned on and off; the second call to WSection() is an end marker that 

helps determine how many display list primitives are to be skipped. The following example draws 

a yellow torus above a character’s head:

  questR := WSection("Joe's halo")

      Fg("diffuse translucent yellow")

      PushMatrix()

      npchaloT := Translate(0, h.headx+h.headr*3, 0)

      ROThalo := Rotate(0.0, 0, 1.0, 0)

      DrawTorus(0, 0, 0, 0.1, h.headr*0.3)

      PopMatrix()

  WSection()

You can’t run this example as a standalone since it has been taken from the middle of a 3D appli-

cation that is busy rendering a 3D scene. The missing context includes an open 3D window that 

these functions all operate on, and a current object within which the h class variable denotes the 

character’s head. But hopefully, this example illustrates how WSection() calls are used in pairs 

that define the beginning and end of a set of 3D operations.

Most Unicon 3D functions return the display list entry that they have added as their return value. 

The return value of WSection() is a record on the display list that affects display list behavior for 

however many primitives comprise that section.
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In the preceding code example, once drawn, the halo remains present on the display list until it 

is explicitly removed or the screen is cleared. The halo can be made visible or invisible by clearing 

or setting the skip flag; assigning questR.skip := 1 causes the halo to disappear. Effectively, a 

rendering region introduces a conditional branch to the display list data structure.

Rendering regions also support 3D object selection. The parameter of a starting WSection() 

specifies a string value that is returned when the user touches or mouse clicks on one of the 3D 

primitives within that section.

Varying levels of detail using nested rendering regions
Rendering regions support nesting. In 3D scenes, complex objects may be rendered by traversing 

a hierarchical data structure where the largest or most important graphical elements are at the 

root. Nested rendering regions support levels of detail, where secondary and tertiary graphic 

details can be rendered within subsections and turned on and off, depending on how near or 

far the object is from the camera. Levels of detail can be important for performance, allowing 

details to be proportional to the approximate distance between the viewer and the objects being 

observed. There are fancy data structures that can be used to implement this level of detail, but 

rendering regions work well for it.

The code for rendering a chair, for example, might be organized into three levels of detail using 

three nested sections. The Chair class’s lod1, lod2, and lod3 variables would be associated with 

the three nested sections within the code to fully render the chair:

method full_render()

   lod1 := WSection("chair level 1")

      ... render the big chair primitives

      lod2 := WSection("chair level 2")

         ... render smaller chair primitives

         lod3 := WSection("chair level 3")

            ... render tiny details in the chair

         WSection()

      WSection()

   WSection()

end

After the initial full_render() enters the primitives into the display list, each time the chair render 

level changes, the render() method in the Chair class updates how much should be rendered 

and how much should be skipped by setting the skip flags. 
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The following code can be read as follows: if the chair hasn’t been rendered yet, perform a 

full_render(). If it has been rendered, set some skip flags to indicate how much detail to render 

based on the render_level parameter, ranging from 0 (invisible) to 3 (full detail):

method render(render_level)

   if /rendered then return full_render()

   case render_level of {

      0: lod1.skip := 1

      1: { lod1.skip := 0; lod2.skip := 1 }

      2: { lod1.skip := lod2.skip := 0; lod3.skip := 1 }

      3: { lod1.skip := lod2.skip := lod3.skip := 0 }

      }

end

This mechanism works marvelously, but some painful bug hunts identified a problem. As con-

ceived, the section mechanism was fragile and error-prone. Whenever a WSection() is accidentally 

placed in the wrong spot or not nested properly, the program misbehaves or visual aberrations 

ensue. Introducing a control structure simplifies the use of rendering regions and reduces the 

frequency of errors related to the section boundary markers in the display list.

Creating a rendering region control structure
This subsection will describe an implementation of a rendering region control structure in Unicon, 

to show some of the work involved in introducing novel control structures to support application 

domains. The general syntax introduced is:

wsection expr1 do expr2

The idea of this control structure is to place a rendering region around expr2 in such a way that 

the end of the section cannot be accidentally moved around or misplaced. For example, the earlier 

“Joe’s Halo” example would now look like the following:

questR := wsection "Joe's halo" do {

      Fg("diffuse translucent yellow")

      PushMatrix()

      npchaloT := Translate(0, h.headx+h.headr*3, 0)

      ROThalo := Rotate(0.0, 0, 1.0, 0)

      DrawTorus(0, 0, 0, 0.1, h.headr*0.3)

      PopMatrix()

      }
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This book does not describe the full details of the Unicon implementation of rendering regions; 

instead, it presents the minimum of what is involved while keeping things readable. For further 

details on the Unicon implementation, you can consult The Implementation of Icon and Unicon. 

The source files in the implementation that are being modified here live in the uni/unicon sub-

directory within the Unicon language distribution.

To add a control structure, you must define its requirements, syntax, and semantics. Then, you will 

have to add any new elements to the lexical analyzer, grammar, trees, and symbol tables. Com-

pile-time semantic checks may be required. The main work of implementing a control structure 

will then proceed, which consists of adding rules to the code generator to handle whatever new 

shapes appear in the syntax tree for your control structure.

Adding a reserved word for rendering regions
Before you can add a new control structure to your grammar, new lexical elements (in this case, 

a new reserved word, wsection) must be added to Unicon’s lexical analyzer. You learned how to 

add reserved words to Jzero in Chapter 3, Scanning Source Code. Adding one to Unicon is similar, 

in that the lexical analyzer and parser will both have to agree on a new integer code for the new 

reserved word, which is defined by the parser.

Unicon was developed before the uflex tool was created, which was presented in Chapter 3, Scan-

ning Source Code. In the future, Unicon may be modified to use uflex, but this section describes 

how to add a reserved word to Unicon’s current, hand-written lexical analyzer, which is called 

unilex.icn in the Unicon source code. Reserved words are stored in a table that contains, for each 

reserved word, two integers. One integer contains a pair of Boolean flags for semi-colon insertion 

rules, stating whether the reserved word is legal at the beginning (a Beginner) and/or the end (an 

Ender) of an expression. The other integer contains the integer terminal symbol category. The new 

reserved word, wsection, will be a Beginner of expressions, so semi-colons may be inserted on 

new lines that immediately precede it. The table entry for wsection in unilex.icn looks like this:

   t["wsection"] := [Beginner, WSECTION]

The reason this lexical analyzer addition is so small is that the pattern and code that are needed 

to recognize wsection are the same as for other reserved words and identifiers. For this lexical 

analyzer code to work, WSECTION must have been declared in the grammar, as described in the 

following section, and the ytab_h.icn file containing #define rules for the terminal symbols 

must be regenerated using the -d option to iyacc.

Now, it is time to use this new reserved word in a grammar rule.
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Adding a grammar rule
The addition of the wsection control structure is intended to feel consistent with the rest of the 

Icon and Unicon syntax. The do reserved word almost makes it sound too much like a loop; a 

precedent is the Pascal language’s with statement, which uses do and is not a loop. The addition 

of this grammar rule in unigram.y consists of two bits. In the terminal symbol declarations, the 

following is added:

%token WSECTION    /* wsection  */

In the main grammar section, the grammar rules to add this control structure to unigram.y are 

as follows:

expr11 : wsection ;

wsection : WSECTION expr DO expr {

         $$ := node("wsection", $2, $4)

    };

Many, or most, control structures will have semantic requirements, such as the fact that the first 

expression in the preceding rule – the section identifier – must be a string. Since Unicon is a dy-

namically typed language, the only way that we could enforce such a rule at compile time would 

be if we restricted section identifiers to string literals. We elect not to do that and instead enforce 

the string requirement for the first expression in the generated code, but if your language is typed 

at compile time, you would add that check to the appropriate point in your tree traversals where 

other type checks are performed. Now, let’s consider the other semantic checks that are needed.

Checking wsection for semantic errors
The purpose of the wsection control structure is to make rendering regions less prone to errors. In 

addition to the wsection construct, which makes it impossible to omit a closing call to WSection() 

or accidentally write two rendering regions that overlap, under what other circumstances might 

rendering regions get messed up? Statements that transfer the control flow out of the rendering 

region in an unstructured way are problematic. In Unicon, these include return, fail, suspend, 

break, and next. However, if the rendering region has loops inside it, a break or next expression 

inside of such a loop is perfectly reasonable.

So, the Unicon compiler’s task is to decide what to do in the event of an abnormal control flow 

departure from within a rendering region. For the string scanning control structure, the correct 

thing to do was implement saving and restoring scanning environments on the stack, but ren-

dering regions are different.
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A rendering region is used at display list construction time to ensure that the display list entries 

are well-formed. The display list is then used later – repeatedly – in the runtime system whenever 

the screen is to be redrawn. The original control flow that was used when the display list was con-

structed has nothing to do with it. For this reason, in a wsection, attempting to exit prematurely 

without reaching the end of the render region results in an error. If a programmer wants to code a 

render region in an unstructured manner, they can call WSection() explicitly in pairs at their peril.

Enforcing these semantic rules requires some logic to be in a (sub)tree traversal whenever a 

wsection is encountered in the syntax tree. Tree traversals will look a bit different in the Unicon 

translator than they do in Jzero, but overall, they resemble the Unicon implementation of Jzero. 

If you were adding a comparable control structure to Jzero, the best place to introduce this check 

is in the j0 class’s semantic() method, right after the root.check_types() method call, which 

performs type checking. The new check at the end of the semantic() method would look like this:

   root.check_wsections();

The following check_wsections() method has been added to Unicon’s tree.icn:

method check_wsections()

    if label == "wsection" then check_wsection()

    else every n := !children do

            n.check_wsections()

end

The helper method called to check that each wsection construct is called check_wsection(). It 

is a subtree traversal that looks for tree nodes that could exit a wsection abnormally and reports 

a semantic error if the code attempts this. However, it would be possible to generate code that 

performs these checks at runtime, providing lazy enforcement. The check_wsection() method 

takes an optional parameter, which tracks nested loops contained within the wsection construct 

so that any break or next expressions nested within a wsection are allowed, so long as they do 

not break out of wsection:

method check_wsection(loops:0)

      case label of {

         "return"| "Suspend0"| "Suspend1":

            yyerror(label || " inside wsection")

         "While0"|"While1"|"until"|"until1"|

         "every"|"every1"|"repeat":

            loops +:= 1
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         "Next"|"Break":

            if loops = 0 then

               yyerror(label || " inside wsection")

            else loops -:= 1

         "wsection": loops := 0

         }

      every n := !children do {

         if type(n) == "treenode" then

            n.check_wsection(loops)

         else if type(n) == "token" then {

            if n.tok = FAIL then

               yyerror("fail inside wsection")

         }

      }

end

The preceding code performs semantic checks so that the wsection control structure can enforce 

its requirement that every opening WSection(id) has a closing WSection(). Now, let’s look at 

generating the code for wsection.

Generating code for a wsection control structure
Code generation for the wsection control structure can be modeled using the equivalent calls to 

the WSection() function. 

To understand the code generation for wsection, we need a semantic rule for the wsection syn-

tax that solves the problem in the general case. The following table shows such a semantic rule. 

Instead of intermediate code generation instructions, the code is expressed as a source-to-source 

transformation. A wsection control structure is implemented with some semi-fancy Icon code 

that executes a matching pair of WSection() calls, producing the result of the opening call to 

WSection() as the result of the entire expression. Because of this, the display list record can be 

assigned to a variable by a surrounding expression if desired:

Figure 16.4: Semantic rule for generating code for the wsection control structure
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The Icon code in the preceding semantic rule requires some explanation. The expression

   {expr2; WSection(); 1}

executes expr2, followed by a closing WSection(). The 1 character after the second semi-colon 

ensures that the whole expression succeeds when evaluated by the surrounding expression; it 

precludes backtracking. The surrounding expression

   1(WSection(…), {…})

evaluates the opening WSection(…) first and then executes the body, but produces the return value 

of the opening WSection() as the result of the entire expression. In full disclosure, this semantic 

rule is incomplete in that further semantic restrictions must be enforced in order to guarantee that 

matching calls to WSection() occur. For example, expr2 had better not return or suspend out of 

the function in which this control structure executes, or the required matching-pairs semantics 

of WSection() will not be enforced. Adding these semantic checks, similar to those shown earlier 

for precluding break or next in a wsection body, are left as an exercise for you.

To implement the semantic rule shown in the preceding table and make the actual output of the 

code happen, the Unicon code yyprint() generator procedure must be modified. yyprint(n) 

generates code for syntax tree node n as string output to a file named yyout. It has a lot of differ-

ent code branches – pretty much one for each kind of tree node – and these branches call many 

helper functions as needed. For a wsection, the yyprint() function should utilize the following 

code, which can be added to the treenode case clause:

else if node.label == "wsection" then {

   writes(yyout, "1(WSection("))

   yyprint(node.children[1])

   writes(yyout,"),{")

   yyprint(node.children[2])

   write(yyout, ";WSection();1})")

   fail

}

The reason this works, where the domain control structure is simply being written out as an 

artful arrangement of some underlying function calls, is because the main Unicon compiler is 

a semi-transpiler that writes out an intermediate form that looks almost like source code. Spe-

cifically, Unicon’s intermediate form is almost Icon source code. A great many languages can be 

invented very quickly if the underlying representation is another very high-level language such 

as Icon or Python.
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All this extending of the Unicon language has probably made you excited to try adding your 

domain control structures. Hopefully, as we head into the summary, you have an idea of how to 

go about doing that.

Summary
This chapter explored the topic of domain control structures. Domain control structures go way 

beyond libraries, or even built-in functions and operators, in terms of supporting programmers’ 

abilities to solve problems in new application domains. Most of the time, domain control struc-

tures simplify code and reduce the occurrence of bugs in programming that would be prevalent 

when programmers develop their code using generic mainstream language features.

The next chapter will present the challenging topic of garbage collection. Garbage collection is a 

major language feature that often distinguishes low-level system programming languages from 

higher-level application languages and domain-specific languages.

Questions
Answer the following questions to test your knowledge of this chapter:

1.	 Control structures are just if statements and loops. What’s the big deal?

2.	 All application domain-specific control structures let you do is provide some default values 

for some standard library functions. Why bother using them?

3.	 What additional primitives or semantics would make the string scanning control structure 

more useful to application domain programmers?

4.	 Would it be a good idea for the wsection control structure to generate code, including 

a PushMatrix() and a PopMatrix() that surround its code body? This would make the 

example shorter and higher-level.
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17
Garbage Collection

Memory management is one of the most important aspects of modern programming. Almost 

any language that you invent should provide automatic heap memory management via garbage 

collection. Garbage collection refers to any mechanism by which heap memory is automatically 

freed and made available for reuse when it is no longer needed for a given purpose. The heap, as 

you may already know, is the region in memory from which objects are allocated by some explicit 

means such as the reserved word new (in Java). In lower-level languages, such objects live until 

the program explicitly frees them, but in many modern languages, heap objects are retained in 

memory as long as they are needed. After a heap object is of no further use in the program, its 

memory is made available to the program for other purposes by a garbage collection algorithm 

that runs behind the scenes in the programming language runtime system.

This chapter presents a couple of methods with which you can implement garbage collection in 

your language. The first method, called reference counting, is not very difficult to implement 

and has the advantage of freeing memory incrementally as soon as the program is no longer 

using it. However, reference counting has a fatal flaw, which we will discuss in the section titled 

The drawbacks and limitations of reference counting. The second method, called mark-and-sweep 

collection, is a more robust mechanism, but it is much more challenging to implement. It has 

the downside that execution pauses periodically for however long the garbage collection process 

takes. These are just two of many possible approaches to memory management; for a more ad-

vanced and in-depth treatment of the subject, you may want to check out The Garbage Collection 

Handbook, by Jones, Hosking, and Moss, from CRC Press. There is no silver bullet. Implementing 

a garbage collector with neither a fatal flaw nor periodic pauses to collect free memory is liable 

to have other costs associated with it.
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This chapter covers the following main topics:

•	 Grasping the importance of garbage collection

•	 Counting references to objects

•	 Marking live data and sweeping the rest

The goal of this chapter is to explain why garbage collection is important and show you how you 

can do it. The skills you’ll learn include the following: making objects track how many references 

are pointing to them; identifying all the pointers to live data, including pointers located within 

other objects; and freeing memory and making it available for reuse. Let’s start with a discussion 

of why you should bother with all this anyway.

Grasping the importance of garbage collection
In the beginning, programs were small, and the static allocation of memory was decided when 

a program was designed. The code was not that complicated, and programmers could lay out all 

the memory that they were going to use during the entire program as a set of global variables. Life 

was good. A lot of programmers would prefer to just stick with static allocation, and in certain 

niche application domains, that remains feasible.

For the rest of us, Moore’s Law happened, and computers got bigger. Data got bigger. Customers 

started demanding that programs handle arbitrary-sized data instead of accepting the fixed upper 

limits inherent in static allocation. Programmers invented structured programming and used 

function calls to organize larger programs in which most memory allocation was on the stack.

A stack provides a form of dynamic memory allocation. Stacks are great because you can allocate 

a big chunk of memory when a function is called and deallocate memory automatically when 

a function returns. The lifetime of a local memory object is tied directly to the lifetime of the 

function call within which it exists.

Eventually, things got complicated enough that folks noticed that software was not keeping up 

with hardware advances and was becoming the bottleneck in development. We had a software 

crisis and attempted to wish software engineering into existence to try and address this crisis. 

There were occasional bugs where pointers to memory that had been freed on the stack were left 

hanging around, but those were rare and usually just a sign of novice programmers at work. Life 

was still relatively good, unless your software was complex, and lives depended on it. But then, 

Moore’s Law happened some more.
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Now, even programs running on our wristwatches are too large to understand, and we have a 

software environment where, at runtime, a program may have billions and billions of objects. 

Customers expect to be able to create as many objects as they want, and they expect such objects 

to live for as long as they are needed. The pre-eminent form of allocated memory is dynamic 

memory, and in most applications, most of the memory is allocated from the memory region 

called the heap. The correct and efficient use of the heap region is a primary concern in modern 

programming language design and implementation.

In the software engineering literature, it has long been common to see claims that 50% to 75% (or 

more) of total software development time is spent debugging. This translates into a lot of time 

and money. In my personal experience over several decades of helping student programmers, in 

languages where programmers manage their own memory, 75% or more of debugging time is 

spent on memory management errors.

This is especially true for novices and non-expert programmers, but memory problems happen to 

beginners and experts alike. C and C++, I am looking at you. Improved tools for memory debugging 

exist now that did not in the previous century, but memory management is still a central issue.

Now, pretend the concern is not just about how much time or money will be sunk into memory 

management. As program size and complexity increases, the probability of developers correctly 

manually managing a software project’s memory decreases, resulting in a high probability that 

the project will fail outright during development or fail critically after deployment.

“What kinds of memory management errors?” you ask. You can start with these: not allocating 

enough memory; attempting to use memory beyond the amount you allocated; forgetting to al-

locate memory; not understanding when you need to allocate memory; forgetting to deallocate 

memory so that it can be reused; deallocating already-deallocated memory; and attempting to 

use memory for a given purpose after it has been deallocated or repurposed. These are just a few 

examples.

When programs are only a modest size and the computers involved are terribly expensive, it 

makes sense to maximize efficiency by throwing programmer time at manual memory manage-

ment as much as necessary. But as programs grow ever longer and computers become cheaper 

with larger memory sizes, the practicality of managing memory by hand decreases. Automatic 

memory management is inevitable. Doing it all on the stack went by the wayside long ago, when 

structured programming gave way to the object-oriented paradigm.
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Now, for many or most programs, most of the interesting memory is allocated out of the heap, 

where objects live an arbitrary length of time until they are explicitly freed, or unused memory 

is automatically reclaimed. This is why garbage collectors are of paramount importance and 

deserve your attention as a language implementer.

Having said all this, implementing garbage collection can be difficult, and making it perform 

well is even more difficult. Garbage collection does not magically solve all memory management 

problems. Since implementing garbage collection is difficult, if you are overwhelmed, you might 

get away with putting this off until the success of your language demands it. Sun’s original Java 

implementation got away with a missing garbage collector for years. But, if you are serious about 

your language, you will eventually want a working garbage collector for it. Let’s start with the 

simplest approach, which is called reference counting.

Counting references to objects
In reference counting, each object keeps a count of how many pointers refer to it. This number 

starts out as 1 when an object is first allocated and a reference to it is provided to a surrounding 

expression. The reference count is incremented when the reference is stored in a variable, including 

when it is passed as a parameter or stored in a data structure. The count is decremented whenever 

a reference is overwritten by assigning a variable to refer elsewhere, or when a reference no longer 

exists (such as when a local variable ceases to exist because a function returns). If the reference 

count reaches 0, the memory for that object is garbage because nothing points to it. At that point, 

the memory can be reused for another purpose. This all seems reasonable; look at what it would 

take to add reference counting to our example language in this book, Jzero.

Adding reference counting to Jzero
Jzero allocates two kinds of things from the heap that could be garbage collected: strings and 

arrays. For such heap-allocated memory entities, Jzero’s in-memory representation includes the 

object’s size in a word at the beginning. Under reference counting, a second word at the begin-

ning can hold the number of references that point to that object. The representation for a string 

is shown in Figure 17.1:

Figure 17.1: An in-memory representation of a string
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In the example given, if len and refcount are 8 bytes each and there are 39 bytes of string data, 

refcount added 8 to a total size of 55 bytes (perhaps rounded to 56), so the addition of refcount 

is only a 14% overhead. But if the average string length were 3 bytes and you had billions of little 

strings to manage, adding a reference count represents a significant overhead that might limit 

the scalability of your language on big data. Given this representation, reference counting comes 

into play when objects get created in the first place, so let’s look at example operations whose 

generated code involves heap allocation.

Reducing the number of heap allocations for strings
When an object such as String is created, memory must be allocated for it. In Java (and Jzero), all 

objects are allocated memory out of the heap. For strings, this results in an interesting situation 

in which the Java source code string constants are generally resolved at compile time to statically 

allocated addresses, but Java String heap objects are always allocated at runtime. Suppose the 

code is as follows:

String s = "hello";

On one hand, the memory contents of the hello string can be allocated in the static memory region. 

On the other hand, the Jzero String object that we assign to String s should be a class instance 

allocated from the heap that contains the length and reference count along with the reference to 

the character data. If we are naïve, the code we generate in this case might resemble the following:

String s = new String("hello");

If this code executes a billion times, we don’t want to allocate a billion instances of the String, we 

only want one. In Java, the runtime system uses a string pool for string constants, so that it only 

needs to allocate one instance. Although our implementation uses them internally, Jzero does 

not provide programmers with user-level access to the full Java String or Stringpool classes, 

but we will put a static method named pool() in the Jzero String class that returns a reference 

to a String, allocating the instance if it is not already in the string pool. Given this method, the 

generated code can look more like the following:

String s = String.pool("hello");

This avoidance of allocating redundant String objects is facilitated by the fact that String objects 

are immutable. There are many ways that one might generate this code. I guess the easiest way 

that comes to mind is to distinguish the type of a STRINGLIT node from the type String, and add 

a type promotion rule that says STRINGLIT can be turned to String, inserting a tree node at each 

of these type promotion sites. 
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During a tree traversal, replace these type promotion nodes with the subtree that invokes the 

pool() method. Wherever a STRINGLIT node is being turned into a String, replace that subtree 

with the constructed set of nodes shown in Figure 17.2:

Figure 17.2: Substituting a STRINGLIT leaf for a call to the pool method

The code for a poolStrings() method that traverses the syntax tree and performs this substitu-

tion is shown below. The Unicon implementation in tree.icn is as follows:

method poolStrings()

   every i := 1 to *\kids do

      if type(\(\kids[i])) == "tree__state" then {

         if kids[i].nkids>0 then kids[i].poolStrings()

         else kids[i] := kids[i].internalize()

      }

end

This method walks through the tree, calling an internalize() method to replace all leaves. The 

Java implementation of poolStrings() in tree.java is shown here:

public void poolStrings() {

   if (kids != null)

   for (int i = 0; i < kids.length; i++)

      if ((kids[i] != null) && kids[i] instanceof "tree") {
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         if (kids[i].nkids>0) kids[i].poolStrings();

         else kids[i] = kids[i].internalize();

      }

}

The tree method named internalize() in this traversal constructs and returns a subtree that 

invokes the String.pool() method if it is invoked on STRINGLIT. Otherwise, it just returns the 

node. In Unicon, the code looks as follows:

method internalize()

  if not (sym === "STRINGLIT") return self

  t4 := tree("token",parser.IDENTIFIER,

    token(parser.IDENTIFIER,"pool", tok.lineno, tok.colno))

  t3 := tree("token",parser.IDENTIFIER,

    token(parser.IDENTIFIER,"String", tok.lineno, tok.colno))

  t2 := j0.node("QualifiedName", 1040, t3, t4)

  t1 := j0.node("MethodCall",1290,t2,self)

  return t1

end

The corresponding code in Java looks like this:

public tree internalize() {

  if (!sym.equals("STRINGLIT")) return this;

  t4 = tree("token",parser.IDENTIFIER,

    token(parser.IDENTIFIER,"pool", tok.lineno, tok.colno));

  t3 = tree("token",parser.IDENTIFIER,

    token(parser.IDENTIFIER,"String", tok.lineno, tok.colno));

  t2 = j0.node("QualifiedName", 1040, t3, t4);

  t1 = j0.node("MethodCall",1290,t2,this);

  return t1;

}

This code in the compiler depends upon a runtime system function that implements the String.

pool() method, using a hash table to avoid duplicates. Now, let’s look at the code generation 

changes that are needed for the assignment operator.
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Modifying the generated code for the assignment operator
Reference counting depends upon modifying the behavior of assignment to enable objects to 

track the references that point to them. In intermediate code for Jzero, there is an instruction 

named ASN that performs such an assignment. Our new reference counting semantics for the 

x = y assignment might consist of the following:

•	 If y points to an object, it gains a new reference. Increment its counter.

•	 If the old destination (x) points to an object, decrement its counter. If the counter is zero, 

free the old object.

•	 Perform assignment.

It is an interesting question whether this sequence of operations should be implemented by gen-

erating many three-address instructions for an assignment, or whether the semantics of the ASN 

instruction should be modified to do the bulleted items automatically when an ASN instruction 

executes. This is a design decision and there is no one answer that is always the best. The answer 

in some languages might be to add a new opcode such as OASN for object assignment.

Modifying the generated code for method call and return
Assignment is not the only point at which reference counts change. Every time objects are passed 

as parameters, under reference counting, their counts must be incremented to reflect the new 

object reference received in the called method. Worse yet, when a method returns, all the reference 

counts of parameters and local variables must be decremented. In the case of parameters, some of 

the same considerations for generated code apply as in the assignment discussion in the previous 

section; the start of each method might include a series of OASN instructions, one for each param-

eter. To handle method return, one implementation would be to use OASN to assign null values to 

each parameter and local variable prior to the RET instruction. Performance requirements might 

dictate optimization of this approach, since the speed of method call and return is important to 

overall performance. Adding one or two more specialty opcodes to streamline reference count 

updates may be well worth it. Having looked at how to implement this simplest of garbage col-

lection methods, let’s consider why reference counting might not be sufficient in most languages.

The drawbacks and limitations of reference counting
Reference counting has several downsides and one fatal flaw. One downside is that the assign-

ment operator and method call and return are both made slower. For example, assignments must 

decrement counts of objects held prior to assignment and increment counts of objects being 

assigned. Suppose that triples the cost of an assignment. 
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This is a serious drawback, as assignment is a very frequent operation. Another downside is that 

the size of objects becomes larger to hold reference counts, which is unfortunate, especially for 

multitudinous small objects for which an extra counter is a significant overhead. Drawbacks are 

one thing; we can live with them if we must. But depending on your language requirements, some 

problems with reference counting may be deal breakers.

A more serious, perhaps fatal flaw is that even when it works, reference counting has no strategy for 

avoiding fragmentation; it may leave you with many tiny chunks of free memory, none of which 

are big enough to satisfy a new request.  Another fatal flaw occurs if a chain of object references 

can have a cycle. This is a common practice in data structures. Many real-world problems are 

represented by graphs that can have cycles. In the case of a cycle, objects that point at each other 

never reach a reference count of 0, even after they are unreachable from the rest of the program. 

The diagram in Figure 17.3 illustrates a circular linked list after it has become garbage. No outside 

pointer can ever reach this structure, but according to reference counting, the memory used by 

these objects is not reclaimable:

Figure 17.3: A circular linked list cannot be collected under reference counting

Despite these flaws, reference counting is relatively simple and easy, and it works well enough 

that it has served as the primary garbage collection method for some early Lisp implementations, 

for the Python language, and likely others. The Lisp community went on to pioneer many more 

robust garbage collection algorithms, and Python eventually implemented a more robust garbage 

collector in addition to continuing to use reference counting. Once you implement a more robust 

garbage collector, reference counting might be seen as unnecessary and wasteful of time and 

space. In any case, due to its fatal flaws, most general-purpose languages will not find reference 

counting sufficient, so let’s look at an example of a more robust garbage collector, namely, the 

mark-and-sweep garbage collector used by the Unicon programming language.
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Marking live data and sweeping the rest
This section gives an overview of the Unicon garbage collector, which is a mark-and-sweep style 

of garbage collector that was developed for the Icon language and then extended. It is written 

in (an extended dialect of) C, like the rest of the Icon and Unicon runtime system. Since Unicon 

inherited this garbage collector from Icon, much of what you see here is due to the many folks 

who implemented that language. All I did to it was add its “multiple regions” support, which 

seemed like a good idea at the time of 64KB heap limits on 640KB MS-DOS computers. Other 

aspects of this garbage collector are described in the book The Implementation of Icon and Unicon: 

a Compendium.

In almost all garbage collectors other than reference counting, the approach to collection is to 

find all the live pointers that are reachable from all the variables in the program; everything else 

in the heap is garbage. In a mark-and-sweep collector, live data is marked when it is found, and 

then all the live data is moved up to the top of the heap, leaving a big, beautiful pool of newly 

available memory at the bottom. The collect() C function from Unicon’s runtime system is 

presented in outline form as follows:

int collect() {

   grow_C_stack_if_needed();

   markprogram();

   markthreads();

   reclaim();

}

Interestingly, the act of garbage collecting the heap begins with making sure we have enough C 

stack region memory to perform this task. Unicon has two stacks: the VM interpreter stack and 

the stack used by the C implementation of the VM. The necessity of growing the C stack was 

discovered the hard way. The reason for this is that the garbage collection algorithm is recursive, 

especially the operation of traversing live data and marking everything it points at. On some C 

compilers and operating systems, the C stack might grow automatically as needed, but on others, 

its size can be explicitly set. The garbage collector code does so by using an operating system 

function from the POSIX standard called setrlimit(). The code for growing the C stack looks 

like the following:

void grow_C_stack_if_needed() {

   struct rlimit rl;

   getrlimit(RLIMIT_STACK , &rl);

   if (rl.rlim_cur < curblock->size) {
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      rl.rlim_cur = curblock->size;

      if (setrlimit(RLIMIT_STACK , &rl) == -1) {

         fprintf(stderr,"iconx setrlimit(%lu) failed %d\n",

                         (unsigned long)(rl.rlim_cur),errno);

         fflush(stderr);

         }

      }

}

The preceding code checks how big the C stack is, and if the current block region is larger, it 

requests that the C stack be increased proportionally. This is overkill for most programs but cor-

responds roughly to the worst-case requirements. Fortunately, memory is cheap.

The main premise of the Unicon garbage collector is that frequent operations must be fast, even 

when that is at the expense of infrequent operations. In my presence, the famed computer scientist 

Ralph Griswold repeatedly remarked that most programs never garbage collect; they complete 

execution before they ever collect. This is only true from a certain point of view. It is true in a 

variety of application domains with short program executions, such as text processing utilities, 

and untrue in other application domains, such as servers and any other application that runs 

for an extended period.

Under the fast frequent operations doctrine, assignments are extremely frequent and must be 

kept as fast as possible – reference counting is a very bad idea for this reason. Similarly, memory 

allocations are quite frequent and must be as fast as possible. Garbage collection is infrequent, 

and it is OK for its cost to be proportional to the work involved.

To make matters more interesting, Icon and Unicon are specialty string- and text-processing 

languages, and the string data type is heavily special-cased in the implementation. Optimum 

efficiency for the string type might make some programs that are string-heavy perform extra 

well in this language, while other programs that are less string-centric do not benefit from these 

design decisions. Let’s look at how Unicon manages memory differently for strings than for 

non-string data.

Organizing heap memory regions
Due to the important special case of strings, Unicon has two kinds of heaps. A general heap called 

the block region allows any data type other than strings to be allocated. A separate heap called 

the string region is maintained for string data.
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Blocks are self-describing for garbage collection purposes; the layout of the block region is a 

sequence of blocks. Each block starts with a title word that identifies its type. Many block types 

are of fixed size; block types that are of varying size have a size field after the title word. Figure 

17.4 illustrates a block region. The rectangle on the left is a struct region that manages the block 

region (shown as the rectangle on the right). The block region being managed may be many 

megabytes in size, containing thousands or millions of blocks:

Figure 17.4: A block region

Within the block region, allocating is very fast. To allocate a block of size n for a class instance or 

other structure such as a list or table, just verify that n is less than the remaining free space be-

tween the pointers named free and end. In that case, the new block is located at the free pointer, 

and the region is updated to account for it by adding n to the free pointer.
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In contrast to the block region, the string region is raw unstructured string data. String regions are 

organized as shown in Figure 17.4, except that the actual string data has no titles, sizes, or other 

structure – it is raw text. By not allocating strings as blocks like everything else, some common 

operations on strings, such as slices, are no-ops. Similarly, the string region can be byte-aligned 

with no wasted space when many small strings are allocated, unlike the block region, which is 

word-aligned. Also, data in the string region never contains any references to other live memory, 

so separating strings out from the block region reduces the total amount of memory within which 

references must be found.

At any given time, there is one current block region and one current string region from which 

memory may be allocated. Each program, and each thread, has its current block and string re-

gions, which are the active regions within a bidirectional linked list of all heap regions allocated 

for that program or thread.

When the region is full and more memory is requested, a garbage collection of the current heaps 

is triggered. Older regions on the linked list are tenured regions and are only collected when a 

garbage collection on the current region fails to free enough memory for a request. When no 

region on the list can satisfy a request after all have been collected, a new current region of the 

same type is created and added to the linked list, generally twice as large as the previous one. 

Having discussed how Unicon’s memory regions are organized, it is time to dig deeper into the 

details of how garbage collection determines what pieces of data are still in use, by traversing all 

the data that is reachable from the program’s variables.

Traversing the basis to mark live data
In the first pass of garbage collection, live data is marked. All pointers to heap memory in the 

program must be found. This starts from a basis set of variables, consisting of global and static 

memory, and includes all local variables on the stack, which must be traversed. The heap objects 

pointed to by all these global and local variables are marked.

The task of marking live data in Unicon’s runtime system is presented in an outline of its form in 

the following code example. The first two elements of the basis set consist of variables allocated 

on a per-program and per-thread basis. In Icon, there was only one program and one thread, so 

these were originally global variables. The Unicon virtual machine evolved to support multiple 

programs and, eventually, multiple threads. The current code uses a struct named progstate to 

hold all the variables that are maintained on a per-program basis. Under this organization, many 

global variables in Icon’s runtime system became struct progstate fields, and finding all the 

basis variables in these categories became a series of data structure traversals to reach them all:

static void markprogram(struct progstate *pstate) {
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   struct descrip *dp;

   PostDescrip(pstate->K_main);

   PostDescrip(pstate->parentdesc);

   PostDescrip(pstate->eventmask);

   PostDescrip(pstate->valuemask);

   PostDescrip(pstate->eventcode);

   PostDescrip(pstate->eventval);

   PostDescrip(pstate->eventsource);

   PostDescrip(pstate->AmperPick);

   PostDescrip(pstate->LastEventWin);/* last Event() win */

   PostDescrip(pstate->Kywd_xwin[XKey_Window]);/*&window*/

   postqual(&(pstate->Kywd_prog));

   for (dp = pstate->Globals; dp < pstate->Eglobals; dp++)

      if (Qual(*dp)) postqual(dp);

      else if (Pointer(*dp)) markblock(dp);

   for (dp = pstate->Statics; dp < pstate->Estatics; dp++)

      if (Qual(*dp)) postqual(dp);

      else if (Pointer(*dp)) markblock(dp);

   }

The task of marking all the global variables in a program is straightforward:

static void markthreads() {

   struct threadstate *t;

   markthread(&roottstate);

   for (t = roottstate.next; t != NULL; t = t->next)

      if (t->c && (IS_TS_THREAD(t->c->status))) {

          markthread(t);

      }

}

Each thread is marked by a call to markthread() as follows. Some of the pieces of the thread 

state contain things that do not contain references to heap variables, but those fields that might 

contain heap pointers must be marked:

static void markthread(struct threadstate *tcp) {

   PostDescrip(tcp->Value_tmp);

   PostDescrip(tcp->Kywd_pos);

   PostDescrip(tcp->ksub);
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   PostDescrip(tcp->Kywd_ran);

   PostDescrip(tcp->K_current);

   PostDescrip(tcp->K_errortext);

   PostDescrip(tcp->K_errorvalue);

   PostDescrip(tcp->T_errorvalue);

   PostDescrip(tcp->Eret_tmp);

}

The actual marking process is different for strings and objects. Since Unicon variables can hold 

any type of value, a macro named PostDescrip() is used to determine whether a value is a string, 

another sort of pointer, or neither. References to strings are called qualifiers and they are marked 

using a function called postqual(). Other types of pointers are marked using the markblock() 

function:

#define PostDescrip(d) \

   if (Qual(d)) postqual(&(d)); \

   else if (Pointer(d)) markblock(&(d));

In order to interpret this macro, you need more than the postqual() and markblock() helper 

functions; you also need to know what the Qual() and Pointer() test macros are doing. A short 

answer would be that they perform a bitwise AND to check the value of a single bit within the 

descriptor word of a Unicon value. The value is a string if the descriptor word’s topmost (sign) bit 

called F_Nqual is 0, but if that bit is 1, it is not a string and the other flag bits can be used to check 

other properties, of which the F_Ptr pointer flag would indicate that the value word contains a 

pointer – possibly a pointer to a value in the heap:

#define Qual(d) (!((d).dword & F_Nqual))

#define Pointer(d) ((d).dword & F_Ptr)

These tests are fast, but they are performed many times during garbage collection. If we came 

up with a faster way than shown in the PostDescrip() macro to identify values for the potential 

marking of live strings and blocks, it might affect the garbage collection performance significantly.

Marking the block region
For blocks, the mark overwrites part of the object with a pointer back to the variable that points 

at the object. If more than one variable points at the object, a linked list of those live references is 

constructed as they are found. This linked list is needed so that all those pointers can be updated 

to point at the new location when the object is moved. 
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The markblock() function is over 200 lines of code. It is presented in a summarized form in the 

following code example:

void markblock(dptr dp) {

   dptr dp;

   char *block, *endblock;

   word type;

   union block **ptr, **lastptr;

   block = (char *)BlkLoc(*dp);

   if (InRange(blkbase, block, blkfree)) {

      type = BlkType(block);

      if ((uword)type<=MaxType)

         endblock = block+BlkSize(block);

      BlkLoc(*dp) = (union block *)type;

      BlkType(block) = (uword)&BlkLoc(*dp);

      if ((uword)type <= MaxType) {

          ...traverse any pointers in the block

         }

   else ... handle other types of blocks that will not move

}

Traversing pointers within a block depends on how blocks are organized in the language. Pointers 

within a block are always a contiguous array. A global table within the garbage collector named 

firstp tells at what byte offset for each type of block its nested pointers can be found. A second 

global table named firstd tells at what byte offset for each block type its descriptors (nested 

values, which can be anything, not just a block pointer) are found. These are traversed by the 

following code within the markblock() function shown above:

            ptr = (union block **)(block + fdesc);

            numptr = ptrno[type];

            if (numptr > 0) lastptr = ptr + numptr;

            else

               lastptr = (union block **)endblock;

            for (; ptr < lastptr; ptr++)

               if (*ptr != NULL)

                  markptr(ptr);

            }

         if ((fdesc = firstd[type]) > 0)
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            for (dp1 = (dptr)(block + fdesc);

                 (char *)dp1 < endblock; dp1++) {

               if (Qual(*dp1)) postqual(dp1);

               else if (Pointer(*dp1)) markblock(dp1);

               }

The nested block pointers are visited by walking through the ptr variable and calling markptr() on 

each one. The markptr() function is similar to markblock() but may visit other types of pointers 

besides blocks. The nested descriptors are visited by walking through the dp1 variable and calling 

postqual() for strings and markblock() for blocks.

For strings, an array named quallist is constructed of all the live string pointers (including their 

lengths) that point into the current string region. The function named postqual() adds a string 

to the quallist array: 

void postqual(dptr dp) {

   if (InRange(strbase, StrLoc(*dp), strfree)) {

      if (qualfree >= equallist) {

         newqual = (char *)realloc((char *)quallist,

              (msize)(2 * qualsize));

         if (newqual) {

            quallist = (dptr *)newqual;

            qualfree = (dptr *)(newqual + qualsize);

            qualsize *= 2;

            equallist = (dptr *)(newqual + qualsize);

            }

         else {

            qualfail = 1;

            return;

            }

         }

      *qualfree++ = dp;

   }

}

Most of the preceding code consists of expanding the size of the array if needed. The array size is 

doubled each time additional space is needed.

Furthermore, if the object contains any other pointers, they must be visited, and what they point at 

must be marked and traversed recursively following all pointers to everything that can be reached.
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Reclaiming live memory and placing it into contiguous 
chunks
In the second pass of a garbage collection process, the heaps are traversed from top to bottom, 

and all live data is moved to the top. The overall reclamation strategy is shown in the following 

code. Note that garbage collection is complicated by concurrent threads – we do not consider 

concurrency here:

static void reclaim()

   {

   cofree();

   if (!qualfail)

      scollect((word)0);

   adjust(blkbase,blkbase);

   compact(blkbase);

   }

Reclaiming memory consists of freeing up unreferenced static memory consisting of co-expres-

sions that have become garbage in a cofree() function, then moving all the live string data up in 

the scollect() function, and then moving the block data up within the block region by calling 

adjust() followed by compact().

The cofree() function walks through each co-expression block. These blocks cannot be allo-

cated in the block region because they contain variables that cannot be moved. For this reason, 

co-expression blocks are allocated using C’s malloc() function and must be freed explicitly using 

free(). The cofree() function consists of the following code:

void cofree() {

   register struct b_coexpr **ep, *xep;

   register struct astkblk *abp, *xabp;

   ep = &stklist;

   while (*ep != NULL) {

      if ((BlkType(*ep) == T_Coexpr)) {

         xep = *ep;

         *ep = (*ep)->nextstk;

         for (abp = xep->es_actstk; abp; ) {

            xabp = abp;

            abp = abp->astk_nxt;

            if ( xabp->nactivators == 0 )
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               free((pointer)xabp);

            }

         free((pointer)xep);

         }

      else {

         BlkType(*ep) = T_Coexpr;

         ep = &(*ep)->nextstk;

         }

      }

   }

The preceding code walks through a linked list of co-expression blocks. When the code visits a 

co-expression block whose title still says T_Coexpr, that indicates that the block was not marked 

as live. In that case, the co-expression and its associated bookkeeping memory blocks are freed 

using the standard free() library function.

The scollect() function collects the string region using the list of all the live pointers into it. It 

sorts the quallist array using the standard qsort() library function. Then, it walks through the 

list and copies live string data up to the top of the region, updating the pointers into the string 

region as the new locations of the strings are determined. Care is taken for pointers to overlapping 

strings so that they remain contiguous:

static void scollect(word extra) {

   char *source, *dest, *cend;

   register dptr *qptr;

   if (qualfree <= quallist) { strfree = strbase; return; }

   qsort((char *)quallist,

      (int)(DiffPtrs((char *)qualfree,

           (char *)quallist)) / sizeof(dptr *),

           sizeof(dptr), (QSortFncCast)qlcmp);

   dest = strbase;

   source = cend = StrLoc(**quallist);

   for (qptr = quallist; qptr < qualfree; qptr++) {

      if (StrLoc(**qptr) > cend) {

         while (source < cend) *dest++ = *source++;

         source = cend = StrLoc(**qptr);

         }

      if ((StrLoc(**qptr) + StrLen(**qptr)) > cend)
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         cend = StrLoc(**qptr) + StrLen(**qptr);

      StrLoc(**qptr) = StrLoc(**qptr) +

                       DiffPtrs(dest,source)+(uword)extra;

      }

   while (source < cend) *dest++ = *source++;

   strfree = dest;

   }

The adjust() function is the first part of collecting the block region. It walks through the block 

region, moving pointers into the block region up to where the blocks will point. During marking, 

a linked list of all pointers to each block was constructed; this is used to update all those pointers 

to the block’s new location. The source code for adjust() is shown next:

void adjust(char *source, char *dest) {

   register union block **nxtptr, **tptr;

   while (source < blkfree) {

     if ((uword)(nxtptr = (union block **)BlkType(source))>

         MaxType) {

         while ((uword)nxtptr > MaxType) {

            tptr = nxtptr;

            nxtptr = (union block **) *nxtptr;

            *tptr = (union block *)dest;

            }

         BlkType(source) = (uword)nxtptr | F_Mark;

         dest += BlkSize(source);

         }

      source += BlkSize(source);

      }

   }

The compact() function is the final step in collecting the block region, as shown in the following 

code block. It consists of moving the blocks of memory themselves up into their new location. 

The title words of the live blocks are used as the head of a linked list of all live references to that 

block, and cleared when the block is moved to its new location and live references are updated:

void compact(char *source) {

   register char *dest;

   register word size;

   dest = source;
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   while (source < blkfree) {

      size = BlkSize(source);

      if (BlkType(source) & F_Mark) {

         BlkType(source) &= ~F_Mark;

         if (source != dest)

            mvc((uword)size,source,dest);

         dest += size;

         }

      source += size;

      }

   blkfree = dest;

   }

From this section, you should be able to conclude that a mark-and-sweep garbage collector is a 

non-trivial and relatively low-level undertaking. If you need encouragement, consider this: the 

work you do in building a garbage collector is for a good cause – it will save countless efforts from 

the programmers who use your language, and they will thank you for it. Many language inventors 

before you have implemented garbage collection successfully, and so can you.

Summary
This chapter showed you a lot about garbage collection. You learned what garbage is, how it comes 

about, and saw two very different ways to deal with it. The easy way, popularized by some early 

Lisp systems and early versions of Python, is called reference counting. In reference counting, 

the allocated objects themselves are made responsible for their collection. This usually works.

The more difficult form of garbage collection involves finding all the live data in the program and 

usually moving it to avoid memory fragmentation. Finding the live data is generally recursive, 

requires traversing stacks to find references in parameters and local variables, and is usually an 

onerous and low-level task. Many variations on this general idea have been implemented. One of 

the primary observations, which some garbage collectors exploit, is that most allocated objects are 

used for only a short time and then become garbage almost immediately. Collecting recently-allo-

cated objects aggressively, and collecting longer-lived objects more and more infrequently as they 

age, has improved garbage collection performance in some modern language implementations.

Any method you employ to save programmers from having to manage their own memory will 

be greatly appreciated. In the next chapter, we will conclude the book with some thoughts on 

what we have learned.
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Questions
1.	 Suppose a specific Unicon value, such as the null value, was particularly common 

when marking live data. Under what circumstances would it make sense to modify the 

PostDescrip() macro to check for that value to see if the tests in the Qual() and Pointer() 

macros can be avoided?

2.	 What would be the advantages and disadvantages of creating a separate heap region for 

each class type?

3.	 The reclaim() operation of Unicon’s mark-and-sweep collector moves all the live non-gar-

bage memory up to the top of the region. Would it be beneficial to modify this collector 

so that live data did not move?

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw
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Final Thoughts

After learning so much about building a programming language, you may want to reflect on what 

was learned and think about areas you might want to study in more depth. This chapter reviews 

the main subjects presented in the book and gives you some food for thought by covering the 

following topics:

•	 Reflecting on what was learned from writing this book

•	 Deciding where to go from here

•	 Exploring references for further reading

The heart of this chapter suggests a number of avenues for further study. Bibliography details 

or links are provided for all those resources at the end. Let’s start with what extra bonuses could 

be learned from this book.

Reflecting on what was learned from writing this 
book
I learned some useful things from writing this book. As an old-school C and UNIX person, this was 

not a given for me, but Java is very suitable for writing compilers at this point. Sure, Andrew Appel 

might have published Modern Compiler Implementation in Java in 1997, and other compiler-writing 

books in Java exist. These might be great, but how many compiler writers won’t consider using 

Java to this day because Java is not a systems programming language, or because its official com-

piler construction tools are non-standard? Using a standard lex/YACC toolchain for Java makes 

it more interoperable with compiler code bases created for other languages.
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I want to express my appreciation to the Byacc/J maintainer Tomas Hurka for accepting and im-

proving my static import patch to make Byacc/J play more nicely with Jflex and similar tools 

(including my Merr tool, as covered in Chapter 4, Parsing) that generate yylex() or yyerror() in 

separate files. Supporting yylex() and yyerror() in separate files obviates the need for stupid 

workarounds, such as writing a stub yylex() method inside the parser class that turns around 

and calls yylex() generated in another file. Also, various small improvements to Java after its 

initial release, such as being able to use String values for switch cases, make a difference to 

the compiler writer. At this point, Java’s conveniences and advantages, compared to C, almost 

outweigh its disadvantages, which are many. Java proponents: C programmers will not agree 

with you if you claim that Java’s rigid package-and-class directory and file structure and lack of 

#include or #ifdef mechanisms are no big deal.

I didn’t write this book to decide whether Java was good for compilers. I wrote this book to make 

Unicon great for compilers. This book’s small miracle was finding a way to use the same lexical and 

syntax specifications for both Unicon and Java. I am happy that I was able to use both languages 

in the same way I would traditionally write a compiler in C. After that vital bit of lex/YACC spec-

ification sharing, Unicon didn’t provide as much added advantage as I had expected compared 

to Java. Unicon skips many of Java’s pain points, is somewhat more concise, and has an easier 

time with heterogeneous structure types. Ultimately, both languages were great for writing the 

Jzero compiler, and I’ll let you be the judge of which code was more readable and maintainable. 

Now, let’s consider where you might go from here.

Deciding where to go from here
You may want to study more advanced work in any number of areas. These include program-

ming language design, bytecode implementation, code optimization, monitoring and debugging 

program executions, programming environments such as IDEs, and GUI builders. In this section, 

we will explore just a few of these possibilities in more detail. This section reflects many of my 

personal biases and priorities.

Studying programming language design
It is probably more difficult to identify strong works in programming language design than most of 

the other technical topics mentioned in this section. Harold Abelson and Gerald Sussman wrote a 

book called Structure and Interpretation of Computer Programs, which is widely reputed to be useful. 

It is not a programming language design book, but its insights occasionally delve into that subject.
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Browsing casually, you may find many general programming language books. Rafael Finkel’s Ad-

vanced Programming Language Design is one, covering a range of advanced topics. For other sources, 

language design books and papers written by actual language inventors have the potential to be 

more real and useful than books written by third parties.

One of the luminaries of language design, Niklaus Wirth, wrote many influential books. Algo-

rithms and Data Structures, as well as Project Oberon, provide valuable insights regarding language 

design, as well as implementation. As the designer of several successful languages, including 

Pascal and Modula-2, Niklaus Wirth has great authority in arguing for simplicity with language 

designs that protect programmers from themselves. He is a giant on whose shoulders a person 

would do well to stand.

The Prolog programming language has produced rich literature describing many of the design 

and implementation problems that have been addressed for that language and logic program-

ming in general. Prolog is important because it features extensive implicit backtracking. One of 

the important works on Prolog is The Art of Prolog, by Leon Sterling and Ehud Shapiro. Another 

important contribution is the Byrd box model of functions, in which, instead of understanding 

a function’s public interface as a call followed by a return, a function is seen as having a call, 

producing a result, and being resumed repeatedly, until an eventual failure.

The next great programming language family that deserves attention is Smalltalk. Smalltalk 

did not invent the object-oriented paradigm, but it purified it and popularized it. A summary of 

some of its design principles was published in Byte magazine in an article titled Design Principles 

Behind Smalltalk, by Dan Ingalls – http://worrydream.com/refs/Ingalls%20-%20Design%20

Principles%20Behind%20Smalltalk.pdf. While considering object-oriented languages, it is also 

prudent to consider semi-object-oriented languages such as C++, for which the book Design and 

Evolution of C++ by Bjarne Stroustrup is of value.

The dramatic rise in popularity of very high-level languages such as Python and Ruby is one of 

the most important developments in recent decades. It is depressing how poorly represented 

many extremely popular languages are overall in the programming language design literature. 

TCL’s inventor, John Ousterhout, wrote two important works on topics related to the design of 

very high-level languages. Scripting: Higher-Level Programming for the 21st Century is a good paper, 

albeit one that reflects its author’s biases. Ousterhout also gave an important invited talk, humor-

ously titled Why Threads Are a Bad Idea, arguing for event-driven programming and synchronous 

coroutines in preference to threads for most parallel workloads.

http://worrydream.com/refs/Ingalls%20-%20Design%20Principles%20Behind%20Smalltalk.pdf
http://worrydream.com/refs/Ingalls%20-%20Design%20Principles%20Behind%20Smalltalk.pdf
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The Icon and Unicon languages are two more heavily documented examples of very high-level 

languages. The design of the Icon language is described in Griswold’s History of the Icon Program-

ming Language. Having looked at some fine options for studying language design further, let’s 

consider options for studying their implementation.

Learning about implementing interpreters and bytecode 
machines
Advanced programming language implementation topics should include implementing all types 

of interpreters and runtime systems for advanced programming languages with novel seman-

tics. The first very high-level language was Lisp. Lisp inventor John McCarthy is credited with 

inventing a mathematical notation that could be executed on the computer. Lisp is one of the first 

interactive interpreters, and arguably the first just-in-time compiler. Other Lisp implementors 

have written notable books. One of special note is John Allen’s Anatomy of Lisp.

Any description of bytecode machines would be remiss if it omitted the Pascal bytecode machines. 

Many of the seminal works on Pascal’s implementation are collected in PASCAL: The Language 

and Its Implementation, edited by David Barron. The UCSD Pascal system that popularized byte-

code machines was based on the work of Urs Ammann at ETH Zurich, which is well represented 

in Barron’s book. Another significant work on Pascal is Steven Pemberton and Martin Daniels’ 

Pascal Implementation: Compiler and Interpreter, which has the virtue of being a publicly available 

resource – https://homepages.cwi.nl/~steven/pascal/.

A collection of books authored by Adele Goldberg and her collaborators document Smalltalk. The 

documentation that Goldberg et al. produced for this pure object-oriented language defined a 

high bar for language reference materials. Their work includes Smalltalk-80: The Language and 

its Implementation.

In the logic programming world, the Warren Abstract Machine (WAM) is one of the premier 

means of reasoning about the underlying semantics of Prolog and how to implement it. It is 

described in An Abstract PROLOG Instruction Set.

The implementation of Unicon is described in The Implementation of Icon and Unicon: a Compen-

dium. This book combines and updates several previous works on the implementation of the 

Icon language, plus descriptions of the implementation of various subsystems that have been 

added to Unicon.

https://homepages.cwi.nl/~steven/pascal/
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Acquiring expertise in code optimization
Code optimization is generally a subject of advanced graduate-level textbooks on compilers. The 

classic Compilers: Principles, Techniques, and Tools contains substantial documentation on various 

optimizations. Cooper and Torczon’s Engineering a Compiler is a more recent treatment.

Code optimization for higher-level languages often requires more novel techniques. Various 

works on optimizing compilers for very high-level languages seem to suggest some unknown 

law that I will formulate here: it takes around 20 years for people to figure out how to execute a 

new very high-level language efficiently. For hints of this, I refer to examples such as T: a Dialect 

of Lisp and The Design and Implementation of the SELF Compiler, which came out 20 years after the 

Lisp and Smalltalk languages. Of course, how long it takes depends on the size and complexity 

of the language. I am biased, but one of my favorite works for such languages is Ken Walker’s 

dissertation The implementation of an optimizing compiler for Icon, which is included in the Icon 

and Unicon implementation compendium.

Monitoring and debugging program executions
There are lots of books about debugging end user code, but there are few books on how to write 

program monitors and debuggers. Part of the problem is that the implementation techniques 

are low-level and highly platform-dependent, so much of what is written about debugger imple-

mentation might only be true for one particular operating system and may not be true in 5 years.

Regarding the big picture, you may want to think about how to design your debugger and what in-

terface it should provide to the end user. Besides imitating the interface of mainstream debuggers, 

you should consider the notion of query-based debugging, as described in Raimondas Lencevicius’ 

Advanced Debugging Methods. You should also consider the notions of relative debugging and delta 

debugging, which were popularized by the works of David Abramson et al. and Andreas Zeller.

One of the things you may want to read up on if you want to know more about debugger imple-

mentation is executable file formats and their debugging symbol information. The Microsoft 

Windows portable executable format is documented on the Microsoft website.

One of the most prominent corresponding UNIX formats is the Executable and Linkable For-

mat (ELF), which stores debugging information in a format called Debugging With Arbitrary 

Record Formats (DWARF). These formats are dated but still in use, with some newer formats 

also on the scene.
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The GNU debugger, known as GDB, is prominent enough that it has a GDB Internals manual, 

and GDB has frequently been used as the basis upon which research debugging capabilities are 

developed. Building experimental debugger features atop an existing mainstream debugger is 

a very different task than building a new debugger from scratch, or building a debugging and 

monitoring framework. https://aarzilli.github.io/debugger-bibliography/ lists a few 

other debugger implementation resources, mainly oriented toward the Go language.

For a substantial discussion of the classic (a.k.a. ancient history) program execution monitoring 

literature, you can consult Monitoring Program Execution: A Survey, or the related work chapter in 

the book Program Monitoring and Visualization.

Designing and implementing IDEs and GUI builders
One element in the success of programming languages is the extent to which their programming 

environments support writing and debugging code. This book only briefly touches on these 

topics, and you might want to explore more on how IDEs and their user interface builders are 

implemented.

There is good news and bad news here. The bad news is that no one has written a build your own 

integrated development environment book. If you were going to build one from scratch, you might 

start by teaching yourself how to write a text editor, and then add other features. In that case, you 

might wish to consult The Craft of Text Editing by Craig Finseth. That book was written by a person 

who studied how the Emacs text editor was implemented for his Bachelor’s thesis. There is also 

an appendix to the GNU Emacs Manual titled GNU Emacs Internals. You might want to check out 

Smalltalk-80: The Interactive Programming Environment, by Adele Goldberg.

The good news is that almost no one need write the text editor portion of an integrated develop-

ment environment anymore. Each of the major graphical computing platforms comes with a user 

interface library that includes a text editor as one of its widgets. You can assemble the interface 

of an integrated development environment using a graphical interface builder tool. Unfortunately, 

graphic user interface libraries are usually non-portable and short-lived, which means that work 

spent programming on them is almost doomed to be discarded within a decade or two. It takes 

extraordinary effort to write code that runs on all platforms and it is nigh impossible to write 

graphics code that will live forever in internet years.

You may be able to find more books about multi-platform portable graphical user interface libraries 

and how to use them to write integrated development environments and user interface builder 

tools. Java is one of the most portable languages, and despite some false starts, it is still likely 

that some of the best, most multiplatform portable, and long-lived user interface libraries today 

might be Java libraries. Unfortunately, I don’t know of a good book on implementing IDEs in Java.

https://aarzilli.github.io/debugger-bibliography/
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Exploring references for further reading
Here is a detailed bibliography of the works discussed in the previous sections. Within each sub-

section, the works are listed alphabetically by author.

Studying programming language design
In the area of programming language design, you may find the following items to be of interest:

•	 Harold Abelson and Gerald Sussman, Structure and Interpretation of Computer Programs, 

Second edition, MIT Press, 1996.

•	 Rafael Finkel, Advanced Programming Language Design, Pearson 1995.

•	 Ralph Griswold, History of the Icon Programming Language, Proceedings of HOPL-II, ACM 

SIGPLAN Notices 28:3 March 1993, pages 53–68.

•	 Daniel H.H. Ingalls, Design Principles Behind Smalltalk, Byte Magazine August 1981, pages 

286–298.

•	 John Ousterhout, Scripting: Higher-Level Programming for the 21st Century, IEEE Computer 

31:3, March 1998, pages 23–30.

•	 John Ousterhout, Why Threads Are a Bad Idea (for most purposes), Invited talk, USENIX 

Technical Conference, September 1995 (available at https://web.stanford.edu/~ouster/

cgi-bin/papers/threads.pdf).

•	 Leon Sterling and Ehud Shapiro, The Art of Prolog, MIT Press, 1986.

•	 Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesley, 1994.

•	 Niklaus Wirth, Algorithms and Data Structures, Prentice Hall 1985.

•	 Niklaus Wirth, Project Oberon: The Design of an Operating System and Compiler, Addison 

Wesley/ACM Press 1992.

This is a tiny sample of the best works in a rich body of literature, and it will certainly contain 

many grievous omissions. Now, let’s look at a similar list for implementation.

Learning about implementing interpreters and bytecode 
machines
In the area of interpreter and bytecode machine implementation, you may find the following 

items to be of interest:

•	 John Allen, Anatomy of Lisp, McGraw Hill, 1978.

•	 Urs Ammann, On Code Generation in a PASCAL Compiler, Software Practice and Experience 

7(3), 1977, pages 391–423.

https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf
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•	 David W. Barron, ed., PASCAL-The Language and Its Implementation, John Wiley, 1981.

•	 Adele Goldberg, David Robson, SmallTalk-80: The Language and its Implementation, Ad-

dison-Wesley, 1983.

•	 Clinton Jeffery and Don Ward, eds., The Implementation of Icon and Unicon: a Compendium, 

Unicon Project, 2020 (available at http://unicon.org/book/ib.pdf).

•	 A. B. Vijay Kumar, Supercharge Your Applications with GraalVM, Packt, 2021.

•	 Steven Pemberton and Martin Daniels, Pascal Implementation: The P4 Compiler and Inter-

preter, Ellis Horwood, 1982 (available at https://homepages.cwi.nl/~steven/pascal/).

•	 David Warren, An Abstract PROLOG Instruction Set, Technical Note 309, SRI International, 

1983 (formerly available at http://www.ai.sri.com/pubs/files/641.pdf; now you have 

to get it from the Internet Archive’s Wayback Machine).

Now, let’s look at a similar list for native code and code optimization.

Acquiring expertise in native code and code optimization
Regarding native code and code optimization, you may find the following items to be of interest:

•	 Al Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman, Compilers: Principles Techniques and 

Tools, Second edition, Addison Wesley, 2006.

•	 Craig Chambers, The Design and Implementation of the SELF Compiler, an Optimizing Com-

piler for Object-Oriented Programming Languages, Stanford dissertation, 1992.

•	 Keith Cooper and Linda Torczon, Engineering a Compiler, Second edition, Morgan 

Kaufmann, 2011.

•	 Chris Lattner and Vikram Adve, LLVM: A Compilation Framework for Lifelong Program 

Analysis & Transformation, in Proceedings of the 2004 International Symposium on Code 

Generation and Optimization (CGO’04), Palo Alto, California, March 2004. Available at 

https://llvm.org/pubs/2004-01-30-CGO-LLVM.html.

•	 Jonathan Rees and Norman Adams, T: a dialect of Lisp, Proceedings of the 1982 ACM sym-

posium on LISP and functional programming, pages 114–122.

•	 Kenneth Walker, The implementation of an optimizing compiler for Icon, University of Ari-

zona dissertation, 1991.

After optimization, you might want to look further at the highly specialized area of program 

execution monitoring and debugging.

http://unicon.org/book/ib.pdf
https://homepages.cwi.nl/~steven/pascal/
http://www.ai.sri.com/pubs/files/641.pdf
https://llvm.org/pubs/2004-01-30-CGO-LLVM.html
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Monitoring and debugging program executions
In the area of monitoring and debugging, you may find the following items to be of interest:

•	 David Abramson, Ian Foster, John Michalakes, and Roc Sosic, Relative Debugging: A new 

methodology for debugging scientific applications, Communications of the ACM 39(11), No-

vember 1996, pages 69–77.

•	 DWARF Debugging Information Format Committee, DWARF Debugging Information Format 

Version 5 (http://www.dwarfstd.org), 2017.

•	 John Gilmore and Stan Shebs, GDB Internals, Cygnus Solutions, 1999. The most recent 

copy is in wiki format and available at https://sourceware.org/gdb/wiki/Internals.

•	 Clinton Jeffery, Program Monitoring and Visualization, Springer, 1999.

•	 Raimondas Lencevicius, Advanced Debugging Methods, Kluwer Academic Publishers, Bos-

ton/Dordrecht/London, 2000.

•	 Microsoft, PE Format, available at https://docs.microsoft.com/en-us/windows/win32/

debug/pe-format.

•	 Bernd Plattner and J. Nievergelt, Monitoring Program Execution: A Survey. IEEE Computer, 

Vol. 14. November 1981, pages 76–93.

•	 Andreas Zeller, Why Programs Fail: A Guide to Systematic Debugging, Second edition, Mor-

gan Kaufmann, 2009.

Along with monitoring and debugging, it would be useful to consider integrated programming 

tools for your language.

Designing and implementing IDEs and GUI builders
In the area of development environments and user interface builders, you may find the following 

items to be of interest:

•	 Craig Finseth, The Craft of Text Editing: Emacs for the Modern World. Springer, 1990.

•	 Adele Goldberg, Smalltalk-80: The Interactive Programming Environment, Addison-Wes-

ley, 1983.

•	 Bil Lewis, Dan LaLiberte, Richard Stallman, the GNU Manual Group, et al., GNU Emacs 

Internals, GNU Emacs Lisp Reference Manual, Appendix E. GNU Project, 1990–2021.

http://www.dwarfstd.org
https://sourceware.org/gdb/wiki/Internals
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
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Honestly, I wish I had more good reading to recommend on the subject of IDEs and GUI builders. 

If you know of good works on this subject, send me your suggestions. Similarly, we might want to 

study available books on integrating new languages into existing IDEs. At least one such book exists:

•	 Nadeeshaan Gunasinghe and Nipuna Marcus, Language Server Protocol and Implementation: 

Supporting Language-Smart Editing and Programming Tools, Apress, 2021.

Now, let’s wrap things up with a summary.

Summary
This book showed you a thing or two about building programming languages. We did this by 

showing you an implementation of a toy language called Jzero. However, Jzero is not what is 

interesting; what is interesting is the tools and techniques used in its implementation. We even 

implemented it twice!

If you thought that maybe programming language design and implementation was a swimming 

pool to enjoy, your new conclusion might be that it is more like an ocean. If so, the tools that 

have been placed at your disposal in this book, including versions of flex and YACC for use with 

Unicon or Java, are a luxury cruise liner capable of sailing you about on that ocean to wherever 

you want to go.

The first high-level language compiler is said to have taken 18 person-years to create. Perhaps now 

it is a task of a few months, although it is still an open-ended task where you can spend as much 

time as you can spare making improvements to any compiler or interpreter that you care to write.

The holy grail of compilers has long been a high-level declarative specification of the code genera-

tion problem, to match the declarative specification of lexical and syntax rules. Despite the earnest 

work of many people far smarter than me, this hoped-for breakthrough has been resistant. In its 

place, several crutches have proliferated. The very notion of a bytecode machine implemented in 

a portable system language such as C has made many languages portable to a myriad of proces-

sors… once someone ports a C compiler to them. This has become part of the mainstream due to 

technologies such as the .NET CLR and the JVM and GraalVM Java bytecode machines. Similarly, 

transpilers that generate code in the form of source code to another high-level language (such 

as C) have become widespread.
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The third form of increased portability that’s available to programming language inventors is the 

proliferation of intermediate-level target instruction formats such as LLVM. All of these widely 

used means of making your programming language portable dodge the common bullet of gen-

erating code for a new CPU. Perhaps the fourth form of increased portability has come from the 

fact that new CPU instruction sets are generated infrequently at this point, as the industry has 

collectively invested so much in the small number of hardware instruction sets for which opti-

mizing code generators are available.

Thanks for reading this book. I hope that despite its many shortcomings, you were able to enjoy 

my book and that you found it useful. I look forward to seeing what new programming languages 

you invent in the future!

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw
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Appendix

This section will include materials that will help the readers to understand the main text.

This section comprises the following chapters:

•	 Appendix, Unicon Essentials

•	 Answers





Appendix: Unicon Essentials

This appendix presents enough of the Unicon language to help you understand the Unicon code 

examples in this book. This appendix is intended for experienced programmers and does not 

spend time introducing basic programming concepts. Instead, it presents Unicon while focusing 

on its interesting or unusual features compared to mainstream languages.

If you know Java, then most of the Unicon code in this book can be understood by looking at the 

corresponding Java code to see what is going on. You can look up whatever is not self-evident 

and not explained by Java comparison here. This appendix is not a complete Unicon language 

reference; for that, see Appendix A of Programming with Unicon, which is available in standalone 

public domain form in Unicon Technical Report #8. Both Programming with Unicon and Unicon 

Technical Report #8 are hosted at unicon.org.

Syntactic shorthand
The notation in this appendix uses square brackets, [], to denote optional features and asterisks, *, to 

denote features that can occur zero or more times. When square brackets or asterisks are highlight-

ed, this means they are occurring in the Unicon code rather than as optional or repeated features.

This appendix covers the following topics:

•	 Running Unicon

•	 Using Unicon’s declarations and data types

•	 Evaluating expressions

•	 Debugging and environmental issues

•	 Function mini-reference

•	 Selected keywords

To begin, let’s provide an expanded discussion of how to run Unicon programs.

Running Unicon
Unicon utilizes compile and link steps to translate source code programs into executable code. In 

this way, it is more like C than Java. Unicon source files end in the four characters .icn; it shares 

this extension with its predecessor, Icon. 

unicon.org
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Unicon object files are called ucode and end with the two characters .u. Here are some example 

invocations of the Unicon translator. Only the most common command-line options are presented:

•	 unicon mainname [ filename(s) ]

Compile and link mainname.icn and other filenames to form an executable named 

mainname.exe on Windows or just mainname on most other platforms. The other filenames 

may have the extension .icn or .u; if no extension is provided, .icn is automatically added.

•	 unicon -o exename [ filename(s) ]

The -o option directs the translator to compile and link an executable named exename, 

or on Windows, exename.exe. It’s the same as the previous example, except the output 

filename is supplied explicitly instead of being inferred from the first filename given on 

the command line.

•	 unicon -c filename(s)

The -c option directs the Unicon compiler to compile .icn files into .u files but not link 

them. No executable is produced.

•	 unicon -u filename(s)

The -u option directs the Unicon translator to warn about undeclared variables. By default, 

undeclared variables become local.

•	 unicon -version

Print the Unicon version, including a build date. No compilation, linking, or execution 

is performed.

•	 unicon -features

Print the features of this Unicon build. When Unicon is built, many language features 

are only present if the underlying platform has header files and libraries available. This 

includes file compression and image formats, graphics and other kinds of I/O, and con-

currency-related features.

•	 unicon foo -x

The -x option directs the Unicon translator to both compile and run foo.icn in a single 

step.

You can read a more detailed description of how to run Unicon on Windows at http://unicon.

org/utr/utr7.html. The full list of command-line options can be found at http://unicon.org/

utr/utr11.html.

http://unicon.org/utr/utr7.html
http://unicon.org/utr/utr7.html
http://unicon.org/utr/utr11.html
http://unicon.org/utr/utr11.html
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If you don’t like working from the command line, you may want to try out the Unicon IDE called 

ui. The ui program has options to compile and execute programs from inside a graphical interface. 

The following screenshot shows an example of this:

Figure A.1: A screenshot showing ui, the Unicon IDE

Developers in the Unicon community use many different programming environments, and the 

Unicon IDE is more of a technology demo than a production tool, but you may find it useful, if 

only for its beloved Help menu. It is written in about 10,000 lines of Unicon, not counting the 

GUI class libraries. Now, let’s consider the kind of declarations that are allowed in Unicon and 

what data types it supports.

Using Unicon’s declarations and data types
You can’t write a Unicon program without declaring things. Declaring something is the act of 

associating a name, visible within some scope and lifetime, with some chunk of code or memory 

capable of holding a value. Next, let’s learn how different program components can be declared.

Declaring program components
Unicon programs consist of one or more procedures beginning with main(). Program structure 

may also include classes. Unicon distinguishes user-defined procedures from functions that are 

built into the language. The following patterns show the syntax structure for the primary decla-

rations of bodies of code in Unicon’s procedures and methods:

•	 Declare procedure or method:

procedure X ( params ) [locals]* [initial] [exprs]* end

method X ( params ) [locals]* [initial] [exprs]* end
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All procedures and methods have a name, zero or more parameters, and a body ending 

with the word end. The body may optionally start with local and static declarations 

and an initial section, followed by a sequence of expressions. Methods may only be 

declared inside classes, within which they have access to the names of class fields, the 

other methods of a class, and any superclasses. In Unicon, there are no static methods, 

and all methods are public.

•	 Declare field names or parameters:

[ var  [ , var  ]* ]

[ var [ : expr ]  [ , var [ : expr] ]* [ , var [] ] ]

Field names introduced in declaring classes or records are a list of names, separated by 

commas. Parameters for procedures and methods, including initially methods, are 

similar but have some extra options.  Each of the zero or more parameters may optionally 

include a colon, followed by a default value or the name of a type coercion function (in-

teger, real, string…). The final parameter may be followed by square brackets, indicating 

that a variable number of arguments will be passed in as a list.

•	 Declare globals, locals, and statics:

global variable [ , variable ]*

local variable [ := expr ] [ , variable [ := expr ]]*

static variable [ := expr ] [ , variable [ := expr ]]*

Variables are declared with a comma-separated list of names in one of the three scopes: 

global, local, or static. Local names can include an assignment to initialize the variable. 

Global variables live for the entirety of the program’s execution. Local variables live for 

the duration of a single procedure or method call. Static variables live for the entirety of 

the program’s execution, and one copy of each static variable is shared by all the calls to 

that procedure or method.

•	 Declare record or class type:

record R ( fields )

class C [ : super ]* ( fields ) [ methods ]* [ initially ] end

A record or class is declared by the corresponding reserved word followed by a name 

and a comma-separated list of field names, surrounded by parentheses. A record or class 

declaration declares a global variable that refers to the constructor function that creates 

instances of that record or class. 
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A class may also have a colon-separated list of superclass names prior to its field names. 

A class declaration contains zero or more methods and an optional initially section, 

followed by a reserved word end.

•	 Declare initially method:

initially [ ( params ) ] [locals]* [initial] [exprs]* 

An initially section, also called an initially method, is a special, optional initialization 

method for a class that is called automatically by the class constructor. If an initially 

section is present, it must be after all other methods, immediately before the end of the 

class. It is not preceded by the word method and its parameter list is entirely optional, 

with no parentheses required when there are no parameters. The concept of an initially 

section in a class is related but distinct from the initial section that optionally may ap-

pear at the beginning of a procedure or method; an initial section identifies code that 

executes the first time that method is called.

•	 Reference library modules:

link module [ , module ]*

Unicon programs may include multiple files on the command line, but separately compiled 

modules that are used by a file may also be declared in the source code. Modules may ei-

ther be string constant filenames or identifiers that are used as filenames. The extension 

.u is implied and generally omitted.

•	 Use package:

import package [ , package ]*

Unicon’s global namespace may be composed of multiple named packages, which can 

be imported by supplying the package name(s). Now, let’s look at Unicon’s data types.

Using atomic data types
Unicon has a rich set of data types. Atomic types are immutable, while structure types are mutable. 

They appear directly in the source code as literal constant values or are computed and introduced 

into the program by operators or functions. When possible, Unicon coerces the various atomic 

types as needed to perform an operation. For example, 1+"2" computes 3.
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Numeric
Integers are signed arbitrary precision whole numbers. Integers are the most common type and 

work in an obvious way. There are literal formats in bases 2 through 36. The bases are expressed 

in the form baseRvalue, as in 16Rffff. There are also a set of suffixes such as K and M that mul-

tiply numbers by thousands or millions. For example, the integer literal 4G indicates a value 

of four billion. Integers in Unicon mostly just work without us paying much attention. All the 

usual arithmetic operators are provided, along with a handy exponentiation operator, x^y. The 

interesting unary operator, ?n, produces a random number between 1 and n. The unary operator, 

!n, generates integers from 1 to n.

The real data type provides floating-point approximations of real numbers. Real constants must 

contain either a decimal, an exponent, or both. The expressions 3.14, 2e9, and 5.3e24 are all 

examples of real constants. It is kind of amazing to think how much trouble real values used to 

cause programmers, and how they are now taken for granted: real values are the same size as 64-

bit integers, although the binary format is different. One of the challenges you occasionally face 

is converting back and forth between integers and reals. Conversion is performed automatically 

as needed, but it does take time and potentially loses precision, especially if you do it repeatedly 

and unnecessarily.

Textual
Unicon has multiple built-in types for manipulating text, including strings, character sets (csets), 

and a rich pattern type borrowed from SNOBOL4. This book uses strings and csets but uses Flex 

and Yacc instead of patterns, so that the examples also compile and run under Java. For this rea-

son, this appendix will not present the pattern type or its regular expression-based literal format.

Strings are ordered sequences of zero or more characters. A string literal is surrounded by double 

quotes and may include escape characters. The following table shows these escape sequences:

Table A.2: String and cset escape characters
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Csets are unordered collections of zero or more non-duplicating characters. A cset literal is sur-

rounded by single quotes and may include escape characters. Unicon has many cset keyword 

constants for predefined character sets that are sometimes found as macros or test functions in 

other languages. It turns out that having a full set data type for characters is useful when you’re 

performing text processing, and considerably more general than having a few predefined macros 

or functions. The cset type supports the usual set operators, such as c1++c2, which computes a 

union, c1**c2, which computes an intersection, or c1--c2 for characters in c1 but not in c2. Now, 

let’s move on and look at Unicon’s structure types.

Aggregating multiple values using structure types
Structure types allow the construction of values that are composed of multiple values. In Unicon, 

structure types are generally mutable: the values within them can be modified or replaced. They 

are created at runtime by an action that allocates memory and initializes it from their component 

values. Many structure types are containers that allow values to be inserted or deleted. Structures 

can be constructed that contain other structures, including values of the same type; these are 

called recursive structures. The first structure type to consider is the class, which introduces a 

user-defined structure type.

Classes
If your data is not entirely numeric and not just textual, you probably want to write a class for 

it in Unicon. Each Unicon class is a new data type. Class types are used for values that represent 

entities or information from the application domain. They are usually used for things that contain 

several pieces of information, governed by complex behavior.

Classes are often defined as sets of additions or changes to other classes by means of inheritance. 

Unicon defines multiple inheritance semantics in an interesting way called closure-based inher-

itance, which allows cycles in the inheritance graph. The fact that Unicon classes are all public 

and all virtual keeps things simpler and focuses on expressive power rather than on protecting 

programmers from themselves. Now, let’s look at Unicon’s other structure types, which are often 

used to provide the associations between different class types. The first built-in structure type 

to consider is the list type.
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Lists
This book presented classes before lists just to tease you a bit. In most programs, the list is the 

most common structure type. This book only shows a small inkling of what lists can do. Unicon 

lists are a wonderful cross between a linked list and an array that can grow and shrink and be 

used as a stack, queue, or deque. Internally and invisibly, the list type supports special represen-

tations for arrays of integers and arrays of real numbers that optimize their space representation 

compatibly with C.

In addition to being used as arrays or stacks and such, lists are commonly used as glue data 

structures within classes to implement aggregation and multiplicity relationships. Here is a warn-

ing for mainstream programmers about Unicon lists: their first subscript is 1, not 0. Like BASIC, 

Unicon and Icon are 1-based because that is more natural for humans, while 0-based indexing is 

arguably a concession that other languages make in order to be more natural for machines. Now 

let’s compare the list type with the amazingly useful table data type.

Tables
A table, sometimes called a dictionary or an associative array, is an extremely flexible structure 

that corresponds to the mathematical concept of a function. A table maps keys from some do-

main onto values with some range. The Unicon table data type is named after its implementation, 

which is usually a hash table. A table feels like an array whose subscripts are not constrained to 

be contiguous integers starting from 1.

Any of Unicon’s types may be used as keys, but in practice, strings and integers are almost the 

only types that are used as hash keys. Sure, you can use real numbers, but round-off errors make 

subsequent lookups tricky. And you can use csets as table keys; it is just very rare. If you use oth-

er structure values as keys in a table, everything works, but you don’t compute their hash from 

their contents, because the contents are mutable. Without using the contents to hash and look 

up values, table performance does not scale well.

Sets
The set type is like a table in which the keys do not map onto anything. Keys may be inserted 

and deleted, and any value is either a member of the set or it is not. Operations such as union 

and intersection are supported. As with the table type, the keys in a set may be of arbitrary and 

mixed types.
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Files
The file type is what you would expect. Files generally access persistent storage managed by the 

operating system. There are handy functions for processing lines at a time. Most forms of input 

and output are extensions of the file type, so most file functions can be applied to network con-

nections, graphics windows, and so on.

Other types
Unicon has a host of other powerful built-in types for things such as windows, network con-

nections, and threads. Unlike some languages, it does not have a global interpreter lock to slow 

its thread concurrency down. Given values in this rich set of data types, the bodies of Unicon 

programs are assembled into computations using various expressions.

Evaluating expressions
Unicon expressions are goal-directed. When they can, they compute a result, and this is called suc-

cess. Expressions that have no result are said to fail. Failure will generally prevent a surrounding 

expression from being performed. Generators are a special category of Unicon expressions that 

are capable of computing more than one result; they are described in a section later in this chapter.

Goal-directed evaluation semantics with generators eliminates the need for a Boolean data type, 

which is usually found in other languages. It also dramatically increases the expressive power 

of the language, avoiding the need for a lot of tedious checking for sentinel values or writing ex-

plicit loops to search for things that can be found by goal-directed evaluation and backtracking. 

It takes time to get used to this feature, but once mastered, code is shorter and quicker to write.

Forming expressions using operators
Many of Unicon’s operators will be familiar from other languages, but some operators are unique. 

Here is a summary of Unicon’s operators. When chained together, the execution order of oper-

ators is determined by their precedence, which is generally as found in mainstream languages. 

Unary operators have higher precedence than binary, multiplication comes before addition, and 

so forth. When in doubt, force precedence using parentheses:

•	 Force precedence:

( exp )

Parentheses with no expression in front of them just force operator precedence and oth-

erwise have no effect.
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•	 Size:

* x : int

A unary asterisk is a size operator that returns how many elements are in a string, cset, 

queue, or structure, x.

•	 Is-null and is-nonnull:

/ x

\ x

These predicates just produce x if the test is true, but if the test is false, then they fail.

•	 Negate: and Unary plus:

- num

+ num

To negate a number is to flip its sign from positive to negative or vice versa. A unary plus 

operator coerces the operand into becoming a number but does not change its numeric 

value.

•	 Negate evaluation result:

not exp

A not converts an expression’s, exp, success into a failure and vice versa. When it succeeds, 

the result that’s produced is the null value.

•	 Tabmat:

= str

When the operand is a string, the unary equals is like tab(match(s)).

•	 Binary arithmetic (in three levels of decreasing precedence):

num1 ^ num2

num1 % num2		  num1 * num2		  num1 / num2

num1 + num2 		 num1 - num2

The usual binary numeric operators, along with the caret for exponentiation, may be fol-

lowed immediately by a := to perform an augmented assignment; for example, x +:= 1 

to add one to x. Almost all binary operators can be used with := to perform augmented 

assignment.
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•	 String and List concatenate:

str1 || str2

lst1 ||| lst2

To concatenate is to attach the first and second operand, in order, and produce the result.

•	 Assign a value:

variable := expr

In an assignment, the value on the right is stored in the variable on the left-hand side.

•	 Comparison:

num1 = num2			   num1 ~= num2

str1 == str2			  str1 ~== str2

num1 < num2			   str1 << str2

num1 <= num2			  str1 <<= str2

num1 > num2			   str1 >> str2

num1 >= num2			  str1 >>= str2

ex1 === ex2			   ex1 ~=== ex2

The usual numeric comparison operators are provided, along with string versions that 

generally repeat the operator character. The tilde means NOT. The equivalent operator, 

===, and not-equivalent operator, ~===, do not do any type conversion, while the others 

generally coerce operands to numeric or string types as needed. Comparison operators 

result in their second operand unless they fail.

•	 And:

ex1 & ex2  

A binary ampersand operator tests the expression ex1 and if it succeeds, the result of the 

whole expression is the result of ex2. If ex1 fails, ex2 is not evaluated. 

•	 Make an empty list:

[ ]

•	 Make an initialized list:

[ ex [ , ex ]* ]
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•	 Make an expression results list:

[: ex :]

•	 Make an initialized table:

[ ex : ex [ ; ex : ex ]* ] 

When brackets enclose zero or more elements, lists and tables are created. Initialized lists 

contain elements separated by commas. Bracket-colons enclose an expression results list; 

the expression is fully evaluated (as per every) and all results are placed in the resulting 

list that is constructed. This notation should only be used on expressions that produce 

a finite sequence of results. For an initialized table, elements consist of key-value pairs, 

separated by semi-colons.

•	 Select subelement:

ex1 [ ex2 [ , ex]* ]  

•	 Slice:

ex1 [ ex2 : ex3 ]

•	 Positive and negative relative slice:

ex1 [ ex2 +: ex3 ]     

ex1 [ ex2 -: ex3 ]    

For lists and strings, when brackets have an expression to their left, an element or slice of 

that expression is taken. The expression L[1,2] is equivalent to L[1][2]. Regular element 

referencing picks out an element from a value, such as a string or a list. The element may 

be read and used in a surrounding expression or written into and replaced with an assign-

ment. Subscripts normally start with a 1 for the first element. List and string indexes fail 

on out-of-range indices. Slicing is defined for both lists and strings. A string slice may be 

assigned if the original string is a variable. A list slice creates a list that contains a copy of 

the selected elements of the base list.

The subscripts for tables are keys and may be of any type. Table indexes result in the table 

default value when an unknown key is looked up. Records accept both strings and integer 

subscripts as if they were both tables and lists.
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•	 Access field:

x . name

The dot operator picks the name field out of a record or class instance, x. 

Invoking procedures, functions, and methods
One of the most fundamental abstractions in all programming is the act of asking another piece 

of code, somewhere else, to compute a value that is needed in an expression. In Unicon, you can 

invoke, or call, a user-written procedure, a built-in function, or a class method by following its 

name or reference with parentheses while enclosing zero or more values.

•	 Call and Method Call:

f ( [ expr1 [ , [ expri ] ]* ] ) 

object . method ( [ expr1 [ , [ expri ] ]* ] ) 

A procedure or function is called by following it with parentheses enclosing zero or more 

argument expressions, separated by commas. An omitted argument results in passing 

a null value in that position. Execution moves to that procedure or function and comes 

back when a result is produced, or no result is possible. A method is called by accessing 

the method name through an object. 

•	 Finish call:

return [ expr ]

return produces expr as the result of a method or procedure. The call cannot resume. If 

the result, expr, is not provided, the null value is returned.

•	 Produce a result:

suspend [ expr ]

suspend produces expr as the result of a method or procedure. The call will be resumed 

to try for another result if the expression where the call was made fails. If the result, expr, 

is not provided, the expression produces the null value.

•	 End call without result:

fail

fail terminates a procedure or method call without a result. The call may not be resumed.
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Iterating and selecting what and how to execute
Several Unicon control structures cover traditional control flow operations. These include se-

quencing, looping, and selecting pieces of code to execute:

•	 Execute in sequence:

{ expr1 [ ; expr2 ]* }

Curly brackets denote expressions to be evaluated in sequence. Semi-colons terminate each 

expression in the sequence. Unicon features automatic semi-colon insertion, so semi-co-

lons are rarely needed except for when two or more expressions are on the same line.

•	 If-then:

if ex1 then ex2 [else ex3]

if executes ex2 when ex1 succeeds; otherwise, it executes ex3.

•	 Evaluate until it fails:

while ex1 [ do ex2 ] 

A while loop iterates executing ex1 followed by ex2, until ex1 fails.

•	 Consume a generator:

every ex1 [ do ex2 ]

An every loop executes a single evaluation of ex1 in which for each result produced by 

ex1, which is usually a generator, ex2 is executed. The loop terminates after all the results 

from ex1 have been produced.

•	 Loop body:

do ex

The do clause in loops is usually optional and provides a body expression, ex, to execute 

on each iteration of a loop. The loop body expression is often a compound expression 

enclosed in curly brackets.

•	 Evaluate forever:

repeat ex

The repeat expression is a loop that reevaluates ex over and over. Among other ways, ex 

may exit the loop using break, return, fail, or by halting program execution.
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•	 Get out of loop:

break [ ex ]

break terminates a loop in the current procedure or method – always the nearest one. The 

ex expression is evaluated after the loop is terminated. You can write break break to get 

out of two loops, break break break to get out of three loops, and so on.

•	 Scan string:

str ? ex

The binary question mark looks like an operator but is actually a control structure that 

executes ex, setting &subject to str. The &pos keyword is started at 1. String scanning 

can be nested. It has a dynamic scope. The body expression, ex, is often a compound 

expression enclosed in curly brackets.

•	 Execute one branch:

case ex of { [ ex1 : ex2 ] * ; [default : exN ] }

case evaluates a key expression and compares the result against a sequence of case branch-

es, tested in order. The comparison is performed without type conversions as per the === 

operator. If the key expression is equivalent to one of the expressions to the left of a colon, 

the expression on the right of that colon is executed as the result of the case expression.

•	 Run on first call:

initial ex

An initial clause is an optional part of a procedure or method body that evaluates an 

expression the first time that the procedure or method is called, but skipped on all sub-

sequent calls. If present, the initial clause must be located at the front of a procedure 

or method body.

Generators
Some expressions in Unicon can produce multiple results; they are called generators. If a generator 

is resumed for a second or subsequent result, any new result triggers the re-execution of the sur-

rounding expression, which may end up producing multiple results for its enclosing expression. 

For example, consider the call ord("="|"+"|"-"). The ord(s) function, which returns the ASCII 

code for s, is not a generator, but if its parameter expression is a generator, the whole call to ord() 

becomes a generator. In this case, "="|"+"|"-" is a generator that can produce three results. 
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If the enclosing expression needs all of them, ord() may get called three times and yield three 

results to an enclosing expression. As another example of this feature, consider the following 

expression:

\kids[1|2].first | genlabel()

This generator is capable of producing the .first field from either kids[1] or kids[2], provided 

that kids is not null and not empty, but if those did not occur or did not satisfy the surrounding 

expression, this expression would call genlabel() and produce its result(s) if it has any. Unicon’s 

generator expressions include:

•	 Alternation:

ex1 | ex2

An alternation generates results from ex1 and then ex2. Although it can be read and used 

as an or expression, it is almost more of a concatenation of the sequences of results from 

the two subexpressions.

•	 Generate components:

! ex : any*

A unary exclamation operator produces constituent pieces of a value in some defined order. 

Integers are generated by counting from 1 to the number. Strings, lists, records, and objects 

are generated by producing their values one at a time in a well-defined order. Tables and 

sets behave similarly but the order is undefined. Csets produce their element one-letter 

strings in ascending alphabetical order. Files generate their contents a line at a time.

•	 Finite numeric sequence:

ex1 to ex2 [by ex3]

A to expression generates numbers from ex1 to ex2. The default step is 1, but if by is 

provided, the sequence steps by that amount each time.

Debugging and environmental issues
This section contains information you may find useful when programming in Unicon. This in-

cludes a brief introduction to the Unicon debugger, some environment variables that you can set 

to modify Unicon runtime behavior, and a simple preprocessor that Unicon provides.
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Learning the basics of the UDB debugger
Unicon’s source-level debugger is named udb and is described in UTR 10, which can be read at 

http://unicon.org/utr/utr10.html. udb's command set is based on that of gdb, which lives 

at https://www.gnu.org/software/gdb/.

When you run udb, you provide the program to debug as a command-line argument. Alternatively, 

from within the debugger, you can run the load command to specify the program to debug. The 

debugger is normally exited using the quit (or q) command.

The udb prompt recognizes a lot of commands, often with an abbreviated form available. Perhaps 

after the quit command, the next most important command is help (or h).

The next most important command is the run (or r) command. It can be used to restart the pro-

gram’s execution from the beginning.

To set a breakpoint at a line number or procedure, you can use the break (or b) command, followed 

by the line number or procedure name. When execution hits that location, you will return to the 

udb command prompt. At that point, you can use step (or s) to execute one line at a time, next 

(or n) to run to the next line while skipping over any procedures or methods called, print (or p) 

to get the values of variables, or cont (or c) to continue execution at full speed.

Environment variables
Several environment variables control or modify the behavior of Unicon programs or the Unicon 

compiler. The most important of these are summarized here. By default, Unicon’s block region 

heap and string region heap are sized proportional to physical memory, but you can set several 

of the runtime memory sizes explicitly:

Table A.3: Environment variables and their descriptions

http://unicon.org/utr/utr10.html
https://www.gnu.org/software/gdb/
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IPATH is also used to look for superclasses and package imports. Now, let’s look at Unicon’s pre-

processor, which works like a simplified C preprocessor.

Preprocessor
The Unicon preprocessor performs file includes and replaces symbolic constants with values. The 

preprocessor also allows chunks of code to be enabled or disabled at compile time. This facilitates, 

for example, compiling different code for different operating systems.

Preprocessor commands
Lines that begin with a dollar sign are preprocessor directives:

$define sym text

The symbol, sym, is replaced with text. There are no macro parameters in this construct:

$include filenam

The file named filenam is incorporated into the source code where $include was found:

$ifdef sym

$ifndef sym

$else

$endif

Lines inside $ifdef are passed along to the compiler if sym was introduced by a previous $define. 

$ifndef passes along source code if a symbol was not defined. These two directives take an op-

tional $else, followed by more code, and are terminated by $endif:

$line num [ filenam ]

The next line should be reported as starting at line num from the filenam file:

$undef sym

The definition, sym, is erased. Subsequent occurrences are not replaced by anything.

Built-in macro definitions
These symbols identify platforms and features that may be present and affect language capabil-

ities. A leading underscore suggests their built-in status. The built-in macro definitions include 

the following:
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Table A.4: Built-in macros

These symbols, which you can check at compile time using $ifdef, have corresponding feature 

strings that can be checked at runtime using &features. For details, you can look at Programming 

with Unicon. Now, let’s look at Unicon’s built-in functions.

Function mini-reference
This section describes a subset of Unicon’s built-in functions deemed most likely to be relevant to 

programming language implementers. For a full list, see Appendix A of Programming with Unicon. 

The parameters’ required types in this section are given by their names. The names c or cs indicate 

a character set. The names s or str indicate a string. The names i or j indicate integers. A name 

such as x or any indicates that the parameter may be of any type. Such names may be suffixed 

with a number to distinguish them from other parameters of the same type. The colons and types 

after the parameters indicate return types, along with the number of returned values. Normally, 

a function will have exactly one return value. A question mark indicates that the function is a 

predicate that can fail with zero or one return value. An asterisk indicates that the function is a 

generator with zero or more return values.

Many functions also have default values for parameters, indicated in the reference using a colon 

and a value after their name. Functions with parameters ending in str, i1, and i2 are string anal-

ysis functions. String analysis functions’ last three parameters default to &subject, &pos, and 0. 

The i1 and i2 parameters are swapped if i1 is greater than i2, so it does not matter in what order 

the indices are supplied. String analysis is always conducted from left to right:

•	 abs(n) : num

abs(n) returns -n if n is negative. Otherwise, it returns n.
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•	 any(cs, str, i1, j2) : integer?

any(cs, str, i1, i2) produces i1+1 when str[i1] is a member of cset, cs, and fails 

otherwise.

•	 bal(c1:&cset, c2:'(', c3:')', str, i1, i2) : integer*

bal(c1, c2, c3, str, i1, i2) produces indices in str where a member of c1 in 

str[i1:i2] is balanced as far as opener characters in c2 and closer characters in c3.

•	 char(i) : str

char(i) returns the one-letter string encoding of i, which must be in the range 0-255.

•	 close(f) : file

close(f) releases operating system resources associated with f and closes it.

•	 copy(any) : any

copy(y) produces y. For structures, it returns a physical copy. For nested structures, the 

copy is one level deep.

•	 delay(i) : null

delay(i) does nothing for at least i milliseconds, after which it returns, allowing exe-

cution to continue.

•	 delete(y1, y2, …) : y1

delete(y1, y2) removes one or more values at the key location, y2, and any subsequent 

elements from the y1 structure.

•	 exit(i:0) :

exit(i) quits the program execution and produces i as an exit status.

•	 find(s, str, i1, i2) : int*

find(s, str, i1, i2) produces indices where s occurs in str, considering only indices 

between i1 and i2.

•	 getenv(str) : str?

getenv(str) produces a value named str from the environment.

•	 iand(i1, i2) : int

iand(i1, i2) returns i1 bitwise-ANDed with i2.
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•	 icom(i) : int

icom(i) flips the ones to zeros and the zeros to ones, producing the integer complement.

•	 image(x) : str

image(x) produces a string that represents the contents of x.

•	 insert(x1, x2, x3:&null) : x1

insert(x1, x2, x3) places x2 in the x1 structure. If x1 is a list, x2 is a position; otherwise, 

it is a key. If x1 is a table, the x2 key is associated with the x3 value. insert() produces 

the structure.

•	 integer(x) : int?

integer(x) coerces x into the integer type. It fails when conversion is not possible.

•	 ior(i1, i2) : int

ior(i1, i2) returns i1 bitwise-ORed with i2.

•	 ishift(i1, i2) : int

ishift(i1, i2) shifts i2 bit positions over within i1 and returns the result. The shift 

goes right if i2<0 or left if i2>0. During the shift, i2 zero bits come in from the opposite 

direction of the shift.

•	 ixor(i1, i2) : int

ixor(i1, i2) returns i1 bitwise-exclusive-ORed with i2.

•	 kbhit() : ?

kbhit() returns whether a key on the keyboard has been pressed or not.

•	 key(y) : any*

key(y) produces keys/indices with which a structure’s y elements may be accessed.

•	 list(i, x) : list

list(i, x) constructs a list with i elements that each contain x. x is not copied for each 

element of the list, so you have to allocate each element separately if you want a list of 

lists, for example.

•	 many(cs, str, i1, i2) : int?

many(cs, str, i1, i2) produces the position in str that follows as many contiguous 

members of cs within str[i1:i2] as possible.
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•	 map(str1, str2, str3) : str

map(str1, str2, str3) returns str1 transformed so that where str1's characters may 

be found in str2, they are replaced with the corresponding characters in str3. str2 and 

str3 must be of the same length.

•	 match(s, str, i1, i2) : int?

match(s, str, i1, i2) returns i1+*s when s==str[i1+:*s]. The function fails when 

there is no match.

•	 max(num,…) : num

max(…) produces the numeric maximum of its parameters.

•	 member(y,…) : y?

member(y,…) produces y when the other parameters are in structure y; otherwise, it fails.

•	 min(num,…) : num

min(…) produces the numeric minimum of its parameters.

•	 move(i) : str

move(i) increments or decrements &pos by i and returns a substring from the old to the 

new position within &subject. The position is reset if this function is resumed.

•	 open(str1, str2, ...) : file?

open(str1, str2,…) asks the operating system to open the file named str1 using mode 

str2. Subsequent arguments are attributes that may affect special files. The function 

recognizes the following modes, which are given in the str2 argument: 

Table A.5: Modes and their descriptions
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•	 ord(s) : integer

ord(s) returns the ordinal (for example, ASCII code) of a one-letter string, s.

•	 pop(L) : any?

pop(L) returns a value from the front of L and removes it from the list.

•	 pos(i) : int?

pos(i) returns whether string scanning is at the location, i.

•	 proc(x, i:1) : procedure?

proc(str, i) produces a procedure that is denoted str in the current scope. If i is 0, the 

built-in function named str is produced if there is one by that name. The official Unicon 

book defines additional behaviors of proc() when x is a thread, co-expression, or proce-

dure, or when str denotes an operator such as "-" and i denotes its arity.

•	 pull(L, i:1) : any?

pull(L) returns the last element of L and removes it. It can remove i elements.

•	 push(L, y, ...) : list

push(L, y1, …, yN) pushes one or more elements onto the list, L, at the front. push() 

returns its first parameter, with new values added.

•	 read(f:&input) : str?

read(f) inputs the next line of file f and returns it without the newline.

•	 reads(f:&input, i:1) : str?

reads(f, i) inputs i bytes from the file, f, failing if no more bytes are there. reads() 

returns with available input, even if it is less than i bytes. When -1 bytes are requested, 

reads() returns a string that contains all the remaining bytes in the file.

•	 ready(f:&input, i:0) : str?

ready(f, i) inputs i bytes from the file, f, usually a network connection. It returns 

without blocking and if that means less than i bytes are available, so be it. It fails when 

no input has arrived yet.

•	 real(any) : real?

real(x) coerces x into its floating-point equivalent. It fails when no coercion is possible.

•	 remove(str) : ?
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remove(str) deletes the file named str from the filesystem.

•	 rename(str1, str2) : ?

rename(str1, str2) changes the str1 file’s name to str2.

•	 repl(y, i) : x

repl(x, i) produces i concatenated instances of x.

•	 reverse(y) : y

reverse(y) produces a list or string that is in the opposite order of y.

•	 rmdir(str) : ?

rmdir(str) deletes the folder with the name str or fails if it cannot be deleted.

•	 serial(y) : int?

serial(y) produces an identifying integer for the structure, y. These numbers are as-

signed when structures are allocated. Separate counters are used for each structure type. 

The identifying integer provides the chronological order in which instances of each type 

were allocated.

•	 set(y, …) : set

set() allocates a set. Parameters are the initial values of the new set, except if they are 

lists; lists’ elements are the initial values of the new set. Here, the parameters’ contents 

are the initial values of the new set.

•	 sort(y, i:1) : list

sort() allocates a list in which elements of y are sorted. When tables are sorted, keys are 

sorted when i is one or three, and values are sorted when i is two or four. When i is one 

or two, the return list’s elements are two-element key-value sublists; when i is three or 

four, the return list’s elements alternate between keys and values.

•	 stat(f) : record?

stat(f) produces information about f. The argument may be a string filename or an open 

file. Three portable fields are size in bytes, mode access permissions, and the last modified 

time, mtime. The mode string resembles the long listing from ls(1). stat(f) fails when 

there is no filename or path, f.

•	 stop(s, ...) :
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stop(args) writes its arguments to &errout, followed by a newline, and then quits the 

program.

•	 string(any) : str?

string(y) coerces y into a corresponding string. It fails when no conversion is possible.

•	 system(x, f:&input, f:&output, f:&errout, s) : int

system(x) runs a program given as a string command line or a list of command-line argu-

ments. The program runs as a separate process. Optional arguments supply the standard 

I/O files. The process’s exit status is returned. If the fifth parameter is "nowait", the func-

tion immediately returns with the new process ID instead of waiting for it to complete.

•	 tab(i:0) : str?

tab(i) assigns the location specified in i to &pos. It produces a substring between the 

new and former locations. The &pos keyword is reset to its former position if the function 

resumes.

•	 table(k, v, ..., x) : table

table(x) builds a table whose values default to x. table(k, v,…, x) initializes a table 

from alternating key and value arguments, ending (if the number of parameters is odd) 

with the table’s default value.

•	 trim(str, cs:' ', i:-1) : str

trim(str, cs, i) produces a substring of str with members of cset, cs, deleted from 

the front (when i=1), the back (when i=-1), or both (when i=0). By default, it removes 

trailing spaces from the end.

•	 type(x) : str

type(x) produces the string name of the type x.

•	 upto(cs, str, i1, i2) : int*

upto(cs, str, i1, i2) generates the indices in str at which a member of cset, cs, may 

be found in str[i1:i2]. It fails otherwise.

•	 write(s|f, ...) : str|file

write(…) sends one or more string arguments appended by a newline to a file, defaulting 

to &output. write() produces the final parameter as its return value.

•	 writes(s|f, ...) : str|file
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writes(…) sends one or more string arguments to a file, defaulting to &output. writes() 

produces the final parameter as its return value.

Selected keywords
Unicon has about 75 keywords. Keywords are global names beginning with an ampersand with 

a predefined meaning. Many keywords are constant or read-only values that are built into the 

language, while others are associated with built-in domain-specific language facilities such as 

string scanning or graphics. This section lists the most essential keywords, many of which appear 

in the examples in this book:

•	 &clock : str

The &clock read-only keyword produces the current time of day.

•	 &cset : cset

The &cset constant keyword denotes the cset containing every character.

•	 &date : str

The &date read-only keyword produces the current date.

•	 &digits : cset

The &digits constant keyword denotes the cset containing "0" through "9".

•	 &errout : file

The &errout read-only keyword denotes the standard location for error output, often a 

terminal console window.

•	 &fail :

The &fail keyword is an expression that fails to produce a result.

•	 &features : str*

The &features read-only keyword produces a sequence of strings indicating any optional 

features and capabilities of this Unicon runtime system build. For example, if Unicon is 

built with graphics facilities, one or more strings indicate whether 2D or 3D are supported, 

whether various image file formats are available in this Unicon build, etc. 

•	 &input : file

The &input read-only keyword denotes the standard location from which to read input.
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•	 &lcase : cset

The &lcase constant keyword denotes the cset containing the letters "a" through "z".

•	 &letters : cset

The &letters constant keyword denotes the cset containing the letters "A" through "Z" 

and "a" through "z".

•	 &now : int

The &now read-only keyword produces the number of seconds since 1/1/1970 GMT.

•	 &null : null

The &null constant keyword denotes a valueless value whose type is the null type. It is 

the default value in many language constructs, for things that haven’t been initialized 

yet or have been omitted.

•	 &output : file

The &output constant keyword denotes the standard default location where output is 

written, often a terminal console window.

•	 &pos := int

The &pos keyword refers to the position within &subject where string analysis is per-

formed. It starts at 1 in each string scanning environment and its value is constrained to 

always be a valid index within &subject.

•	 &subject := str

The &subject keyword refers to the string under analysis in a string scanning control 

structure. Assigning a value to &subject has the side effect of setting &pos to 1.

•	 &ucase : cset

The &ucase constant keyword denotes the cset containing letters "A" through "Z".

•	 &version : str

The &version constant keyword reports the Unicon version as a string.
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Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw



Answers

The following answers sketch some possible solutions to the questions at the end of each chapter; 

these are provided for your reflection.

Chapter 1
1.	 It is much easier to generate C code than to generate machine code, but the resulting 

code may be larger or slower than native code, causing a performance cost. A transpiler 

depends on an underlying compiler that may be a bit of a moving target, but if the under-

lying compiler is highly portable, the transpiler will be far more portable than a compiler 

that generates native code.

2.	 Lexical, syntax, and semantic analysis, followed by intermediate and final code generation.

3.	 Classic pain points include input/output being overly difficult, especially on new kinds 

of hardware; concurrency; and making a program run across many different operating 

systems and CPUs. One feature that languages have used to simplify input/output has 

been to reduce the problem of communicating with new hardware via a set of strings in 

human-readable formats, for example, to play music or read touch input. Concurrency 

has been simplified in languages with built-in threads and monitors. Portability has been 

simplified in languages that provide their own high-level virtual machine implementation.

4.	 This depends on your application domain of interest, but here is one. The language will 

input programs written in a Java-like syntax stored in files with a .j0 extension, generat-

ing target code in the form of HTML5 and JavaScript that runs on websites. The language 

will support JDBC and socket communications via websockets, and 2D and 3D graphics 

by means of OpenGL. The language will support an intuitive square-bracket syntax for 

accessing string elements and HashMap keys. The language will support JSON syntax na-

tively within the source code as a HashMap literal.

Chapter 2
1.	 Reserved words contribute both to human readability and ease of parsing for the lan-

guage implementation, but they also sometimes preclude the most natural names for the 

variables in a program, and too many reserved words can make it more difficult to learn 

a programming language.
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2.	 Integers in C or Java, for example, can be expressed as signed or unsigned in a decimal, octal, 

hexadecimal, or maybe even binary format, for small, medium, large, or super-sized words.

3.	 Several languages implement a semicolon insertion mechanism that makes semicolons 

optional. Sometimes, this involves using the newline character to replace the role of the 

semicolon as a statement terminator or separator. It is not usually a straightforward map-

ping of newline==semi-colon; there are often contextual rules involved. For example, Go 

adds semi-colons at newlines when the last token on a line is a member of a prescribed 

set of tokens that require semi-colons, which is a simple contextual rule. Icon and Unicon 

have additional context: in addition to looking at the last token on a line, Icon and Unicon 

also look at the first token of the next line, and they only insert a semi-colon if the first 

token on the next line can legally come after a semi-colon.

4.	 Although most Java programs do not make use of this capability, putting main() in several 

(or all) classes might be very useful in unit testing and integration testing.

5.	 While it is feasible to provide pre-opened input/output facilities, these can involve sub-

stantial resources and initialization costs that programs should not have to pay for unless 

a given input/output facility will be used in them. If you design a language that specifically 

targets a domain where one of these forms of input/output is guaranteed, it makes good 

sense to consider how to make access as simple as possible.

Chapter 3
1.	 A first approximation of the regular expression is [0-3][0-9]"/"[01][0-9]"/"[0-9]{4}. 

While it is possible to write a regular expression that matches only legal dates, such an 

expression is impractically long, especially when you consider leap years. In such cases, it 

makes sense to use the regular expression that provides the simplest close approximation 

of correctness, and then check the correctness in the semantic action or a subsequent 

semantic analysis phase.

2.	 yylex() returns an integer category for use in syntax analysis, while yytext is a string that 

contains the symbols matched, and yylval holds an object called a token that contains 

all the lexical attributes of that lexeme.

3.	 When a regular expression does not return a value, the characters that it matches are 

discarded and the yylex() function continues with a new match, starting with the next 

character in the input.
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4.	 Flex matches the longest string that it can; it breaks ties among multiple regular expres-

sions by selecting whichever one matches the longest string. When two regular expressions 

match the same length in a given point, Flex selects whichever regular expression occurs 

first in the lex specification file.

Chapter 4
1.	 A terminal symbol is not defined by a production rule in terms of other symbols. This is 

the opposite of a non-terminal symbol, which can be replaced by or constructed from 

the sequence of symbols on the right-hand side of a production rule that defines that 

non-terminal symbol.

2.	 A shift removes the current symbol from the input and pushes it onto the parse stack. A 

reduce pops zero or more symbols from the top of the parse stack that match the right-

hand side of a production rule, pushing the corresponding non-terminal from the left 

side of the production rule in their place.

3.	 YACC gives you a chance to execute some semantic action code only when a reduce op-

eration takes place.

4.	 The integer categories returned from yylex() in the previous chapter are exactly the 

sequence of terminal symbols that the parser sees and shifts during parsing. A successful 

parse shifts all the available input symbols and gradually reduces them back to the starting 

non-terminal of the grammar.

Chapter 5
1.	 The yylex() lexical analyzer allocates a leaf and stores it in yylval for each terminal 

symbol that it returns to yyparse().

2.	 When a production rule in the grammar is reduced, the semantic action code in the parser 

allocates an internal node, and it initializes its children to refer to the leaves and internal 

nodes corresponding to symbols on the right-hand side of that production rule.

3.	 yyparse() maintains a value stack that grows and shrinks in lock-step with the parse 

stack during parsing. Leaves and internal nodes are stored on the value stack until they 

are inserted as children into a containing internal node.

4.	 A value stack is fully generic and can contain whatever type(s) of values the compiler may 

require. In C, this is done using a union type, which is type-unsafe. In Java, it is done using 

a parserVal class that contains the tree nodes generically. In Unicon and other dynamic 

languages, no wrapping or unwrapping is needed.
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Chapter 6
1.	 Symbol tables allow your semantic analysis and code generation phases to quickly look up 

symbols declared far away in the syntax tree, following the scoping rules of the language.

2.	 Synthesized attributes are computed using the information located immediately at a node, 

or using information obtained from its children. Inherited attributes are computed using 

information from elsewhere in the tree, such as parent or sibling nodes. Synthesized at-

tributes are typically computed using a bottom-up, post-order traversal of the syntax tree, 

while inherited attributes are typically computed using a pre-order traversal. Both kinds 

of attributes are stored in syntax tree nodes in variables added to the node’s data type.

3.	 The Jzero language calls for a global scope, a class scope, and one local scope for each mem-

ber function. The symbol tables are typically organized in a tree structure corresponding 

to the scoping rules of the language, with child symbol tables attached or associated with 

the corresponding symbol table entries in the enclosing scope.

4.	 If Jzero allowed multiple classes in separate files, the symbol tables would need a mech-

anism to be aware of the classes. In Java, this may entail reading other source files at 

compile time while compiling a given file. This implies that classes must be easily found 

without reference to their filename, hence Java’s requirement that classes be placed in 

files whose base name is the same as the class name.

Chapter 7
1.	 Type checking finds many errors that would prevent the program from running correctly, 

but it also helps determine how much memory will be needed to hold variables, and ex-

actly what instructions will be needed to perform the various operations in the program.

2.	 A structure type is needed to represent arbitrarily deep composite structures, including 

recursive structures such as linked lists. Any given program only has a finite number of 

such types, so it would be possible to enumerate them and represent them using integer 

subscripts by placing them in a type table. However, references to structures provide a 

more direct representation.

3.	 If real compilers reported an OK line for every successful type check, non-toy programs 

would emit thousands of such checks on every compile, making it difficult to notice the 

occasional errors.

4.	 Picky type checkers may be a pain for programmers, but they help avoid unintended type 

conversions that hide logic errors, and they also reduce the tendency of a language to run 

slow due to silently and automatically converting types repeatedly at runtime.
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Chapter 8
1.	 For any specific array access, the result of a subscript operator will be the array’s element 

type. With a struct or class access, the name of the (member) field within the struct must 

be used to determine the resulting type, via a symbol table lookup or something equivalent.

2.	 A function’s return type can be stored in the function’s symbol table and looked up from 

anywhere within the function’s body. One easy way to do this is to store the return type 

under a symbol that is not a legal variable name, such as return. An alternative would 

be to propagate the function’s return type down into the function body as an inherited 

attribute. This might be relatively straightforward, but it seems like a waste of space in 

the parse tree nodes.

3.	 Generally, operators such as plus and minus have a fixed number of operands and a fixed 

number of types for which they are defined; this lends itself to storing the type checking 

rules in a table or a switch statement of some kind. Function calls have to perform type 

checking over an arbitrary number of arguments, which can be of an arbitrary type. The 

function’s parameters and return type are stored in its symbol table entry. They are looked 

up and used to type check each site where that function is called.

4.	 Besides member access, type checking occurs when composite types are created, assigned, 

passed as parameters, and, in some languages, destroyed.

Chapter 9
1.	 It would be reasonable, and could be appropriate, to introduce three address instructions 

to do input and output. However, most languages’ input and output operations are encap-

sulated by a function or method calling interface, as I/O tends to be encapsulated either 

by language runtime system calls or system calls.

2.	 Semantic rules are logical declarative statements of how to compute semantic attributes. 

Synthesized attributes can generally be computed by bottom-up, post-order tree traversals. 

Depending on their interdependences, inherited attributes can be computed by one or 

more top-down, pre-order tree traversals.

3.	 Computing labels during the same tree traversal that generates code may improve the 

compiler’s performance. However, it is difficult to generate code with gotos whose labels 

point forward to code that has not been generated yet. A single-pass compiler may have 

to build auxiliary structures and backpatch code.
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4.	 A naïve code generator that calls genlocal() for every new local variable may use far more 

space on the stack than is necessary. Excessive stack sizes may reduce performance due 

to poorer page caching, and in heavily recursive code, it may increase the possibility of a 

stack overflow or running out of memory.

Chapter 10
1.	 Colorblind individuals may be able to utilize a limited number of grayscales or textures 

in IDEs where color-seeing individuals use colors. For many users who have only partial 

color blindness, allowing users to customize the assignments of colors to various source 

code elements may be the best solution. If using textures to substitute for colors, one 

might use the background texture where text fonts are drawn. Other font styles such as 

bold, italics, underlining, or shadowing might also be used.

2.	 Reparsing does not have to depend on cursor motion. It could be based on the number of 

tokens inserted, deleted, or modified, the number of keystrokes, the amount of elapsed 

real time, or some combination of several of these factors.

3.	 There are many possible ways to indicate syntactic nesting. For example, nesting might be 

represented by indentation, a progressive darkening of the background color, or bound-

aries of scopes might be explicitly drawn with dashed lines.

Chapter 11
1.	 Preprocessors in C/C++ have been known to be a subtle source of bugs, particularly when 

programmers misuse them. Many of these bugs occur due to macros with parameters, 

whose bodies can call other macros with parameters. The output after all macros are 

expanded can be tricky, or surprising. Setting aside the issue of bugs, if one is not careful, 

macros can reduce readability instead of improving it, or they can give a false sense of 

security when a macro looks simple but what it expands to is complex.

2.	 Transpilers have a bootstrapping problem: they depend on some other high-level language 

being ported first. Transpilers leave you dependent on the underlying language working 

correctly, but the underlying language may change in ways that break the transpiler. 

Transpilers may also introduce problems with performance or the debugging of code.
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Chapter 12
1.	 Complex instruction sets take more time and logic to decode and might make the imple-

mentation of the byte-code interpreter more difficult or less portable. On the other hand, 

the closer the final code comes to resembling intermediate code, the simpler the final 

code generation stage becomes.

2.	 Implementing bytecode addresses using hardware addresses provides the best perfor-

mance that you might hope for, but it may leave an implementation more vulnerable to 

memory safety and security issues. A bytecode interpreter that implements addresses 

using offsets within an array of bytes may find it has fewer memory problems; performance 

may or may not be a problem.

3.	 Some bytecode interpreters may benefit from the ability to modify code at runtime. For 

example, bytecode that was linked using byte-offset information may be converted into 

code that uses pointers. Immutable code makes this type of self-modifying behavior more 

difficult or impossible.

Chapter 13
1.	 Operands from multi-operand instructions are pushed onto the stack by PUSH instructions. 

The actual operation computes a result. The result is stored in memory by a POP instruction.

2.	 A table that maps each of the labels to byte offset 120 is constructed. Uses of labels en-

countered after their table entry exists are simply replaced by the value 120. Uses of labels 

encountered before their table entry exists are forward references; the table must contain 

a linked list of forward references that are backpatched when the label is encountered.

3.	 On the Jzero bytecode stack machine, operands might already be on the stack and PARM 

instructions might be redundant, allowing for substantial optimization. Also, on the Jzero 

machine, the function call sequence calls for a reference/address to the method being 

called to be pushed before the operands; this is a very different calling convention from 

that used in the three-address intermediate code.

4.	 Static methods do not get invoked on an object instance. In the case of a static method with 

no parameters, you may need to push the procedure address within the CALL instruction, 

since it is preceded by no PARM instructions.
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5.	 It is possible to guarantee no nesting of PARM…CALL sequences by re-arranging code and 

introducing additional temporary variables, but that can be cumbersome. If you determine 

that your three-address code for nested calls does in fact result in nested PARM…CALL se-

quences, you will need a stack of PARM instructions to manage it and will need to carefully 

search for the correct CALL instruction, skipping over any nested CALL instructions whose 

number of PARM instructions were placed on the stack after the PARM instruction that you 

are searching for. Have fun!

6.	 Whether portability trumps performance is a design decision, and there is no one right 

answer. It is possible to write a portable bytecode in which portable instructions rewrite 

themselves into native formats on the fly. In an extreme case, this might entail just-in-

time compilation to pure native code.

Chapter 14
1.	 There are many new concepts in native code. These include many kinds and sizes of regis-

ters and main memory access modes. Choosing from many possible underlying instruction 

sequences is also important.

2.	 Even with the runtime addition required, addresses that are stored as offsets relative to the 

instruction pointer may be more compact and take advantage of instruction prefetching in 

the pipelined architecture, providing faster access to global variables than specifying them 

using absolute addresses. Disadvantages might include increased difficulty of debugging, 

reduced human readability of the assembler code, and/or higher complexity needed for 

alias analysis than what might be needed for optimization and reverse engineering tasks.

3.	 Function call speed is important because modern software is often organized into many 

frequently called tiny functions. The x64 architecture performs fast function calls if func-

tions take advantage of passing the first six parameters in registers. Several aspects of x64 

architecture seem to have the potential to reduce execution speed, such as a need to save 

and restore large numbers of registers to memory before and after a call.

Chapter 15
1.	 Although libraries are great, they have downsides. Libraries tend to have more version 

compatibility problems than the features that are built into the language. Libraries are 

unable to provide a notation that is concise and readable as built-ins. Lastly, libraries do 

not lend themselves to interactions with novel control structures to support new appli-

cation domains.
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2.	 If your new computation only needs one or two parameters, appears many times in typ-

ical applications in your domain, and computes a new value without side effects, it is a 

good candidate to be made into an operator. An operator is limited to two operands, or at 

the most, three; otherwise, it will not provide any readability advantage over a function. 

Unless new operators are familiar or can be used analogously to familiar operators, they 

may be less readable over time than using named functions.

3.	 Ultimately, we have to read the books written by the Java language inventors to hear their 

reasons, but one answer might be that Java designers wanted to use strings as a class 

and decided classes would not be free to implement operators, for the sake of referential 

transparency.

Chapter 16
1.	 Control structures in very high-level and domain-specific languages had better be a lot 

more expressive and powerful than just if statements and loops; otherwise, programmers 

would be better off just coding in a mainstream language. Often, a control structure can 

add power by changing the semantic interpretation of the code inside it, or by changing 

the data to which the code is applied.

2.	 We provided some examples in which control structures provided defaults for parameters 

or ensured an open resource was closed afterward. Domain-specific control structures 

can certainly provide additional high-level semantics, such as performing domain-spe-

cific input/output or accessing specialty hardware in a way that is difficult to accomplish 

within the context of a mainstream control flow.

3.	 The application domain is string analysis. Maybe some additional operators or built-in 

functions would improve Unicon’s expressive power for string analysis. Can you think of 

any candidates you could add to the six-string analysis functions or the two position-mov-

ing functions? You could easily run some statistics on common Icon and/or Unicon appli-

cations and discover which combinations of tab() or move() and the six-string analysis 

functions occur most frequently in the code and are candidates for becoming operators, 

besides tab(match()). I doubt that tab(match()) is the most frequent. But beware: if 

you add too many primitives, it makes the control structure more difficult to learn and 

master. Also, the ideas from this control structure could be applied to the analysis of other 

sequential data, such as arrays/lists of numeric or object instance values.
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4.	 It is tempting to bundle as much additional semantics into a domain control structure as 

possible so that you make the code more concise. However, if a good number of wsection 

constructs are not based on a hierarchical 3D model and would not make use of the built-

in functionality of PushMatrix() and PopMatrix(), bundling that into wsection might 

slow down the construct’s execution speed unnecessarily.

Chapter 17
1.	 You could modify the PostDescrip() macro to check for a null value before checking 

whether a value is a qualifier or a pointer. Whether such a check pays for itself depends 

on how costly the bitwise AND operator is, and the actual frequency of different types 

of data encountered during these checks, which can be measured but may well vary, de-

pending on the application.

2.	 If each class type had its own heap region, it may become possible in the implementation 

that class instances might no longer need to track their size, potentially saving memory 

costs for classes that have many small instances. The freed garbage instances could be 

managed on a linked list and compared with a mark-and-sweep collector, and instances 

might never need to be moved or pointers updated, simplifying garbage collection. On 

the other hand, some program runs might only use a very few of the various classes, and 

allocating a dedicated heap region for such classes might be a waste.

3.	 While some time might be saved by not moving data during garbage collection, over 

time, a substantial amount of memory might be lost to fragmentation. Small chunks of 

free memory might go unused because later memory allocation requests were for larger 

amounts. The task of finding a free chunk of sufficient size might become more complex, 

and that cost might exceed the time saved by not moving data.
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conditional branches  387, 388

x64 code, generating for simple 
 expressions  385, 386

x64 code generator method,  
implementing  384

intermediate code generator  6
internal node  106

building, from production rules  115
tree node factory method,  

using  118-120
tree nodes, accessing on 

 value stack  115-118
interpreters

implementing  460
inter-process communication  246
isConst attribute

synthesizing  157, 158
iyacc

using  74

J
Java  8
Java Jzero code  55-59
Java Jzero parser code  93, 94
JavaScript Object Notation (JSON)  251
Java syntax error messages

detail, adding  97
Java Virtual Machine  5
Java VM (JVM) interpreter  365
JFlex

using  38
JSON atomic types  251
JSON collections  251

Jzero  8
runtime system, writing for  341, 342

Jzero bytecode file format
defining  327-330

Jzero bytecode machine
stack machine operation, using  330

Jzero code, transpiling to Unicon  294
assignments  306
base cases, transpiling  298
code generation model,  

for Jzero  295, 296
dot operator, handling  299-301
Java expressions, mapping to  

Unicon  302, 303
Jzero block statements,  

transpiling  313, 314
Jzero class, transpiling  315-318
Jzero declarations, 

 transpiling  309- 312
literals  298
names  298
semantic attributes  294, 295
transpiler code, for control 

 structures  306-309
transpiler code, for method  

calls  304, 305
transpiler code generation 

 algorithm  297, 298
Jzero flex specification  49-52
Jzero interpreter

starting up  340
Jzero language

syntax trees, forming for  120-127
Jzero language definition  27, 28
Jzero lex specification  85
Jzero program

running  342
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Jzero scanner
running  60, 61

Jzero yacc specification  86-90

K
key-value pairs  482
keywords  496, 497
Kobayashi Maru scenario  74

L
LALR(1)  76
LALR parser

reference link  77
languages, in code examples

using  8, 9
leaves

creating, from terminal symbols  111
determining   115
tokens, wrapping  111
working, with YACC’s  

value stack  112, 113
wrapping, for parser’s  

value stack  113, 114
level of detail (LOD) management  30
lex-compatible interface  260
lexeme  34
lexical analysis  69
lexical analyzer  6, 61, 258

real-world example  61-63
lexical category  35
lexical information

for colorizing tokens  265
lex specification  39

example, expanding to construct 
 tokens  45-48

header section  39
lexical attributes  45
regular expressions section  40
scanner, running  43-45
simple source code scanner,  

writing  40-43
token  45

libraries  9
versus programming languages  9, 10

Lisp  460
lists  478
live data marking  444, 445

basis, traversing  447, 448
block region, marking  449-451
heap memory regions,  

organizing  445-447
live memory, placing into contiguous 

chunks  452-455
live memory, reclaiming  452-455

M
macro preprocessors  278
macros  276
mark-and-sweep collection  435
memory management  435
memory regions

mapping, to x64 register-based 
 address modes  374

Merr  98
used, for generating syntax  

error messages  98
method calls

checking  199
parameters and return type information, 

calculating  199-201
types, checking at each method  

call site  202-205
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types, checking at return  
statements  205-207

Moore’s Law  436
mutual recursion  125

N
name mangling  164
n-ary trees  106
native code

generating  372
new control structure

need for  418, 419
nodes  106
nondeterministic polynomial-time  

complete (NP-complete)  375

O
object-oriented paradigm  437
objects  209
OpenJDK

URL  8
operation code (opcode)  351, 373
operators  400

comparing, to hardware  401
composite operators  400
developing, for Unicon  411-414
implementing  400, 401
string concatenation, adding to bytecode 

interpreter  404-407
string concatenation, adding to native 

runtime system  407
string concatenation, implementing in 

intermediate code  402, 403

P
package and class scopes, in Unicon

handling  163
names, mangling  164, 165
self, inserting as first parameter  

in method calls  166
self, inserting for member variable 

references  165
pain points  418
parallel translations model  8
parser  67, 258
parser, for Jzero

detail, adding to Java syntax  
error messages  97

detail, adding to Unicon syntax error 
messages  96

Java Jzero parser code  93, 94
Jzero lex specification  85
Jzero parser, running  94, 95
Jzero yacc specification  86-90
Merr, for generating better syntax error 

messages  98
syntax error messages, improving  96
Unicon Jzero code  91-93
writing  85

parser’s value stack
leaves, wrapping for  113, 114

parse state  77, 98
parse tree

versus syntax trees  108-110

parsing  67, 72
Pascal language  26
pattern matching  33
PL/0 (programming language zero)  8
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PL/1  8
Portable Network Graphic (PNG)  105
post-order traversal  147, 178
pre-order traversal  146, 179
preprocessor  258, 275, 276, 488

built-in macro definitions  488
commands  488
identity preprocessor  278
macros  276
preprocessing example  277
pretty printer  278
versus transpiler  293, 294
within Unicon preprocessor  279-283

pretty printer  278
production rules

internal nodes, building from  115
program executions

debugging  461, 462
monitoring  461

programming language design  17, 458, 459
control flow, specifying  21, 22
data types, considering  23
lexical rules  17
overall program structure  26, 27
semantics  17
syntax  17
syntax rules  17
words and punctuation,  

determining  18, 19
programming language design, case study

graphics facilities, designing  
in Unicon  28

language support, for 2D graphics  28, 29
support, adding for 3D graphics  30

programming languages
applying, to other software  

engineering tasks  10

implementations, types  4-6
motivations, for writing  4
requirements, establishing  10-13
versus libraries  9, 10

Prolog programming language  459

Q
quadword operations  372

R
recursion  72

reference link  72
redeclared variables

fixing  161
semantic errors, reporting  163
symbols, inserting into symbol table  162

reduce  77
reference counting  435, 438

adding, to Jzero  438
generated code, modifying for  

assignment operator  442
generated code, modifying for 

 method call and return  442
limitations  442, 443
number of heap allocations,  

reducing for strings  439-441
references  463-465
registers

assigning, to speed up local 
 region  377, 378

null strategy  376, 377
using  375

Regular Expression (RE) notation  35
regular expressions  35

alphabet  35
examples  37, 38
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intersection  36
member  36
rules  36, 37
union  36

relational operators  126
rendering region control structure

code, generating for wsection control 
structure  431, 432

creating  427, 428
grammar rule, adding  429
reserved word, adding  428
wsection, checking for 

 semantic errors  429, 430
rendering regions  424

3D graphics, rendering from display list  424
levels of detail, varying with nested 

rendering regions  426, 427
specifying, with built-in functions  425, 426

root  106
RunTime Language (RTL)  345, 411
runtime system

writing, for Jzero  341, 342
runtime type checks, in Unicon  189, 190

S
scanner  258
scanner, for Jzero

Java Jzero code  55-59
Jzero flex specification  49-51
running  59-61
Unicon Jzero code  52-55
writing  49

scanning environment  421
selective rendering  425
semantic action  115

semantic analysis  143
semantic analyzer  6
semicolon insertion  61
sets  478
shift  77
signature  199
singleton class  354
Smalltalk  459
software crisis  436
software engineering  436
software engineering tasks

programming language, applying to  10
source language  400
stack machine operation

basics  330
stack pointer  330
star operator  37
statement  88
statement grammar  88
static allocation  436
string pool  405
string region  445
strings

scanning, in Icon and Unicon  421
string scanning

excessive parameters, eliminating via 
control structure  423

in Icon and Unicon  420
scanning environment  421, 422

structured programming  436
structured type accesses

checking  207
instance variable declarations, 

 handling  208
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types, checking at instance  
accesses  212-214

types, checking at instance  
creation  209-212

structure types, Unicon  477
built-in types  479
classes  477
files  479
lists  478
sets  478
tables  478

suffix rule  103
symbol tables  143, 147

classes, defining  151
classes, defining for entries  151, 152
creating  152-154
creating, for each scope  147
debugging  166-168
declarations and scopes  144, 145
groundwork, establishing  144
populating  155-157
populating, for each scope  147
semantic attributes,  

adding to syntax trees  148-150
testing  166-168
tree traversal, selecting for job  146
variables, assigning  146
variables, dereferencing  146

syntax analysis  69
syntax analyzer  6
syntax error messages  69

improving  96
syntax trees  101, 106

annotating, with labels for  
control flow  229-231

bugs, avoiding  128, 129

debugging and testing  128
forming, for Jzero language  120-127
printing, in text format  129-131
printing, with dot  132-138
type, defining  106-108
versus parse tree  108-110

T
table data type  25
tables  478
target language  400
terminal symbols

leaves, creating from  111
TextMate grammars  255

IDE Tokenization Rules,  
writing  255-257

three-address code  220
tokens  35
transpiler  275

versus preprocessor  293, 294
tree class  118
tree node factory method

using  118-120
type checking  171
type determination

at each syntax tree node  181
at internal nodes  183-189
at leaves  181-183

type inference, in Unicon  189, 190
type information  176

assigning, to declared  
variables  176-178

types, inheriting into list of 
 variables  179-181
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types, synthesizing from  
reserved words  178, 179

type representation, in compiler  172
base class, defining  172, 173
base class, subclassing for  

complex types  173-176

U
ucode  103, 366
UDB debugger  487
UFlex

using  38
ui IDE  246, 247
undeclared variables

bodies of methods, identifying  159
checking for  158
variable uses, spotting within method 

bodies  160
Unicon  8

atomic data types, using  475
built-in functions, developing  414, 415
data types  473
declarations, using  473
multiple values, aggregating with  

structure types  477
operators, developing  412-414
program components, 

 declaring  473-475
rendering regions  424
running  471-473

Unicon bytecode interpreter
examining  343
goal-directed bytecode  344
instructions, decoding  345
instructions, executing  345
instructions, fetching  345

runtime system, crafting  345
type information, leaving at runtime  344

Unicon example
bytecode generation, in icont  366-368

Unicon IDE  246
Unicon Jzero code  52-93
Unicon preprocessor  279-283

code generation  283
Unicon programming language

requirements, case study  13-15
Unicon syntax error messages

detail, adding  96
Unified Modeling Language (UML)  111

V
value stack  112

tree nodes, accessing on  115-118
Virtual Box  5
virtual machines  5
Visual Studio Code (VS Code)

configuring, for Syntax  
Highlighting for Jzero  249-251

extensions, using with JSON format  251
file organization, for extensions  252
support, adding to language  248, 249

W
Warren Abstract Machine (WAM)  460
words and punctuation, programming 

language design
literals  19
operator associativity issue  21
operators  19
reserved words  19
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X
x64 instruction set  372, 373

class, adding  373, 374
memory regions, mapping  374

x64 output generation  393
linking  395
loading  395
native assembler, invoking to  

object file  394, 395
runtime system  396
x64 code, writing in assembly  

language format  393, 394

Y
yacc (yet another compiler-compiler)  74

advanced yacc declarations  75
conflicts, fixing in parsers  79
context-free grammar section  75, 76
parsers  76-79
specifications  74
symbols, declaring in header section  75
syntax error recovery  80
toy example  80-85
value stack, working with  112, 113
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