

1

“Andriy's long-awaited sequel in his "The Hundred-Page" series of ma-
chine learning textbooks is a masterpiece of concision.”
― Bob van Luijt, CEO and Co-Founder of Weaviate

“Andriy has this almost supernatural talent for shrinking epic AI con-
cepts down to bite-sized, ‘Ah, now I get it!’ moments.”

 ― Jorge Torres, CEO at MindsDB

“Andriy paints for us, in 100 marvelous strokes, the journey from lin-
ear algebra basics to the implementation of transformers.”
 ― Florian Douetteau, Co-founder and CEO at Dataiku

“Andriy's book is an incredibly concise, clear, and accessible introduc-
tion to machine learning.”

 ― Andre Zayarni, Co-founder and CEO at Qdrant

“This is one of the most comprehensive yet concise handbooks out there
for truly understanding how LLMs work under the hood.”

 ― Jerry Liu, Co-founder and CEO at LlamaIndex

Featuring a foreword by Tomáš Mikolov and back cover text by Vint Cerf

 2

The Hundred-Page Language Models Book

Andriy Burkov

3

Copyright © 2025 Andriy Burkov. All rights reserved.

1. Read First, Buy Later: You are welcome to freely read and share this book

with others by preserving this copyright notice. However, if you find the
book valuable or continue to use it, you must purchase your own copy. This
ensures fairness and supports the author.

2. No Unauthorized Use: No part of this work—its text, structure, or deriva-
tives—may be used to train artificial intelligence or machine learning mod-
els, nor to generate any content on websites, apps, or other services, without
the author’s explicit written consent. This restriction applies to all forms of
automated or algorithmic processing.

3. Permission Required If you operate any website, app, or service and wish
to use any portion of this work for the purposes mentioned above—or for
any other use beyond personal reading—you must first obtain the author’s
explicit written permission. No exceptions or implied licenses are granted.

4. Enforcement: Any violation of these terms is copyright infringement. It
may be pursued legally in any jurisdiction. By reading or distributing this
book, you agree to abide by these conditions.

ISBN 978-1-7780427-2-0
Publisher: True Positive Inc.

4

To my family, with love

5

“Language is the source of misunderstandings.”
―Antoine de Saint-Exupéry, The Little Prince

“In mathematics you don't understand things. You just get used to them.”

 ―John von Neumann

“Computers are useless. They can only give you answers.”
 ― Pablo Picasso

The book is distributed on the “read first, buy later” principle

6

Contents
Foreword 9	
Preface 11	

Who This Book Is For 11	
What This Book Is Not 12	
Book Structure 13	
Should You Buy This Book? 14	
Acknowledgements 15	

Chapter 1. Machine Learning Basics 16	
1.1. AI and Machine Learning 16	
1.2. Model 16	
1.3. Four-Step Machine Learning Process 28	
1.4. Vector 28	
1.5. Neural Network 32	
1.6. Matrix 37	
1.7. Gradient Descent 40	
1.8. Automatic Differentiation 45	

Chapter 2. Language Modeling Basics 50	
2.1. Bag of Words 50	
2.2. Word Embeddings 63	
2.3. Byte-Pair Encoding 70	
2.4. Language Model 75	
2.5. Count-Based Language Model 77	
2.6. Evaluating Language Models 84	

Chapter 3. Recurrent Neural Network 98	
3.1. Elman RNN 98	
3.2. Mini-Batch Gradient Descent 100	
3.3. Programming an RNN 101	
3.4. RNN as a Language Model 104	

7

3.5. Embedding Layer 105	
3.6. Training an RNN Language Model 107	
3.7. Dataset and DataLoader 111	
3.8. Training Data and Loss Computation 113	

Chapter 4. Transformer 117	
4.1. Decoder Block 117	
4.2. Self-Attention 119	
4.3. Position-Wise Multilayer Perceptron 123	
4.4. Rotary Position Embedding 124	
4.5. Multi-Head Attention 131	
4.6. Residual Connection 133	
4.7. Root Mean Square Normalization 136	
4.8. Key-Value Caching 138	
4.9. Transformer in Python 139	

Chapter 5. Large Language Model 147	
5.1. Why Larger Is Better 147	
5.2. Supervised Finetuning 154	
5.3. Finetuning a Pretrained Model 156	
5.4. Sampling From Language Models 171	
5.5. Low-Rank Adaptation (LoRA) 176	
5.6. LLM as a Classifier 180	
5.7. Prompt Engineering 182	
5.8. Hallucinations 188	
5.9. LLMs, Copyright, and Ethics 191	

Chapter 6. Further Reading 195	
6.1. Mixture of Experts 195	
6.2. Model Merging 195	
6.3. Model Compression 196	

8

6.4. Preference-Based Alignment 196	
6.5. Advanced Reasoning 196	
6.6. Language Model Security 197	
6.7. Vision Language Model 197	
6.8. Preventing Overfitting 198	
6.9. Concluding Remarks 198	
6.10. More From the Author 199	

Index 201	

9

Foreword
First time I got involved in language modeling was already two decades ago. I
wanted to improve some of my data compression algorithms and found out
about the n-gram statistics. Very simple concept, but so hard to beat! Then I
quickly gained another motivation—since my childhood, I was interested in
artificial intelligence. I had a vision of machines that would understand pat-
terns in our world that are hidden from our limited minds. It would be so
exciting to talk with such super-intelligence. And I realized that language mod-
eling could be a way towards such AI.
I started searching for others sharing this vision and did find the works of Sol-
omonoff, Schmidhuber and the Hutter prize competition organized by Matt
Mahoney. They all did write about AI completeness of language modeling and
I knew I had to try to make it work. But the world was very different than it is
today. Language modeling was considered a dead research direction, and I've
heard countless times that I should give up as nothing will ever beat n-grams
on large data.
I've completed my master's thesis on neural language models, as these models
were quite like what I previously developed for data compression, and I did
believe the distributed representations that could be applied to any language
is the right way to go. This infuriated a local linguist who declared my ideas to
be a total nonsense as language modeling has to be addressed from the lin-
guistics point of view, and each language had to be treated differently.
However, I did not give up and did continue working on my vision of AI-com-
plete language models. Just the summer before starting my PhD, I did come
up with the idea to generate text from these neural models. I was amazed by
how much better this text was than text generated from n-grams models. That
was summer 2007 and I quickly realized the only person excited about this at
the Brno University of Technology was actually me. But I did not give up any-
ways.
In the following years, I did develop a number of algorithms to make neural
language models more useful. To convince others about their qualities, I pub-
lished open-source toolkit RNNLM in 2010. It had the first implementations
ever of neural text generation, gradient clipping, dynamic evaluation, model
adaptation (nowadays called fine-tuning) and other tricks such as hierarchical
softmax or splitting infrequent words into subword units. However, the result

10

I was the most proud of was when I could demonstrate in my PhD thesis that
neural language models not only beat n-grams on large datasets—something
widely considered to be impossible at the time—but the improvements were
actually increasing with the amount of training data. This happened for the
first time after something like fifty years of language modeling research and I
still remember the disbelief in faces of famous researchers when I showed them
my work.
Fast forward some fifteen years, and I'm amazed by how much the world has
changed. The mindset completely flipped—what used to be some obscure tech-
nology in a dead research direction is now thriving and gets the attention of
CEOs of the largest companies in the world. Language models are everywhere
today. With all this hype, I think it is needed more than ever to actually under-
stand this technology.
Young students who want to learn about language modeling are flooded with
information. Thus, I was delighted when I learned about Andriy's project to
write a short book with only one hundred pages that would cover some of the
most important ideas. I think the book is a good start for anyone new to lan-
guage modeling who aspires to improve on state of the art—and if someone
tells you that everything that could have been invented in language modeling
has already been discovered, don't believe it.

Tomáš Mikolov, Senior Researcher at Czech Institute of Informatics,
Robotics and Cybernetics, the author of word2vec and FastText

11

Preface
My interest in text began in the late 1990s during my teenage years, building
dynamic websites using Perl and HTML. This early experience with coding and
organizing text into structured formats sparked my fascination with how text
could be processed and transformed. Over the years, I advanced to building
web scrapers and text aggregators, developing systems to extract structured
data from webpages. The challenge of processing and understanding text led
me to explore more complex applications, including designing chatbots that
could understand and address user needs.
The challenge of extracting meaning from words intrigued me. The complexity
of the task only fueled my determination to “crack” it, using every tool at my
disposal—ranging from regular expressions and scripting languages to text
classifiers and named entity recognition models.
The rise of large language models (LLMs) transformed everything. For the first
time, computers could converse with us fluently and follow verbal instructions
with remarkable precision. However, like any tool, their immense power comes
with limitations. Some are easy to spot, but others are more subtle, requiring
deep expertise to handle properly. Attempting to build a skyscraper without
fully understanding your tools will only result in a pile of concrete and steel.
The same holds true for language models. Approaching large-scale text pro-
cessing tasks or creating reliable products for paying users requires precision
and knowledge—guesswork simply isn’t an option.

Who This Book Is For
I wrote this book for those who, like me, are captivated by the challenge of
understanding language through machines. Language models are, at their
core, just mathematical functions. However, their true potential isn’t fully ap-
preciated in theory—you need to implement them to see their power and how
their abilities grow as they scale. This is why I decided to make this book
hands-on.
This book serves software developers, data scientists, machine learning engi-
neers, and anyone curious about language models. Whether your goal is to
integrate existing models into applications or to train your own, you’ll find
practical guidance alongside theoretical foundations.

12

Given its hundred-page format, the book makes certain assumptions about
readers. You should have programming experience, as all hands-on examples
use Python.
While familiarity with PyTorch and tensors—PyTorch’s fundamental data
types—is beneficial, it’s not mandatory. If you’re new to these tools, the book’s
wiki (thelmbook.com/wiki) provides a concise introduction with examples and
resource links for further learning. This wiki format ensures content remains
current and addresses reader questions beyond publication.
College-level math knowledge helps, but you needn’t remember every detail
or have machine learning experience. The book introduces concepts systemat-
ically, beginning with notations, definitions, and fundamental vector and ma-
trix operations. From there, it progresses through simple neural networks to
more advanced topics. Mathematical concepts are presented intuitively, with
clear diagrams and examples that facilitate understanding.

What This Book Is Not
This book is focused on understanding and implementing language models. It
will not cover:

• Large-scale training: This book won’t teach you how to train massive
models on distributed systems or how to manage training infrastruc-
ture.

• Production deployment: Topics like model serving, API development,
scaling for high traffic, monitoring, and cost optimization are not cov-
ered. The code examples focus on understanding the concepts rather
than production readiness.

• Enterprise applications: This book won’t guide you through building
commercial LLM applications, handling user data, or integrating with
existing systems.

If you’re interested in learning the mathematical foundations of language mod-
els, understanding how they work, implementing core components yourself,
or learning to work effectively with LLMs, this book is for you. But if you’re
primarily looking to deploy models in production or build scalable applica-
tions, you may want to supplement this book with other resources.

https://www.thelmbook.com/wiki

13

Book Structure
To make this book engaging and to deepen the reader’s understanding, I de-
cided to discuss language modeling as a whole, including approaches that are
often overlooked in modern literature. While Transformer-based LLMs domi-
nate the spotlight, earlier approaches like count-based methods and recurrent
neural networks (RNNs) remain effective for some tasks.
Learning the math of the Transformer architecture from scratch may seem
overwhelming for someone starting from scratch. By revisiting these founda-
tional methods, my goal is to gradually build up the reader’s intuition and
mathematical understanding, making the transition to modern Transformer
architectures feel like a natural progression rather than an intimidating leap.
The book is divided into six chapters, progressing from fundamentals to ad-
vanced topics:

• Chapter 1 covers machine learning basics, including key concepts like
AI, models, neural networks, and gradient descent. Even if you’re famil-
iar with these topics, the chapter provides important foundations for
understanding language models.

• Chapter 2 introduces language modeling fundamentals, exploring text
representation methods like bag of words and word embeddings, as
well as count-based language models and evaluation techniques.

• Chapter 3 focuses on recurrent neural networks, covering their imple-
mentation, training, and application as language models.

• Chapter 4 provides a detailed exploration of the Transformer architec-
ture, including key components like self-attention, position embed-
dings, and practical implementation.

• Chapter 5 examines large language models (LLMs), discussing why
scale matters, finetuning techniques, practical applications, and im-
portant considerations around hallucinations, copyright, and ethics.

• Chapter 6 concludes with further reading on advanced topics like mix-
ture of experts, model compression, preference-based alignment, and
vision language models, providing direction for continued learning.

Most chapters contain working code examples you can run and modify. While
only essential code appears in the book, complete code is available as Jupyter
notebooks on the book’s website, with notebooks referenced in relevant

14

sections. All code in notebooks remains compatible with the latest stable ver-
sions of Python, PyTorch, and other libraries.
The notebooks run on Google Colab, which at the time of writing offers free
access to computing resources including GPUs and TPUs. These resources,
though, aren’t guaranteed and have usage limits that may vary. Some exam-
ples might require extended GPU access, potentially involving wait times for
availability. If the free tier proves limiting, Colab’s pay-as-you-go option lets
you purchase compute credits for reliable GPU access. While these credits are
relatively affordable by North American standards, costs may be significant
depending on your location.
For those familiar with the Linux command line, GPU cloud services provide
another option through pay-per-time virtual machines with one or more GPUs.
The book’s wiki maintains current information on free and paid notebook or
GPU rental services.
Verbatim terms and blocks indicate code, code fragments, or code execution
outputs. Bold terms link to the book’s term index, and occasionally highlight
algorithm steps.
In this book, we use pip3 to ensure the packages are installed for Python 3.
On most modern systems, you can use pip instead if it's already set up for
Python 3.

Should You Buy This Book?
Like my previous two books, this one is distributed on the read first, buy later
principle. I firmly believe that paying for content before consuming it means
buying a pig in a poke. At a dealership, you can see and try a car. In a depart-
ment store, you can try on clothes. Similarly, you should be able to read a book
before paying for it.
The read first, buy later principle means you can freely download the book,
read it, and share it with friends and colleagues. If you find the book helpful
or useful in your work, business, or studies—or if you simply enjoy reading
it—then buy it.

15

Acknowledgements
The high quality of this book would be impossible without volunteering edi-
tors. I especially thank Erman Sert, Viet Hoang Tran Duong, Alex Sherstinsky,
Kelvin Sundli, and Mladen Korunoski for their systematic contributions.
I am also grateful to Alireza Bayat Makou, Taras Shalaiko, Domenico Siciliani,
Preethi Raju, Srikumar Sundareshwar, Mathieu Nayrolles, Abhijit Kumar, Gior-
gio Mantovani, Abhinav Jain, Steven Finkelstein, Ryan Gaughan, Ankita Guha,
Harmanan Kohli, Daniel Gross, Kea Kohv, Marcus Oliveira, Tracey Mercier,
Prabin Kumar Nayak, Saptarshi Datta, Gurgen R. Hayrapetyan, Sina Abdidi-
zaji, Federico Raimondi Cominesi, Santos Salinas, Anshul Kumar, Arash
Mirbagheri, Roman Stanek, Jeremy Nguyen, Efim Shuf, Pablo Llopis, Marco
Celeri, Tiago Pedro, and Manoj Pillai for their help.
If this is your first time exploring language models, I envy you a little—it’s truly
magical to discover how machines learn to understand the world through nat-
ural language.
I hope you enjoy reading this book as much as I enjoyed writing it.
Now grab your tea or coffee, and let’s begin!

16

Chapter 1. Machine Learning Basics
This chapter starts with a brief overview of how artificial intelligence has
evolved, explains what a machine learning model is, and presents the four
steps of the machine learning process. Then, it covers some math basics like
vectors and matrices, introduces neural networks, and wraps up with optimi-
zation methods like gradient descent and automatic differentiation.

1.1. AI and Machine Learning
The term artificial intelligence (AI) was first introduced in 1955 during a
workshop led by John McCarthy. Researchers at the workshop aimed to ex-
plore how machines could use language, form concepts, solve problems like
humans, and improve over time.

1.1.1. Early Progress
The field’s first major breakthrough came in 1956 with the Logic Theorist.
Created by Allen Newell, Herbert Simon, and Cliff Shaw, it was the first pro-
gram engineered to perform automated reasoning, and has been later de-
scribed as “the first artificial intelligence program.”
Frank Rosenblatt’s Perceptron (1958) was an early neural network designed
to recognize patterns by adjusting its internal parameters based on examples.
Perceptron learned a decision boundary—a dividing line that separates exam-
ples of different classes (e.g., spam versus not spam):

17

Around the same time, in 1959, Arthur Samuel coined the term machine
learning. In his paper, “Some Studies in Machine Learning Using the Game of
Checkers,” he described machine learning as “programming computers to learn
from experience.”
Another notable development of the mid-1960s was ELIZA. Developed in 1967
by Joseph Weizenbaum and being the first chatbot in history, ELIZA gave the
illusion of understanding language by matching patterns in users’ text and gen-
erating preprogrammed responses. Despite its simplicity, it illustrated the lure
of building machines that could appear to think or understand.
Optimism about near-future breakthroughs ran high during this period. Her-
bert Simon, a future Turing Award recipient, exemplified this enthusiasm
when he predicted in 1965 that “machines will be capable, within twenty
years, of doing any work a man can do.” Many experts shared this optimism,
forecasting that truly human-level AI—often called artificial general intelli-
gence (AGI)—was just a few decades away. Interestingly, these predictions
maintained a consistent pattern: decade after decade, AGI remained roughly
25 years on the horizon:

18

1.1.2. AI Winters
As researchers tried to deliver on early promises, they encountered unforeseen
complexity. Numerous high-profile projects failed to meet ambitious goals. As
a consequence, funding and enthusiasm waned significantly between 1975
and 1980, a period now known as the first AI winter.

During the first AI winter, even the term “AI” became somewhat taboo.
Many researchers rebranded their work as “informatics,” “knowledge-
based systems,” or “pattern recognition” to avoid association with AI’s
perceived failures.

In the 1980s, a resurgence of interest in expert systems—rule-based software
designed to replicate specialized human knowledge—promised to capture and
automate domain expertise. These expert systems were part of a broader
branch of AI research known as symbolic AI, often referred to as good old-
fashioned AI (GOFAI), which had been a dominant approach since AI’s earliest
days. GOFAI methods relied on explicitly coded rules and symbols to represent
knowledge and logic, and while they worked well in narrowly defined areas,
they struggled with scalability and adaptability.
From 1987 to 2000, AI entered its second winter, when the limitations of sym-
bolic methods caused funding to diminish, once again leading to numerous
research and development projects being put on hold or canceled.
Despite these setbacks, new techniques continued to evolve. In particular, de-
cision trees, first introduced in 1963 by John Sonquist and James Morgan and
then advanced by Ross Quinlan’s ID3 algorithm in 1986, split data into subsets
through a tree-like structure. Each node in a tree represents a question about
the data, each branch is an answer, and each leaf provides a prediction. While
easy to interpret, decision trees were prone to overfitting, where they adapted
too closely to training data, reducing their ability to perform well on new, un-
seen data.

1.1.3. The Modern Era
In the late 1990s and early 2000s, incremental improvements in hardware and
the availability of larger datasets (thanks to the widespread use of the Internet)
started to lift AI from its second winter. Leo Breiman’s random forest algo-
rithm (2001) addressed overfitting in decision trees by creating multiple trees
on random subsets of the data and then combining their outputs—dramatically
improving predictive accuracy.

19

Support vector machines (SVMs), introduced in 1992 by Vladimir Vapnik and
his colleagues, were another significant step forward. SVMs identify the opti-
mal hyperplane that separates data points of different classes with the widest
margin. The introduction of kernel methods allowed SVMs to manage com-
plex, non-linear patterns by mapping data into higher-dimensional spaces,
making it easier to find a suitable separating hyperplane. These innovations
placed SVMs at the center of machine learning research in the early 2000s.
A turning point arrived around 2012, when more advanced versions of neural
networks called deep neural networks began outperforming other techniques
in fields like speech and image recognition. Unlike the simple Perceptron,
which used only a single “layer” of learnable parameters, this deep learning
approach stacked multiple layers to tackle much more complex problems. Surg-
ing computational power, abundant data, and algorithmic advancements con-
verged to produce remarkable breakthroughs. As academic and commercial in-
terest soared, so did AI’s visibility and funding.
Today, AI and machine learning remain intimately entwined. Research and
industry efforts continue to seek ever more capable models that learn complex
tasks from data. Although predictions of achieving human-level AI “in just 25
years” have consistently failed to materialize, AI’s impact on everyday applica-
tions is undeniable.
Throughout this book, AI refers broadly to techniques that enable machines to
solve problems once considered solvable only by humans, with machine learn-
ing being its key subfield focusing on creating algorithms learning from collec-
tions of examples. These examples can come from nature, be designed by hu-
mans, or be generated by other algorithms. The process involves gathering a
dataset and building a model from it, which is then used to solve a problem.

I will use “learning” and “machine learning” interchangeably to save
keystrokes.

Let’s examine what exactly we mean by a model and how it forms the founda-
tion of machine learning.

1.2. Model
A model is typically represented by a mathematical equation:

𝑦 = 𝑓(𝑥)

20

Here, 𝑥 is the input, 𝑦 is the output, and 𝑓 represents a function of 𝑥. A func-
tion is a named rule that describes how one set of values is related to another.
Formally, a function 𝑓 maps inputs from the domain to outputs in the codo-
main, ensuring each input has exactly one output. The function uses a specific
rule or formula to transform the input into the output.
In machine learning, the goal is to compile a dataset of examples and use
them to build 𝑓, so when 𝑓 is applied to a new, unseen 𝑥, it produces a 𝑦 that
gives meaningful insight into 𝑥.
To estimate a house’s price based on its area, the dataset might include (area,
price) pairs such as {(150,200), (200,600), … }. Here, the area is measured in
m!, and the price is in thousands.

Curly brackets denote a set. A set containing 𝑁 elements, ranging from
𝑥" to 𝑥#, is expressed as {𝑥$}$%"# .

Imagine we own a house with an area of 250 m! (about 2691 square feet). To
find a function 𝑓 that returns a reasonable price for this house, testing every
possible function is infeasible. Instead, we select a specific structure for 𝑓 and
focus on functions that match this structure.
Let’s define the structure for 𝑓 as:

 𝑓(𝑥) =
def
𝑤𝑥 + 𝑏, (1.1)

which is a linear function of 𝑥. The formula 𝑤𝑥 + 𝑏 is a linear transformation
of 𝑥.

The notation =def means “equals by definition” or “is defined as.”

For linear functions, determining 𝑓 requires only two values: 𝑤 and 𝑏. These
are called the parameters or weights of the model.
In other texts, 𝑤 might be referred to as the slope, coefficient, or weight term.
Similarly, 𝑏 may be called the intercept, constant term, or bias. In this book,
we’ll stick to “weight” for 𝑤 and “bias” for 𝑏, as these terms are widely used in
machine learning. When the meaning is clear, “parameters” and “weights” will
be used interchangeably.

For instance, when 𝑤 = !
&
 and 𝑏 = 1, the linear function is shown below:

21

Here, the bias shifts the graph vertically, so the line crosses the 𝑦-axis at 𝑦 = 1.
The weight determines the slope, meaning the line rises by 2 units for every 3
units it moves to the right.

Mathematically, the function 𝑓(𝑥) = 𝑤𝑥 + 𝑏 is an affine transfor-
mation, not a linear one, since true linear transformations require 𝑏 =
0. However, in machine learning, we often call such models “linear”
whenever the parameters appear linearly in the equation—meaning 𝑤
and 𝑏 are only multiplied by inputs or constants and added, without
multiplying each other, being raised to powers, or appearing inside
functions like 𝑒'.

Even with a simple model like 𝑓(𝑥) = 𝑤𝑥 + 𝑏, the parameters 𝑤 and 𝑏 can take
infinitely many values. To find the best ones, we need a way to measure opti-
mality. A natural choice is to minimize the average prediction error when esti-
mating house prices from area. Specifically, we want 𝑓(𝑥) = 𝑤𝑥 + 𝑏 to gener-
ate predictions that match the actual prices as closely as possible.

22

Let our dataset be {(𝑥$, 𝑦$)}$%"# , where 𝑁 is the size of the dataset and
{(𝑥", 𝑦"), (𝑥!, 𝑦!), … , (𝑥#, 𝑦#)} are individual examples, with each 𝑥$ being the
input and corresponding 𝑦$ being the target. When examples contain both
inputs and targets, the learning process is called supervised. This book focuses
on supervised machine learning.

Other machine learning types include unsupervised learning, where
models learn patterns from inputs alone, and reinforcement learning,
where models learn by interacting with environments and receiving
rewards or penalties for their actions.

When 𝑓(𝑥) is applied to 𝑥$, it generates a predicted value 𝑦9$. We can define
the prediction error err(𝑦9$, 𝑦$) for a given example (𝑥$, 𝑦$) as:

 err(𝑦9$, 𝑦$) =
def (𝑦9$ − 𝑦$)! (1.2)

This expression, called squared error, equals 0 when 𝑦9$ = 𝑦$. This makes
sense: no error if predicted price matches the actual price. The further 𝑦9$ devi-
ates from 𝑦$, the larger the error becomes. Squaring ensures the error is always
positive, whether the prediction overshoots or undershoots.

We define 𝑤∗ and 𝑏∗ as the optimal parameter values for 𝑤 and 𝑏 in our func-
tion 𝑓, when they minimize the average price prediction error across our da-
taset. This error is calculated using the following expression:

err(𝑦9", 𝑦") + err(𝑦9!, 𝑦!) + ⋯+ err(𝑦9#, 𝑦#)
𝑁

Let’s rewrite the above expression by expanding each err(⋅):
(𝑦9" − 𝑦")! + (𝑦9! − 𝑦!)! +⋯+ (𝑦9# − 𝑦#)!

𝑁

Let’s assign the name 𝐽(𝑤, 𝑏) to our expression, turning it into a function:

𝐽(𝑤, 𝑏) =

def (𝑤𝑥" + 𝑏 − 𝑦")! + (𝑤𝑥! + 𝑏 − 𝑦!)! +⋯+ (𝑤𝑥# + 𝑏 − 𝑦#)!

𝑁
 (1.3)

In the equation defining 𝐽(𝑤, 𝑏), which represents the average prediction error,
the values of 𝑥$ and 𝑦$ for each 𝑖 from 1 to 𝑁 are known since they come from
the dataset. The unknowns are 𝑤 and 𝑏. To determine the optimal 𝑤∗ and 𝑏∗,

23

we need to minimize 𝐽(𝑤, 𝑏). As this function is quadratic in two variables,
calculus guarantees it has a single minimum.

The expression in Equation 1.3 is referred to as the loss function in the ma-
chine learning problem of linear regression. In this case, the loss function is
the mean squared error or MSE.

To find the optimum (minimum or maximum) of a function, we calculate its
first derivative. When we reach the optimum, the first derivative equals zero.
For functions of two or more variables, like the loss function 𝐽(𝑤, 𝑏), we com-
pute partial derivatives with respect to each variable. We denote these as)*

)'

for 𝑤 and)*
)+

 for 𝑏.

To determine 𝑤∗ and 𝑏∗, we solve the following system of two equations:

?

∂𝐽
∂𝑤

= 0

∂𝐽
∂𝑏

= 0

We set the partial derivatives to zero because when this occurs, we are at an
optimum.

Fortunately, the MSE function’s structure and the model’s linearity allow us to
solve this system of equations analytically. To illustrate, consider a dataset with
three examples: (𝑥", 𝑦") = (150,200), (𝑥!, 𝑦!) = (200,600), and (𝑥&, 𝑦&) =
(260,500). For this dataset, the loss function is:

𝐽(𝑤, 𝑏) =
def (150𝑤 + 𝑏 − 200)! + (200𝑤 + 𝑏 − 600)! + (260𝑤 + 𝑏 − 500)!

3

Let’s plot it:

24

Navigate to the book’s wiki, from the file thelmbook.com/py/1.1 re-
trieve the code used to generate the above plot, run the code, and ro-
tate the graph to observe the minimum.

Now we need to derive the expressions for)*
)'

 and)*
)+

. Notice that 𝐽(𝑤, 𝑏) is a
composition of the following functions:

• Functions 𝑑" =
def
150𝑤 + 𝑏 − 200, 𝑑! =

def
200𝑤 + 𝑏 − 600, 𝑑& =

def
260𝑤 +

𝑏 − 500 are linear functions of 𝑤 and 𝑏;

• Functions err" =
def
𝑑"!, err! =

def
𝑑!!, err& =

def
𝑑&! are quadratic functions of

𝑑", 𝑑!, and 𝑑&;

• Function 𝐽 =def "
&
(err" + err! + err&) is a linear function of err", err!, and

err&.

https://www.thelmbook.com/py/1.1

25

A composition of functions means the output of one function be-
comes the input to another. For example, with two functions 𝑓 and 𝑔,
you first apply 𝑔 to 𝑥, then apply 𝑓 to the result. This is written as
𝑓C𝑔(𝑥)D, which means you calculate 𝑔(𝑥) first and then use that result
as the input for 𝑓.

In our loss function 𝐽(𝑤, 𝑏), the process starts by computing the linear functions
for 𝑑", 𝑑!, and 𝑑& using the current values of 𝑤 and 𝑏. These outputs are then
passed into the quadratic functions err", err!, and err&. The final step is aver-
aging these results to compute 𝐽.

Using the sum rule and the constant multiple rule of differentiation,)*
)'

 is given by:

∂𝐽
∂𝑤

=
1
3
E
∂err"
∂𝑤

+
∂err!
∂𝑤

+
∂err&
∂𝑤

F,

where)err!
)'

,)err"
)'

, and)err#
)'

 are the partial derivatives of err", err!, and err& with
respect to 𝑤.

The sum rule of differentiation states that the derivative of the sum of
two functions equals the sum of their derivatives:)

),
[𝑓(𝑥) + 𝑔(𝑥)] =

)
),
𝑓(𝑥) +)

),
𝑔(𝑥).

The constant multiple rule of differentiation states that the derivative
of a constant multiplied by a function equals the constant times the
derivative of the function:)

),
[𝑐 ⋅ 𝑓(𝑥)] = 𝑐 ⋅)

),
𝑓(𝑥).

By applying the chain rule of differentiation, the partial derivatives of err",
err!, and err& with respect to 𝑤 are:

26

The chain rule of differentiation states that the derivative of a com-
posite function 𝑓C𝑔(𝑥)D, written as)

),
J𝑓C𝑔(𝑥)DK, is the product of the

derivative of 𝑓 with respect to 𝑔 and the derivative of 𝑔 with respect
to 𝑥, or:)

),
J𝑓C𝑔(𝑥)DK =)-

).
⋅).
),

.

Then,

Therefore,

Similarly, we find)*

)+
:

∂𝐽
∂𝑏

=
1
3
C2 ⋅ (150𝑤 + 𝑏 − 200) + 2 ⋅ (200𝑤 + 𝑏 − 600) + 2 ⋅ (260𝑤 + 𝑏 − 500)D

  =
1
3
(1220𝑤 + 6𝑏 − 2600)

Setting the partial derivatives to 0 results in the following system of equations:

?

1
3
(260200𝑤 + 1220𝑏 − 560000) = 0

1
3
(1220𝑤 + 6𝑏 − 2600) = 0

Simplifying the system and using substitution to solve for the variables gives
the optimal values: 𝑤∗ = 2.58 and 𝑏∗ = −91.76.
The resulting model 𝑓(𝑥) = 2.58𝑥 − 91.76 is shown in the plot below. It in-
cludes the three examples (blue dots), the model itself (red solid line), and a
prediction for a new house with an area of 240	m! (dotted orange lines).

27

A vertical blue dashed line shows the square root of the model’s prediction
error compared to the actual price.1 Smaller errors mean the model fits the
data better. The loss, which aggregates these errors, measures how well the
model aligns with the dataset.
When we calculate the loss using our model’s training dataset (called the train-
ing set), we obtain the training loss. For our model, this training loss is de-
fined by Equation 1.3. Using our learned parameter values, we can now com-
pute the loss for the training set:

𝐽(2.58, −91.76) =
(2.58 ⋅ 150 − 91.76 − 200)!

3
+
(2.58 ⋅ 200 − 91.76 − 600)!

3

  +
(2.58 ⋅ 260 − 91.76 − 500)!

3
  = 15403.19.

1 It’s the square root of the error because our error, as defined in Equation 1.2, is the
square of the difference between the predicted price and the real price of the house. It’s
common practice to take the square root of the mean squared error because it expresses
the error in the same units as the target variable (price in this case). This makes it easier
to interpret the error value.

28

The square root of this value is approximately 124.1, indicating an average
prediction error of around $124,100. The interpretation of whether a loss
value is high or low depends on the specific business context and comparative
benchmarks. Neural networks and other non-linear models, which we explore
later in this chapter, typically achieve lower loss values.

1.3. Four-Step Machine Learning Process
At this stage, you should clearly understand the four steps involved in super-
vised learning:

1. Collect a dataset: For example, (𝑥", 𝑦") = (150,200), (𝑥!, 𝑦!) =
(200,600), and (𝑥&, 𝑦&) = (260,500).

2. Define the model’s structure: For example, 𝑦 = 𝑤𝑥 + 𝑏.
3. Define the loss function: Such as Equation 1.3.
4. Minimize the loss: Minimize the loss function on the dataset.

In our example, we minimized the loss manually by solving a system of two
equations with two variables. This approach works for small systems. How-
ever, as models grow in complexity—such as large language models with bil-
lions of parameters—manual approach becomes infeasible. Let’s now intro-
duce new concepts that will help us address this challenge.

1.4. Vector
To predict a house price, knowing its area alone isn’t enough. Factors like the
year of construction or the number of bedrooms and bathrooms also matter.
Suppose we use two attributes: (1) area and (2) number of bedrooms. In this
case, the input 𝐱 becomes a feature vector. This vector includes two features,
also called dimensions or components:

𝐱 =
def R𝑥

(")

𝑥(!)
S

In this book, the vectors are represented with lowercase bold letters, such as 𝐱
or 𝐰. For a given house 𝐱, 𝑥(") represents its size in square meters, and 𝑥(!) is
the number of bedrooms.

A vector is usually represented as a column of numbers, called a col-
umn vector. However, in text, it is often written as its transpose, 𝐱1.

29

Transposing a column vector converts it into a row vector. For exam-
ple, 𝐱1 =

def
J𝑥("), 𝑥(!)K or 𝐱 =def J𝑥("), 𝑥(!)K1.

The dimensionality of the vector, or its size, refers to the number of compo-
nents it contains. Here, 𝐱 has two components, so its dimensionality is 2.

With two features, our linear model needs three parameters: the weights 𝑤(")
and 𝑤(!), and the bias 𝑏. The weights can be grouped into a vector:

𝐰 =
def R𝑤

(")

𝑤(!)S

The linear model can then be written compactly as:

 𝑦 = 𝐰 ⋅ 𝐱 + 𝑏, (1.4)
where 𝐰 ⋅ 𝐱 is a dot product of two vectors (also known as scalar product).
It is defined as:

𝐰 ⋅ 𝐱 =
def
U𝑤(2)
3

2%"

𝑥(2)

The dot product combines two vectors of the same dimensionality to produce
a scalar, a number like 22, 0.67, or −10.5. Scalars in this book are denoted by
italic lowercase or uppercase letters, such as 𝑥 or 𝐷. The expression 𝐰 ⋅ 𝐱 + 𝑏
generalizes the idea of a linear transformation to vectors.
The equation above uses capital-sigma notation, where 𝐷 represents the di-
mensionality of the input, and 𝑗 runs from 1 to 𝐷. For example, in the 2-di-
mensional house scenario, ∑ 𝑤(2)!

2%" 𝑥(2) =
def
𝑤(")𝑥(") + 𝑤(!)𝑥(!).

Although the capital-sigma notation suggests the dot product might be
implemented as a loop, modern computers handle it much more effi-
ciently. Optimized linear algebra libraries like BLAS and cuBLAS
compute the dot product using low-level, highly optimized methods.
These libraries leverage hardware acceleration and parallel processing,
achieving speeds far beyond a simple loop.

The sum of two vectors 𝐚 and 𝐛, both with the same dimensionality 𝐷, is
defined as:

30

𝐚 + 𝐛 =
def
J𝑎(") + 𝑏("), 𝑎(!) + 𝑏(!), … , 𝑎(3) + 𝑏(3)K

1

The calculation for a sum of two 3-dimensional vectors is illustrated below:

In this chapter’s illustrations, the numbers in the cells indicate the po-
sition of an element within an input or output matrix, or a vector. They
do not represent actual values.

The element-wise product of two vectors 𝐚 and 𝐛 of dimensionality 𝐷, is de-
fined as:

𝐚⊙ 𝐛 =
def
J𝑎(") ⋅ 𝑏("), 𝑎(!) ⋅ 𝑏(!), … , 𝑎(3) ⋅ 𝑏(3)]1

The computation of the element-wise product for two 3-dimensional vectors is
shown below:

The norm of a vector 𝐱, denoted ∥ 𝐱 ∥, represents its length or magnitude. It
is defined as the square root of the sum of the squares of its components:

∥ 𝐱 ∥=
def ^U(𝑥(2))!

3

2%"

For a 2-dimensional vector 𝐱, the norm is:

∥ 𝐱 ∥= _(𝑥("))! + (𝑥(!))!

31

The cosine of the angle 𝜃 between two vectors 𝐱 and 𝐲 is defined as:

 cos(𝜃) =
𝐱 ⋅ 𝐲

∥ 𝐱 ∥∥ 𝐲 ∥
 (1.5)

The cosine of the angle between two vectors quantifies their similarity. For
instance, two houses with similar areas and bedroom counts will have a cosine
similarity close to 1, otherwise the value will be lower. Cosine similarity is
widely used to compare words or documents represented as embedding vec-
tors. This will be discussed further in Section 2.2.
A zero vector has all components equal to zero. A unit vector has a length of
1. To convert any non-zero vector 𝐱 into a unit vector 𝐱e, you divide the vector
by its norm:

𝐱e =
𝐱

∥ 𝐱 ∥

Dividing a vector by a number results in a new vector where each component
of the original vector is divided by that number.
A unit vector preserves the direction of the original vector but has a length of
1. The figure below demonstrates this with 2-dimensional examples. On the
left, aligned vectors have cos(𝜃) = 0.78. On the right, nearly orthogonal vec-
tors have cos(𝜃) = −0.02.

32

Unit vectors are valuable because their dot product equals the cosine
of the angle between them, and computing dot products is efficient.
When documents are represented as unit vectors, finding similar ones
becomes fast by calculating the dot product between the query vector
and document vectors. This is how vector search engines and libraries
like Milvus, Qdrant, and Weaviate operate.

As dimensions increase, the number of parameters in a linear model becomes
too large to solve manually. Furthermore, in high-dimensional spaces, we can-
not visually verify if data follows a linear pattern. Even if we could visualize
beyond three dimensions, we would still need more flexible models to handle
data that linear models cannot fit.
The next section covers non-linear models, focusing on neural networks. These
are key to understanding large language models, a specific type of neural net-
work architecture.

1.5. Neural Network
A neural network differs from a linear model in two key ways: (1) it applies
fixed non-linear functions to the outputs of trainable linear functions, and (2)
its structure is deeper, combining multiple functions hierarchically through
layers. Let’s illustrate these differences.
Linear models like 𝑤𝑥 + 𝑏 or 𝐰 ⋅ 𝐱 + 𝑏 cannot solve many machine learning
problems effectively. Even if we combine them into a composite function
𝑓!C𝑓"(𝑥)D, a composite function of linear functions remains linear. This is
straightforward to verify.

Let’s define 𝑦" = 𝑓"(𝑥) =
def
𝑎"𝑥 and 𝑦! = 𝑓!(𝑦") =

def
𝑎!𝑦". Here, 𝑓! depends on 𝑓",

making it a composite function. We can rewrite 𝑓! as:
𝑦! = 𝑎!𝑦" = 𝑎!(𝑎"𝑥) = (𝑎!𝑎")𝑥

Since 𝑎" and 𝑎! are constants, we can define 𝑎& =
def
𝑎"𝑎!, so 𝑦! = 𝑎&𝑥, which is

linear.
A straight line often fails to capture patterns in one-dimensional data, as
demonstrated when linear regression is applied to non-linear data:

33

To address this, we add non-linearity. For a one-dimensional input, the model
becomes:

𝑦 = 𝜙(𝑤𝑥 + 𝑏)
The function 𝜙 is a fixed non-linear function, known as an activation. Com-
mon choices are:

1) ReLU (rectified linear unit): ReLU(𝑧) =def max(0, 𝑧), which outputs
non-negative values and is widely used in neural networks;

2) Sigmoid: 𝜎(𝑧) =def "
"45$%

, which outputs values between 0 and 1, making
it suitable for binary classification (e.g., classifying spam emails as 1
and non-spam as 0);

3) Tanh (hyperbolic tangent): tanh(𝑧) =def 5
%65$%

5%45$%
; outputs values between

−1 and 1.
In these equations, 𝑒 denotes Euler’s number, approximately 2.72.
These functions are widely used due to their mathematical properties, simplic-
ity, and effectiveness in diverse applications. This is what they look like:

34

The structure 𝜙(𝑤𝑥 + 𝑏) enables learning non-linear models but can’t capture
all non-linear curves. By nesting these functions, we build more expressive
models. For instance, let 𝑓"(𝑥) =

def
𝜙(𝑎𝑥 + 𝑏) and 𝑓!(𝑧) =

def
𝜙(𝑐𝑧 + 𝑑). A compo-

site model combining 𝑓" and 𝑓! is:

𝑦 = 𝑓!C𝑓"(𝑥)D = 𝜙(𝑐𝜙(𝑎𝑥 + 𝑏) + 𝑑)

Here, the input 𝑥 is first transformed linearly using parameters 𝑎 and 𝑏, then
passed through the non-linear function 𝜙. The result is further transformed
linearly with parameters 𝑐 and 𝑑, followed by another application of 𝜙.

Below is the graph representation of the composite model 𝑦 = 𝑓!C𝑓"(𝑥)D:

35

A computational graph represents the structure of a model. The computa-
tional graph above shows two non-linear units (blue rectangles), often re-
ferred to as artificial neurons. Each unit contains two trainable parameters—
a weight and a bias—represented by grey circles. The left arrow ← denotes
that the value on the right is assigned to the variable on the left. This graph
illustrates a basic neural network with two layers, each containing one unit.
Most neural networks in practice are built with more layers and multiple units
per layer.
Suppose we have a two-dimensional input, an input layer with three units,
and an output layer with a single unit. The computational graph appears as
follows:

Figure 1.1: A neural network with two layers.

This structure represents a feedforward neural network (FNN), where infor-
mation flows in one direction—left to right—without loops. When units in
each layer connect to all units in the subsequent layer, as shown above, we call
it a multilayer perceptron (MLP). A layer where each unit connects to all
units in both adjacent layers is termed a fully connected layer, or dense layer.
In Chapter 3, we will explore recurrent neural networks (RNNs). Unlike FNNs,
RNNs have loops, where outputs from a layer are used as inputs to the same
layer.

36

Convolutional neural networks (CNN) are feedforward neural net-
works with convolutional layers that are not fully connected. While
initially designed for image processing, they are effective for tasks like
document classification in text data. To learn more about CNNs refer
to the additional materials in the book’s wiki.

To simplify diagrams, individual neural units can be replaced with squares. Using
this approach, the above network can be represented more compactly as follows:

If you think this simple model is too weak, look at the figure below. It contains
three plots demonstrating how increasing model size improves performance.
The left plot shows a model with 2 units: one input, one output, and ReLU
activations. The middle plot is a model with 4 units: three inputs and one out-
put. The right plot shows a much larger model with 100 units:

The ReLU activation function, despite its simplicity, was a break-
through in machine learning. Neural networks before 2012 relied on
smooth activations like tanh and sigmoid, which made training deep
models increasingly difficult. We will return to this subject in Chapter
4 on the Transformer neural network architecture.

37

Increasing the number of parameters helps the model approximate the data
more accurately. Experiments consistently show that adding more units per
layer or increasing the number of layers in a neural network improves its ca-
pacity to fit high-dimensional datasets, such as natural language, voice, sound,
image, and video data.

1.6. Matrix
Neural networks can handle high-dimensional datasets but require substantial
memory and computation. Calculating a layer’s transformation naïvely would
involve iterating over thousands of parameters per unit across thousands of
units and dozens of layers, which is both slow and resource-intensive. Using
matrices makes the computations more efficient.
A matrix is a two-dimensional array of numbers arranged into rows and col-
umns, which generalizes the concept of vectors to higher dimensionalities. For-
mally, a matrix 𝐀 with 𝑚 rows and 𝑛 columns is written as:

𝐀 =
def
s

𝑎"," 𝑎",! ⋯ 𝑎",8
𝑎!," 𝑎!,! ⋯ 𝑎!,8
⋮ ⋮ ⋱ ⋮

𝑎9," 𝑎9,! ⋯ 𝑎9,8

v

Here, 𝑎$,2 represents the element in the 𝑖-th row and 𝑗-th column of the matrix.
The dimensions of the matrix are expressed as 𝑚 × 𝑛 (read as “m by n”).
Matrices are fundamental in machine learning. They compactly represent data
and weights and enable efficient computation through operations such as ad-
dition, multiplication, and transposition. In this book, matrices are represented
with uppercase bold letters, such as 𝐗 or 𝐖.
The sum of two matrices 𝐀 and 𝐁 of the same dimensionality is defined ele-
ment-wise as:

(𝐀 + 𝐁)$,2 =
def
𝑎$,2 + 𝑏$,2

For example, for two 2 × 3 matrices 𝐀 and 𝐁, the addition works like this:

38

The product of a matrices 𝐀 with dimensions 𝑚 × 𝑛 and 𝐁 with dimensions
𝑛 × 𝑝 is a matrix 𝐂 with dimensions 𝑚 × 𝑝 such that the value in row 𝑖 and
column 𝑘 is given by:

(𝐂)$,: =U𝑎$,2

8

2%"

𝑏2,:

For example, for a 4 × 3 matrix 𝐀 and a 3 × 5 matrix 𝐁, the product is a 4 × 5
matrix:

Transposing a matrix 𝐀 swaps its rows and columns, resulting in 𝐀1, where:

(𝐀1)$,2 = 𝑎2,$

For example, for a 2 × 3 matrix 𝐀, its transpose 𝐀1 look like this:

39

Matrix-vector multiplication is a special case of matrix multiplication. When
an 𝑚 × 𝑛 matrix 𝐀 is multiplied by a vector 𝐱 of size 𝑛, the result is a vector
𝐲 = 𝐀𝐱 with 𝑚 components. Each element 𝑦$ of the resulting vector 𝐲 is com-
puted as:

𝑦$ =U𝑎$,2

8

2%"

𝑥(2)

For example, a 4 × 3 matrix 𝐀 multiplied by a 3D vector 𝐱 produces a 4-dimen-
sional vector:

The weights and biases in fully connected layers of neural networks can be
compactly represented using matrices and vectors, enabling the use of highly
optimized linear algebra libraries. As a result, matrix operations form the back-
bone of neural network training and inference.
Let’s express the model in Figure 1.1 using matrix notation. Let 𝐱 be the 2D
input feature vector. For the first layer, the weights and biases are represented
as a 3 × 2 matrix 𝐖" and a 3D vector 𝐛", respectively. The 3D output 𝐲" of the
first layer is given by:

 𝐲" = 𝜙(𝐖"𝐱 + 𝐛") (1.6)
The second layer also uses a weight matrix and a bias. The output 𝑦! of the
second layer is computed using the output 𝐲" from the first layer. The weight
matrix for the second layer is a 1 × 3 matrix 𝐖!. The bias for the second layer
is a scalar 𝑏!,". The model output corresponds to the output of the second layer:

40

 𝑦! = 𝜙C𝐖!𝐲" + 𝑏!,"D (1.7)

Equation 1.6 and Equation 1.7 capture the operations from input to output in
the neural network, with each layer’s output serving as the input for the next.

1.7. Gradient Descent
Neural networks are typically large and composed of non-linear functions,
which makes solving for the minimum of the loss function analytically infeasi-
ble. Instead, the gradient descent algorithm is widely used to minimize the
loss, including in large language models.
Consider a practical example: binary classification. This task assigns input
data to one of two classes, like deciding if an email is spam or not, or detecting
whether a website connection request is a DDoS attack.
Our training dataset 𝒟 is {(𝐱$, 𝑦$)}$%"# , where 𝐱$ are vectors of input features,
and 𝑦$ are the labels. Each 𝑦$, indexed from 1 to 𝑁, takes a value of 0 for “not
spam” or 1 for “spam.” A well-trained model should output 𝑦9 close to 1 for
spam inputs 𝐱 and close to 0 for non-spam inputs. We can define the model as
follows:

 𝑦 = 𝜎(𝐰 ⋅ 𝐱 + 𝑏), (1.8)

where 𝐱 = J𝑥(2)K2%"
3 and 𝐰 = J𝑤(2)K2%"

3 are 𝐷-dimensional vectors, 𝑏 is a scalar,
and 𝜎 is the sigmoid defined in Section 1.5.
This model, called logistic regression, is commonly used for binary classifica-
tion tasks. Unlike linear regression, which produces outputs ranging from −∞
to ∞, logistic regression always outputs values between 0 and 1. It can serve
either as a standalone model or as the output layer in a larger neural network.

Despite being over 80 years old, logistic regression remains one of the
most widely used algorithms in production machine learning systems.

A common choice for the loss function in this case is binary cross-entropy,
also called logistic loss. For a single example 𝑖, the binary cross-entropy loss
is defined as:

 loss(𝑦9$, 𝑦$) =
def
− [𝑦$log(𝑦9$) + (1 − 𝑦$)log(1 − 𝑦9$)] (1.9)

41

In this equation, 𝑦$ represents the actual label of the 𝑖-th example in the da-
taset, and 𝑦9$ is the prediction score, a value between 0 and 1 that the model
outputs for input vector 𝐱$. The function log denotes the natural logarithm.
Loss functions are usually designed to penalize incorrect predictions while re-
warding accurate ones. To see why logistic loss works for logistic regression,
consider two extreme cases:

1. Perfect prediction, when 𝑦$ = 0 and 𝑦9$ = 0:
loss(0,0) = −[0 ⋅ log(0) + (1 − 0) ⋅ log(1 − 0)] = −log(1) = 0

 Here, the loss is zero which is good because the prediction matches the
label.

2. Opposite prediction, when 𝑦$ = 0 and 𝑦9$ = 1:
loss(1,0) = −[0 ⋅ log(1) + (1 − 0) ⋅ log(1 − 1)] = −log(0)

The logarithm of 0 is undefined, and as 𝑎 approaches 0, −log(𝑎) approaches
infinity, representing a severe loss for completely wrong predictions. However,
since 𝑦9$, the sigmoid’s output, always remains strictly between 0 and 1, without
reaching them, the loss stays finite.
For an entire dataset 𝒟, the loss is given by the average loss for all examples
in the dataset:

loss𝒟 =

def
−
1
𝑁
U[𝑦$log(𝑦9$) + (1 − 𝑦$)log(1 − 𝑦9$)]
#

$%"

 (1.10)

To simplify the gradient descent derivation, we’ll stick to a single example, 𝑖,
and rewrite the equation by substituting the prediction score 𝑦9$ with the
model’s expression for it:
loss(𝑦9$, 𝑦$) = −J𝑦$logC𝜎(𝑧$)D + (1 − 𝑦$)logC1 − 𝜎(𝑧$)DK, where 𝑧$ = 𝐰 ⋅ 𝐱$ + 𝑏

To minimize loss(𝑦9$, 𝑦$), we calculate the partial derivatives with respect to
each weight 𝑤(2) and the bias 𝑏. We will use the chain rule because we have
a composition of three functions:

• Function 1: 𝑧$ =
def
𝐰 ⋅ 𝐱$ + 𝑏, a linear function with the weights 𝐰 and

the bias 𝑏;

• Function 2: 𝑦9$ = 𝜎(𝑧$) =
def "

"45$%&
, the sigmoid function applied to 𝑧$;

42

• Function 3: loss(𝑦9$, 𝑦$), as defined in Equation 1.9, which depends on
𝑦9$.

Notice that 𝐱$ and 𝑦$ are given: 𝐱$ is the feature vector for example 𝑖,
and 𝑦$ ∈ {0,1} is its label. The notation 𝑦$ ∈ {0,1} means that 𝑦$ belongs
to the set {0,1} and, in this case, indicates that 𝑦$ can only be 0 or 1.

Let’s denote loss(𝑦9$, 𝑦$) as l$. For weights 𝑤(2), the application of the chain rule
gives us:

∂l$
∂𝑤(2) =

∂l$
∂𝑦9$

⋅
∂𝑦9$
∂𝑧$

⋅
∂𝑧$
∂𝑤(2) = (𝑦9$ − 𝑦$) ⋅ 𝑥$

(2)

For the bias 𝑏, we have:
∂l$
∂𝑏

=
∂l$
∂𝑦9$

⋅
∂𝑦9$
∂𝑧$

⋅
∂𝑧$
∂𝑏

= 𝑦9$ − 𝑦$

This is where the beauty of machine learning math shines: the activa-
tion function—sigmoid—and loss function—cross-entropy—both arise
from 𝑒, Euler’s number. Their functional properties serve distinct pur-
poses: sigmoid ranges between 0 and 1, ideal for binary classification,
while cross-entropy spans from 0 to ∞, great as a penalty. When com-
bined, the exponential and logarithmic components elegantly cancel,
yielding a linear function—prized for its computational simplicity and
numerical stability. The book’s wiki provides the full derivation.

The partial derivatives with respect to 𝑤(2) and 𝑏 for a single example (𝐱$, 𝑦$)
can be extended to the entire dataset {(𝐱$, 𝑦$)}$%"# by averaging the contribu-
tions from all examples. This follows from the sum rule and the constant mul-
tiple rule of differentiation:

 ∂loss
∂𝑤(2) =

1
𝑁
U�(𝑦9$ − 𝑦$) ⋅ 𝑥$

(2)�
#

$%"

∂loss
∂𝑏

=
1
𝑁
U[𝑦9$ − 𝑦$]
#

$%"

 (1.11)

43

Here, loss denotes the average loss for the entire dataset. Averaging the losses
for individual examples ensures that each example contributes equally to the
overall loss, regardless of the total number of examples.
The gradient is a vector that contains all the partial derivatives. The gradient
of the loss function, denoted as ∇loss, is defined as follows:

∇loss =def �
∂loss
∂𝑤(") ,

∂loss
∂𝑤(!) , … ,

∂loss
∂𝑤(3) ,

∂loss
∂𝑏

�

If a gradient’s component is positive, this means that increasing the corre-
sponding parameter will increase the loss. Therefore, to minimize the loss, we
should decrease that parameter.
The gradient descent algorithm uses the gradient of the loss function to iter-
atively update the weights and bias, aiming to minimize the loss function.
Here’s how it operates:

0. Initialize parameters: Start with random values of parameters 𝑤(2)
and 𝑏.

1. Compute the predictions: For each training example (𝐱$, 𝑦$), compute
the predicted value 𝑦9$ using the model:

𝑦9$ ← 𝜎(𝐰 ⋅ 𝐱$ + 𝑏)
2. Compute the gradient: Calculate the partial derivatives of the loss

function with respect to each weight 𝑤(2) and the bias 𝑏 using Equa-
tion 1.11.

3. Update the weights and bias: Adjust the weights and bias in the direc-
tion that decreases the loss function. This adjustment involves taking a
small step in the opposite direction of the gradient. The step size is con-
trolled by the learning rate 𝜂 (explained below):

𝑤(2) ← 𝑤(2) − 𝜂
∂loss
∂𝑤(2)

𝑏 ← 𝑏 − 𝜂
∂loss
∂𝑏

4. Calculate the loss: Calculate the logistic loss by substituting the up-
dated values of 𝑤(2) and 𝑏 into Equation 1.10.

5. Continue the iterative process: Repeat steps 1-4 for a set number of
iterations (also called steps) or until the loss value converges to a min-
imum.

44

Here’s a bit more detail to clarify the steps:
• Gradients are subtracted from parameters because they point in the di-

rection of steepest ascent in the loss function. Since our goal is to mini-
mize loss, we move in the opposite direction—hence, the subtraction.

• The learning rate 𝜂 is a positive value close to 0 and serves as a hy-
perparameter—not learned by the model but set manually. It controls
the step size of each update, and finding its optimal value requires ex-
perimentation.

• Convergence occurs when subsequent iterations yield minimal de-
creases in loss. The learning rate 𝜂 is crucial here: too small, and pro-
gress crawls; too large, and we risk overshooting the minimum or even
seeing the loss increase. Choosing an appropriate 𝜂 is therefore essen-
tial for effective gradient descent.

Let’s illustrate the process with a simple dataset of 12 examples:

�
C(22,25), 0D, C(25,35), 0D, C(47,80), 1D, C(52,95), 1D, C(46,82), 1D, C(56,90), 1D,
C(23,27), 0D, C(30,50), 1D, C(40,60), 1D, C(39,57), 0D, C(53,95), 1D, C(48,88), 1D

�

In this dataset, 𝐱$ contains two features: age (in years) and income (in thou-
sands of dollars). The objective is to predict whether a person will buy a prod-
uct, with label 𝑦$ being either 0 (will not buy) or 1 (will buy).
The loss evolution across gradient descent steps and the resulting trained
model are shown in the figures below:

The left plot shows the loss decreasing steadily during gradient descent opti-
mization. The right plot displays the trained model’s sigmoid function, with

45

training examples positioned by their z-values (𝑧$ = 𝐰∗ ⋅ 𝐱$ + 𝑏∗), where 𝐰∗
and 𝑏∗ are the learned weights and bias.
The 0.5 threshold was chosen based on the plot’s clear separation: all “will-
buy” examples (blue dots) lie above it, while all “will-not-buy” examples (red
dots) fall below. For new inputs 𝐱, generate 𝑦9 = 𝜎(𝐰∗ ⋅ 𝐱 + 𝑏∗). If 𝑦9 < 0.5, pre-
dict “will not buy;” otherwise, predict “will buy.”

1.8. Automatic Differentiation
Gradient descent optimizes model parameters but requires partial derivative
equations. Until now, we calculated these derivatives by hand for each model.
As models grow more complex, particularly in neural networks with multiple
layers, manual derivation becomes impractical.
This is where automatic differentiation (or autograd) comes in. Built into
machine learning frameworks like PyTorch and TensorFlow, this feature com-
putes partial derivatives directly from Python code defining the model. This
eliminates manual derivation, even for very complex models.

Modern automatic differentiation systems can handle derivatives for
millions of variables efficiently. Manual computation of these deriva-
tives would be unfeasible—writing the equations alone could take
years.

To use gradient descent in PyTorch, first install it with pip3 like this:
$ pip3 install torch

Now that PyTorch is installed, let’s import the dependencies:
import torch
import torch.nn as nn
import torch.optim as optim

The torch.nn module contains building blocks for creating models. When you
use these components, PyTorch automatically handles derivative calculations.
For optimization algorithms like gradient descent, the torch.optim module
has what you need. Here’s how to implement logistic regression in PyTorch:
model = nn.Sequential(
 nn.Linear(n_inputs, n_outputs), ➊

46

 nn.Sigmoid() ➋
)

Our model leverages PyTorch’s sequential API, which is well-suited for simple
feedforward neural networks where data flows sequentially through layers.
Each layer’s output naturally becomes the input for the subsequent layer. The
more versatile module API, which we’ll use in the next chapter, enables the
creation of models with multiple inputs, outputs, or loops.

The input layer, defined in line ➊ using nn.Linear, has input dimensionality
n_inputs matching the size of our feature vector 𝐱, while the output dimen-
sionality n_outputs determines the layer’s unit count. For our buy/no-buy
classifier—a model assigning classes to inputs—we set n_inputs to 2 since
𝐱 = J𝑥("), 𝑥(!)K

1. With the output 𝑧 being scalar, n_outputs becomes 1. Line
➋ transforms 𝑧 through the sigmoid function to produce the output score.
We then proceed to define our dataset, create the model instance, establish the
binary cross-entropy loss function, and set up the gradient descent algorithm:
inputs = torch.tensor([
 [22, 25], [25, 35], [47, 80], [52, 95], [46, 82], [56, 90
],
 [23, 27], [30, 50], [40, 60], [39, 57], [53, 95], [48, 88
]
], dtype=torch.float32) ➊

labels = torch.tensor([
 [0], [0], [1], [1], [1], [1], [0], [1], [1], [0], [1], [1
]
], dtype=torch.float32) ➋

model = nn.Sequential(
 nn.Linear(inputs.shape[1], 1),
 nn.Sigmoid()
)
optimizer = optim.SGD(model.parameters(), lr=0.001) ➌
criterion = nn.BCELoss() # binary cross-entropy loss

In the above code block, we defined inputs and labels. The inputs form a
matrix with 12 rows and 2 columns, while the labels are a vector with 12

47

components. The shape attribute of the inputs tensor return its dimensional-
ity:
>>> inputs.shape
torch.Size([12, 2])

Tensors are PyTorch’s core data structures—multi-dimensional arrays opti-
mized for computation on both CPU and GPU. Supporting automatic differen-
tiation and flexible data reshaping, tensors form the foundation for neural net-
work operations. In our example, the inputs tensor contains 12 examples with
2 features each, while the labels tensor holds 12 examples with single labels.
Following standard convention, examples are arranged in rows and their fea-
tures in columns.

If you’re not familiar with tensors, there’s an introductory chapter on
tensors available on the book’s wiki.

When creating tensors in PyTorch, specifying dtype=torch.float32 in line
➊ sets 32-bit floating-point precision explicitly. This precision setting is essen-
tial for neural network computations, including weight adjustments, activation
functions, and gradient calculations.

The 32-bit floating-point precision is not the only option for neural
networks. Quantization, an advanced technique that uses lower-pre-
cision data types like 16-bit or 8-bit floats and integers, helps reduce
model size and improve computational efficiency. For more infor-
mation, refer to resources on model optimization and deployment
available on the book’s wiki.

The optim.SGD class in line ➌ implements gradient descent by taking a list of
model parameters and learning rate as inputs.2 Since our model inherits from
nn.Module, we can access all trainable parameters through its parameters
method.

2 While 0.001 is a common default learning rate, optimal values vary by problem and da-
taset. Finding the best rate involves systematically testing different values and comparing
model performance.

48

PyTorch provides the binary cross-entropy loss function through nn.BCEL-
oss().
Now, we have everything we need to start the training loop:
for step in range(500):
 optimizer.zero_grad() ➊
 loss = criterion(model(inputs), labels) ➋
 loss.backward() ➌
 optimizer.step() ➍

Line ➋ calculates the binary cross-entropy loss (Equation 1.10) by evaluating
model predictions against training labels. Line ➌ then uses backpropagation to
compute the gradient of this loss with respect to the model parameters.
Backpropagation applies differentiation rules, particularly the chain rule, to
compute gradients through deep composite functions. This algorithm forms
the backbone of neural network training. When PyTorch operates on tensors,
it builds a computational graph as shown in Figure 1.1 from Section 1.5. This
graph tracks all operations performed on the tensors. The loss.backward()
call prompts PyTorch to traverse this graph and compute gradients via the
chain rule, eliminating the need for manual gradient derivation and implemen-
tation.
The flow of data from input to output through the computational graph con-
stitutes the forward pass, while the computation of gradients from output to
input through backpropagation represents the backward pass.

PyTorch accumulates gradients in the .grad attribute of parameters
like weights and biases. While this feature enables multiple gradient
computations before parameter updates—useful for recurrent neural
networks (covered in Section 3)—our implementation doesn’t require
gradient accumulation. Line ➊ therefore clears the gradients at each
step’s beginning.

Finally, in line ➍, parameter values are updated by subtracting the product of
the learning rate and the loss function’s partial derivatives, completing step 3
of the gradient descent algorithm discussed earlier.

49

The reader might wonder why labels are floats and not integers in this
binary classification problem. The reason lies in how PyTorch’s BCEL-
oss function operates. Since the model’s output layer uses a sigmoid
activation function that produces floating-point values between 0 and
1, BCELoss expects both predictions and target labels to be floating-
point numbers in the same range. If we were to use integer types like
torch.long, we would encounter an error because BCELoss isn’t de-
signed to handle integer types and its internal calculations expect float-
ing-point numbers. This is specific to BCELoss—other loss functions
like CrossEntropyLoss that we will use later actually require integer
labels instead.

One of automatic differentiation’s key advantages is its flexibility with model
switching—as long as you’re using PyTorch’s components, you can readily
swap between different architectures. For instance, you could replace logistic
regression with a basic two-layer FNN, defined through the sequential API:
model = nn.Sequential(
 nn.Linear(features.shape[1], 100),
 nn.Sigmoid(),
 nn.Linear(100, labels.shape[1]),
 nn.Sigmoid()
)

In this setup, each of the 100 units in the first layer contains 2 weights and 1
bias, while the output layer’s single unit has 100 weights and 1 bias. The au-
tomatic differentiation system handles gradient computation internally, so the
remaining code stays unchanged.
In the next chapter, we examine representing and processing text data. We
start with basic methods like bag-of-words and word embeddings for convert-
ing documents into numerical formats, then introduce count-based language
modeling.

50

Chapter 2. Language Modeling Basics
Language modeling requires transforming text into numbers that computers
can process. In this chapter, we'll explore how to convert words and documents
into numerical formats, introduce the fundamentals of language modeling, and
study count-based models as our first architecture. Finally, we'll cover tech-
niques for measuring language model performance.
Let’s begin with one of the oldest yet effective techniques for converting text
into usable data for machine learning: bag of words.

2.1. Bag of Words
Suppose you have a collection of documents and want to predict the main topic
of each one. When topics are defined in advance, this task is called classifica-
tion. With only two possible topics, it’s known as binary classification, as ex-
plained in Section 1.7. With more than two topics, we have multiclass classi-
fication.
In multiclass classification, the dataset consists of pairs {(𝐱$, 𝑦$)}$%"# , where 𝑦$ ∈
{1, … , 𝐶}, 𝑁 represents the number of examples, and 𝐶 denotes the number of
possible classes. Each 𝐱$ could be a text document, with 𝑦$ being an integer
indicating its topic—for example, 1 for “music,” 2 for “science,” or 3 for “cin-
ema.”
Machines don’t process text like humans. To use machine learning on text, we
first need to convert documents into numbers. Each document becomes a fea-
ture vector, where each feature is a scalar.
A common and effective approach to convert a collection of documents into
feature vectors is the bag of words (BoW). Here’s how it works for a collection
of 10 simple documents:

ID Text
1 Movies are fun for everyone.
2 Watching movies is great fun.
3 Enjoy a great movie today.
4 Research is interesting and important.
5 Learning math is very important.
6 Science discovery is interesting.

51

ID Text
7 Rock is great to listen to.
8 Listen to music for fun.
9 Music is fun for everyone.
10 Listen to folk music!

A collection of text documents used in machine learning is called a corpus.
The bag of words method applied to a corpus involves two key steps:

1. Create a vocabulary: List all unique words in the corpus to create the
vocabulary.

2. Vectorize documents: Convert each document into a feature vector,
where each dimension represents a word from the vocabulary. The
value indicates the word’s presence, absence, or frequency in the docu-
ment.

For the 10-document corpus, the vocabulary is built by listing all unique words
in alphabetical order. This involves removing punctuation, converting words
to lowercase, and eliminating duplicates. After processing, we get:
vocabulary = ["a", "and", "are", "discovery", "enjoy", "every
one", "folk", "for", "fun", "great", "important", "interestin
g", "is", "learning", "listen", "math", "movie", "movies", "m
usic", "research", "rock", "science", "to", "today", "very",
"watching"]

Splitting a document into small indivisible parts is called tokenization, and
each part is a token. There are different ways to tokenize. We tokenized our
10-document corpus by words. Sometimes, it’s useful to break words into
smaller units, called subwords, to keep the vocabulary size manageable. For
instance, instead of including “interesting” in the vocabulary, we might split it
into “interest” and “-ing.” One method for subword tokenization, which we’ll
cover in this chapter, is byte-pair encoding. The choice of tokenization method
depends on the language, dataset, and model, and the best one is found ex-
perimentally.

A count of all English word surface forms—like do, does, doing, and
did—reveals several million possibilities. Languages with more

52

complex morphology have even greater numbers. A Finnish noun
alone can take 2,000–3,000 different forms to express various case and
number combinations. Using subwords offers a practical solution, as
storing every surface form in the vocabulary would consume excessive
memory and computational resources.

Words are a type of token, so “token” and “word” are often used interchange-
ably as the smallest indivisible units of a document. In this book, when a dis-
tinction is important, context will make it clear. While the bag-of-words ap-
proach can handle both words and subwords, it was originally designed for
words—hence the name.
Feature vectors can be organized into a document-term matrix (DTM). Here,
rows represent documents, and columns represent tokens. Below is a partial
document-term matrix for a 10-document corpus. It includes only a subset of
tokens to fit within the page width:
Doc a and … fun … listen math … science … watching

1 0 0 … 1 … 0 0 … 0 … 0
2 0 0 … 1 … 0 0 … 0 … 1
3 1 0 … 0 … 0 0 … 0 … 0
4 0 1 … 0 … 0 0 … 0 … 0
5 0 0 … 0 … 0 1 … 0 … 0
6 0 0 … 0 … 0 0 … 1 … 0
7 0 0 … 0 … 1 0 … 0 … 0
8 0 0 … 1 … 1 0 … 0 … 0
9 0 0 … 1 … 0 0 … 0 … 0

10 0 0 … 0 … 1 0 … 0 … 0

In the DTM above, 1 means the token appears in the document, while 0 means
it does not. For instance, the feature vector 𝐱! for document 2 (“Watching mov-
ies is great fun.”) is:

𝐱! = [0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1]1.

In natural languages, word frequencies follow Zipf’s Law, stating that
a word's frequency is inversely proportional to its rank in the frequency
table—for instance, the second most frequent word appears half as

53

often as the most frequent one. Consequently, document-term matri-
ces are usually sparse, containing mostly zeros.

A neural network can be trained to predict a document’s topic using these fea-
ture vectors. Let’s do that. The first step is to assign labels to the documents, a
process known as labeling. Labeling can be done manually or assisted by an
algorithm. When algorithms are used, human validation is often needed to
confirm accuracy. Here, we will manually label the documents by reading each
one and choosing the most suitable topic from the three options.

Doc Text Class ID Class Name
1 Movies are fun for everyone. 1 Cinema
2 Watching movies is great fun. 1 Cinema
3 Enjoy a great movie today. 1 Cinema
4 Research is interesting and important. 3 Science
5 Learning math is very important. 3 Science
6 Science discovery is interesting. 3 Science
7 Rock is great to listen to. 2 Music
8 Listen to music for fun. 2 Music
9 Music is fun for everyone. 2 Music
10 Listen to folk music! 2 Music

Advanced chat language models enable highly accurate automated
document labeling through a panel of expert models. Using three
LLMs, when two or more assign the same label to a document, that
label is adopted. If all three disagree, either a human can decide, or a
fourth model can break the tie. In many business contexts, manual la-
beling is becoming obsolete, as LLMs offer faster and often more reli-
able labeling.

54

We have three classes: 1 for cinema, 2 for music, and 3 for science.3 While
binary classifiers typically use the sigmoid activation function with the binary
cross-entropy loss, as discussed in Section 1.7, tasks involving three or more
classes generally employ the softmax activation function paired with the cross-
entropy loss.
The softmax function is defined as:

softmax(𝐳, 𝑘) =def
𝑒<

(()

∑ 𝑒<(*)3
2%"

Here, 𝐳 is a 𝐷-dimensional vector of logits, 𝑘 is the index for which the softmax
is computed, and 𝑒 is Euler’s number. Logits are the raw outputs of a neural
network, prior to applying an activation function, as shown below:

3 Class labels in classification are arbitrary and unordered. You can assign numbers to the
classes in any way, and the model’s performance won’t change as long as the mapping is
consistent for all examples.

55

The figure shows the output layer of a neural network, labeled as 𝑜. The logits
𝑧=
(:), for 𝑘 ∈ {1,2,3}, are the values in light green. These represent the outputs

of the units before the activation function is applied. The vector 𝐳 is expressed

as 𝐳= = �𝑧=
("), 𝑧=

(!), 𝑧=
(&)�

1
.

For instance, the softmax for unit 𝑜, 2 in the figure is calculated as:

softmax(𝐳=, 2) =
𝑒<+

(")

𝑒<+
(!)
+ 𝑒<+

(")
+ 𝑒<+

(#)

56

Softmax transforms a vector into a discrete probability distribution (DPD),
ensuring that ∑ softmax3

:%" (𝐳, 𝑘) = 1. A DPD assigns probabilities to values in
a finite set, with their sum equaling 1. A finite set contains a countable number
of distinct elements. For instance, in a classification task with classes 1, 2, and
3, these classes constitute a finite set. The softmax function maps each class to
a probability, with these probabilities summing to 1.
Let’s compute the probabilities step by step. Assume we have three logits, 𝐳 =
[2.0,1.0,0.5]1, representing a document’s classification into cinema, music, or
science.

First, calculate 𝑒<(() for each logit:

𝑒<
(!) = 𝑒!.? ≈ 7.39,

𝑒<
(") = 𝑒".? ≈ 2.72,

𝑒<
(#) = 𝑒?.@ ≈ 1.65

Next, sum these values: ∑ 𝑒<
(*)&

2%" = 7.39 + 2.72 + 1.65 ≈ 11.76.

Now use the softmax formula, softmax(𝐳, 𝑘) = 5%
(()

∑ 5%(*)#
*,!

, to compute the proba-

bilities:

Pr(cinema) =
7.39
11.76

≈ 0.63,

Pr(music) =
2.72
11.76

≈ 0.23,

Pr(science) =
1.65
11.76

≈ 0.14

Neural network softmax outputs are better characterized as “probabil-
ity scores” rather than true statistical probabilities, despite summing to
one and resembling class likelihoods. Unlike logistic regression or Na-
ïve Bayes models, neural networks don't generate genuine class prob-
abilities. For simplicity, though, I'll refer to these probability scores as
“probabilities” throughout this book.

The cross-entropy loss measures how well predicted probabilities match the
true distribution. The true distribution is typically a one-hot vector with a

57

single element equal to 1 (the correct class) and 0 elsewhere. For example, a
one-hot encoding with 3 classes looks like:

Class One-hot vector
1 [1,0,0]1
2 [0,1,0]1
3 [0,0,1]1

The cross-entropy loss for a single example is:

loss(𝐲9, 𝐲) = −U𝑦(:)
B

:%"

logC𝑦9(:)D,

where 𝐶 is the number of classes, 𝐲 is the one-hot encoded true label, and 𝐲9 is
the predicted probabilities. Here, 𝑦(:) and 𝑦9(:) represent the 𝑘th elements of 𝐲
and 𝐲9, respectively.
Since 𝐲 is one-hot encoded, only the term corresponding to the correct class
contributes to the summation. The summation thus simplifies by retaining only
that single term. Let’s simplify it. Suppose the correct class is 𝑐, so 𝑦(C) = 1 and
𝑦(:) = 0 for all 𝑘 ≠ 𝑐. In the summation, only the term where 𝑘 = 𝑐 will be
non-zero. The equation simplifies to:

 loss(𝐲9, 𝐲) = −logC𝑦9 (C)D (2.1)
This simplified form indicates that the loss corresponds to the negative loga-
rithm of the probability assigned to the correct class. For 𝑁 examples, the av-
erage loss is:

loss = −
1
𝑁
Ulog
#

$%"

�𝑦e$
(C&)�,

where 𝑐$ is the correct class index for the 𝑖th example.
When used with softmax in the output layer, cross-entropy loss guides the net-
work to assign high probabilities to correct classes while reducing probabilities
for incorrect ones.
For a document classification example with three classes (cinema, music, and
science), the network generates three logits. These logits are passed through
the softmax function to convert them into probabilities for each class. The

58

cross-entropy loss is then calculated between these scores and the true one-hot
encoded labels.
Let’s illustrate this by training a simple two-layer neural network to classify
documents into three classes. We first import dependencies, set a random seed,
and define the dataset:
import re, torch, torch.nn as nn

torch.manual_seed(42) ➊

docs = [
 "Movies are fun for everyone.",
 "Watching movies is great fun.",
 ...
 "Listen to folk music!"
]

labels = [1, 1, 1, 3, 3, 3, 2, 2, 2, 2]
num_classes = len(set(labels))

Setting the random seed in line ➊ ensures consistent random number genera-
tion across PyTorch runs. This guarantees reproducibility, allowing you to at-
tribute performance changes to code or hyperparameter modifications rather
than random variations. Reproducibility is also essential for teamwork, ena-
bling collaborators to examine issues under identical conditions.
Next, we convert documents into a bag of words using two methods: to-
kenize, which splits input text into lowercase words, and get_vocabulary,
which constructs the vocabulary:
def tokenize(text):
 return re.findall(r"\w+", text.lower()) ➊

def get_vocabulary(texts):
 tokens = {token for text in texts for token in tokenize(t
ext)} ➋
 return {word: idx for idx, word in enumerate(sorted(token
s))} ➌

vocabulary = get_vocabulary(docs)

59

In line ➊, the regular expression \w+ extracts individual words from the text.
A regular expression is a sequence of characters used to define a search pat-
tern. The pattern \w+ matches sequences of “word characters,” such as letters,
digits, and underscores.
The findall function from Python’s re module applies the regular expression
and returns a list of all matches in the input string. In this case, it extracts all
words.

In line ➋, the corpus is converted into a set of tokens by iterating through each
document and extracting words using the same regular expression. In line ➌,
these tokens are sorted alphabetically and mapped to unique indices, forming
a vocabulary.
Once the vocabulary is built, the next step is to define the feature extraction
function that converts a document into a feature vector:
def doc_to_bow(doc, vocabulary):
 tokens = set(tokenize(doc))
 bow = [0] * len(vocabulary)
 for token in tokens:
 if token in vocabulary:
 bow[vocabulary[token]] = 1
 return bow

The doc_to_bow function takes a document string and a vocabulary and re-
turns the bag-of-words representation of the document.
Now, let’s transform our documents and labels into numbers:
vectors = torch.tensor(
 [doc_to_bow(doc, vocabulary) for doc in docs],
 dtype=torch.float32
)
labels = torch.tensor(labels, dtype=torch.long) - 1 ➊

The vectors tensor with shape (10, 26) represents 10 documents as rows
and 26 vocabulary tokens as columns, while the labels tensor of shape (10,)
contains the class label for each document. The labels use integer indices ra-
ther than one-hot encoding since PyTorch’s cross-entropy loss function
(nn.CrossEntropyLoss) expects this format.

60

Line ➊ uses torch.long to cast labels to 64-bit integers. The -1 adjustment
converts our original classes 1, 2, 3 to indices 0, 1, 2, which aligns with
PyTorch’s expectation that class indices begin at 0 for models and loss func-
tions like CrossEntropyLoss.
PyTorch provides two APIs for model definition: the sequential API and the
module API. While we used the straightforward nn.Sequential API to define
our model in Section 1.8, we’ll now explore building a multilayer perceptron
using the more versatile nn.Module API:
input_dim = len(vocabulary)
hidden_dim = 50
output_dim = num_classes

class SimpleClassifier(nn.Module):
 def __init__(self, input_dim, hidden_dim, output_dim):
 super().__init__()
 self.fc1 = nn.Linear(input_dim, hidden_dim)
 self.relu = nn.ReLU()
 self.fc2 = nn.Linear(hidden_dim, output_dim)

 def forward(self, x):
 x = self.fc1(x) ➊
 x = self.relu(x) ➋
 x = self.fc2(x) ➌
 return x

model = SimpleClassifier(input_dim, hidden_dim, output_dim)

The SimpleClassifier class implements a feedforward neural network
with two layers. Its constructor defines the network components:

1. A fully connected layer, self.fc1, maps the input of size input_dim
(equal to the vocabulary size) to 50 (hidden_dim) outputs.

2. A ReLU activation function introduces non-linearity.
3. A second fully connected layer, self.fc2, reduces the 50 intermediate

outputs to output_dim, the number of unique labels.
The forward method describes the forward pass, where inputs flow through
the layers:

61

• In line ➊, the input x of shape (10, 26) is passed to the first fully con-
nected layer, transforming it to shape (10, 50).

• In line ➋, output from this layer is fed through the ReLU activation
function, keeping the shape (10, 50).

• In line ➌, the result is sent to the second fully connected layer, reduc-
ing it from shape (10, 50) to (10, 3), producing the model’s final
output with logits.

The forward method is called automatically when you pass input data to the
model instance, like this: model(input).

While SimpleClassifier omits a final softmax layer, this is inten-
tional—PyTorch's CrossEntropyLoss combines softmax and cross-
entropy loss internally for stability. This design eliminates the need for
an explicit softmax in the model's forward pass.

With our model defined, the next steps, as outlined in Section 1.8, are to define
the loss function, choose the gradient descent algorithm, and set up the train-
ing loop:
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

for step in range(3000):
 optimizer.zero_grad()
 loss = criterion(model(vectors), labels)
 loss.backward()
 optimizer.step()

As you can see, the training loop is identical to the one in Section 1.8. Once
the training is complete, we can test the model on a new document:
new_docs = [
 "Listening to rock music is fun.",
 "I love science very much."
]
class_names = ["Cinema", "Music", "Science"]

new_doc_vectors = torch.tensor(

62

 [doc_to_bow(new_doc, vocabulary) for new_doc in new_docs]
,
 dtype=torch.float32
)

with torch.no_grad(): ➊
 outputs = model(new_doc_vectors) ➋
 predicted_ids = torch.argmax(outputs, dim=1) + 1 ➌

for i, new_doc in enumerate(new_docs):
 print(f'{new_doc}: {class_names[predicted_ids[i].item() -
1]}')

Output:
Listening to rock is fun.: Music
I love scientific research.: Science

The torch.no_grad() statement in line ➊ disables the default gradient track-
ing. While gradients are essential during training to update model parameters,
they’re unnecessary during testing or inference. Since these phases don’t in-
volve parameter updates, disabling gradient tracking conserves memory and
speeds up computation. Note that the terms “testing,” “inference,” and “evalu-
ation” are often used interchangeably when referring to generating predictions
on unseen data.

In line ➋, the model processes all inputs simultaneously during inference, just
as it does during training. This parallel processing approach leverages vector-
ized operations, substantially reducing computation time compared to pro-
cessing inputs one by one.
We only care about the final label, not the logits returned by the model. In line
➌, torch.argmax identifies the highest logit’s index, corresponding to the pre-
dicted class. Adding 1 compensates for the earlier shift from 1-based to 0-based
indexing.
While the bag-of-words approach offers simplicity and practicality, it has no-
table limitations. Most significantly, it fails to capture token order or context.
Consider how “the cat chased the dog” and “the dog chased the cat” yield iden-
tical representations, despite conveying opposite meanings.

63

N-grams provide one solution to this challenge. An n-gram consists of 𝑛 con-
secutive tokens from text. Consider the sentence “Movies are fun for every-
one”—its bigrams (2-grams) include “Movies are,” “are fun,” “fun for,” and
“for everyone.” By preserving sequences of tokens, n-grams retain contextual
information that individual tokens cannot capture.
However, using n-grams comes at a cost. The vocabulary expands considera-
bly, increasing the computational cost of model training. Additionally, the
model requires larger datasets to effectively learn weights for the expanded set
of possible n-grams.
Another limitation of bag-of-words is how it handles out-of-vocabulary words.
When a word appears during inference that wasn’t present during training—
and thus isn’t in the vocabulary—it can’t be represented in the feature vector.
Similarly, the approach struggles with synonyms and near-synonyms. Words
like “movie” and “film” are processed as completely distinct terms, forcing the
model to learn separate parameters for each. Since labeled data is often costly
to obtain, resulting in rather small labeled datasets, it would be more efficient
if the model could recognize and collectively process words with similar mean-
ings.
Word embeddings address this by mapping semantically similar words to sim-
ilar vectors.

2.2. Word Embeddings
Consider document 3 (“Enjoy a great movie today.”) from earlier. We can
break down this bag of words (BoW) into one-hot vectors representing indi-
vidual words:

BoW 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
enjoy 0 0 0 0 1 0
a 1 0
great 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
movie 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
today 0 1 0 0

64

As we see, a bag-of-word vector of a document is a sum of one-hot vectors of
its words. Now, let’s examine the one-hot vectors and the BoW vector for the
text “Films are my passion.”:

BoW 0 0 1 0
films 0
are 0 0 1 0
my 0
pas-
sion

0

There are two key problems here. First, even when a word exists in the training
data and vocabulary, one-hot encoding reduces it to a single 1 in a vector of
zeros, giving the classifier almost no meaningful information to learn from.
Second, in the above document, most one-hot encoded word vectors add no
value since three out of four become zero vectors—representing words miss-
ing from the vocabulary.
A better approach would let the model understand that “films,” though unseen
in training, shares semantic meaning with “movies.” This would allow the fea-
ture vector for “films” to be processed similarly to “movies.” Such an approach
requires word representations that capture semantic relationships between
words.
Word embeddings overcome the limitations of the bag-of-words model by
representing words as dense vectors rather than sparse one-hot vectors.
These lower-dimensional representations contain mostly non-zero values, with
similar words having embeddings that exhibit high cosine similarity. The em-
beddings are learned from vast unlabeled datasets spanning millions to hun-
dreds of millions of documents.
Word2vec, a widely-used embedding learning algorithm, exists in two vari-
ants. We’ll examine the skip-gram formulation.
Skip-grams are word sequences where one word is omitted. For example, in
“Professor Alan Turing’s * advanced computer science,” the missing word
(marked as *) might be “research,” “work,” or “theories”—words that fit con-
textually despite not being exact synonyms. Training a model to predict these
skipped words from their surrounding context helps it learn semantic relation-
ships between words. The process can also work in reverse: the skipped word

65

can be used to predict its context words. This is the basis of the skip-gram
algorithm.
The skip-gram size specifies how many context words are included. For a size
of five, this means two words before and two after the skipped word. Here are
examples of skip-grams of size five from our sentence, with different words
skipped (marked as *):

Skip-gram Skipped word
professor alan * research advanced turing’s
alan turing’s * advanced computer research
turing’s research * computer science advanced

If the corpus vocabulary contains 10,000 words, the skip-gram model with an
embedding layer of 300 units, is depicted below:

This is a skip-gram model with a skip-gram size of 5 and the embedding layer
of 300 units. As you can see, the model uses a one-hot encoded skipped word
to predict a context word, processing the input through two consecutive fully
connected layers. It doesn’t predict all context words at once but makes sepa-
rate predictions for each.
Here’s how it works for the skip-gram `professor alan * research advanced” and
the skipped word “turing’s”. We transform the skip-gram into 4 training pairs:

66

Skipped word (input) Context word (target) Position
turing’s professor −2
turing’s alan −1
turing’s research +1
turing’s advanced +2

For each pair of skipped and context words, say (turing’s, professor), the
model:

1. Takes “turing’s” as input,
2. Converts it to a one-hot vector,
3. Passes it through the embedding layer to get the word embedding,
4. Passes the word embedding through the output layer, and
5. Outputs probabilities for “professor.”

For a given context word, the output layer produces a probability vector across
the vocabulary. Each value represents how likely that vocabulary word is to be
the context word.
A curious reader might notice: if the input for each training pair remains con-
stant—say, “turing’s”—why would the output differ? That’s a great observa-
tion! The output will indeed be identical for the same input. However, the loss
calculation varies depending on each context word.

When using chat language models, you may notice that the same
question often yields different answers. While this might suggest the
model is non-deterministic, that’s not accurate. An LLM is fundamen-
tally a neural network, similar to a skip-gram model but with far more
parameters. The apparent randomness comes from the way these mod-
els are used to generate text. During generation, words are sampled
based on their predicted probabilities. Though higher-probability
words are more likely to be chosen, lower-probability ones may still be
selected. This sampling process creates the variations we observe in
responses. We will talk about sampling in Chapter 5.

The skip-gram model uses cross-entropy as its loss function, just as in the
three-class text classifier discussed earlier but handles 10,000 classes—one for
each word in the vocabulary. For each skip-gram in the training set, the model

67

computes losses separately for each context word, such as the four words sur-
rounding “turing’s,” then averages these losses to receive feedback on all con-
text word predictions simultaneously.
This training approach enables the model to capture meaningful word rela-
tionships, even when working with the same input across different training
pairs.
Here’s an example. For the input word “turing’s,” suppose the model assigns
these probabilities to different vocabulary words: professor (0.1), alan (0.15),
research (0.2), advanced (0.05). When training the model, each input-target
word pair contributes to the loss function. For example, when “turing’s” ap-
pears with “professor” in the training data, the loss works to increase the score
of 0.1. Similarly, when paired with “alan,” the loss works to increase 0.15, with
“research” to increase 0.2, and with “advanced” to increase 0.05.
During backpropagation, the model adjusts its weights to make these scores
higher for the given context words. For instance, the updated scores might be:
professor: 0.11, alan: 0.17, research: 0.22, advanced: 0.07, while the scores for
other vocabulary words decrease slightly.
Once training is complete, the output layer is discarded. The embedding layer
then serves as the new output layer. When given a one-hot encoded input
word, the model produces a 300-dimensional vector—this is the word embed-
ding.
Word2vec is just one method for learning word embeddings from large text
corpora. Other methods, such as GloVe and FastText, offer alternative ap-
proaches, focusing on capturing global co-occurrence statistics or subword in-
formation to create more robust embeddings.
Using word embeddings to represent texts offers clear advantages over bag of
words. One advantage is dimensionality reduction, which compresses the
word representation from the size of the vocabulary (as in one-hot encoding)
to a small vector, typically between 100 and 1000 dimensions. This makes it
feasible to process very large corpora in machine learning tasks.
Semantic similarity is another advantage of word embeddings. Words with
similar meanings are mapped to vectors that are close to each other in the
embedding space. For example, consider word2vec embeddings trained by

68

Google on a news corpus containing about 100 billion words.4 In the graph
below, “Moscow” and “Beijing,” or “Russia” and “China,” are represented by
points located near one another. This reflects their semantic relationships:

The graph shows a 2D projection of 300-dimensional embedding vectors for
countries and their capitals. Words with related meanings cluster together,
while nearly parallel lines connect cities to their respective countries, revealing
their semantic relationships.
The skip-gram model captures semantic similarity when words occur in similar
contexts, even without direct co-occurrence. For instance, if the model pro-
duces different probabilities for “films” and “movies,” the loss function drives
it to predict similar ones, since context words frequently overlap. Through
backpropagation, the embedding layer outputs for these words converge.

4 These embeddings can be found online by using the “GoogleNews-vectors-nega-
tive300.bin.gz” query. A backup is available on the book’s wiki at thelm-
book.com/data/word-vectors.

https://www.thelmbook.com/data/word-vectors
https://www.thelmbook.com/data/word-vectors

69

Before word embeddings, WordNet (created at Princeton in 1985) at-
tempted to capture word relationships by organizing words into sets
of synonyms and recording semantic links between them. While effec-
tive, these hand-crafted mappings couldn’t scale to large vocabularies
or capture the subtle patterns in word usage that naturally emerge
from embedding-based approaches.

Because directly visualizing 300-dimensional vectors isn’t possible, we used a
dimensionality reduction technique called principal component analysis
(PCA) to project them onto two dimensions, known as first and second prin-
cipal components.
Dimensionality reduction algorithms compress high-dimensional vectors while
maintaining their relationships. The first and second principal components in
the above graph preserved the semantic connections between words, revealing
their relationships.

For resources on PCA and other dimensionality reduction methods,
check the recommended material listed on the book’s wiki.

Word embeddings capture the meaning of words and their relationships to
other words. They are fundamental to many natural language processing
(NLP) tasks. Neural language models, for example, encode documents as ma-
trices of word embeddings. Each row corresponds to a word’s embedding vec-
tor, and its position in the matrix reflects the word’s position in the document.

The discovery that word2vec embeddings support meaningful arith-
metic operations (like “king − man + woman ≈ queen”) was a pivotal
moment, revealing that neural networks could encode semantic rela-
tionships in a space where vector operations produced changes in word
meaning. This made the invention of neural networks capable of doing
complex math on words, like large language models do, only a matter
of time.

Modern language models, though, often use subwords—tokens smaller than
complete words. Before moving on to language models—the main topic of this

70

book—let’s first examine byte-pair encoding, a widely used subword tokeniza-
tion method.

2.3. Byte-Pair Encoding
Byte-pair encoding (BPE) is a tokenization algorithm that addresses the chal-
lenges of handling out-of-vocabulary words by breaking words into smaller
units called subwords.
Initially a data compression technique, BPE was adapted for NLP by treating
words as sequences of characters. It merges the most frequent symbol pairs—
characters or subwords—into new subword units. This continues until the vo-
cabulary reaches the target size.
Below is the basic BPE algorithm:

1. Initialization: Use a text corpus. Split each word in the corpus into in-
dividual characters. For example, the word “hello” becomes “h e l l o”.
The initial vocabulary consists of all unique characters in the corpus.

2. Iterative merging:
o Count adjacent symbol pairs: Treat each character as a symbol.

Go through the corpus and count every pair of adjacent symbols.
For example, in “h e l l o”, the pairs are “h e”, “e l”, “l l”, “l o”.

o Select the most frequent symbol pair: Identify the pair with the
highest count in the entire corpus. For instance, if “l l” occurs
most frequently, select it.

o Merge the selected pair: Replace all occurrences of the most fre-
quent symbol pair with a new single merged symbol. For exam-
ple, “l l” would be replaced with a new merged symbol “ll”. The
word “h e l l o” now becomes “h e ll o”.

o Update the vocabulary: Add the new merged symbol to the vo-
cabulary. The vocabulary now includes the original characters
and the new symbol “ll”.

3. Repeat: Continue the iterative merging until the vocabulary reaches
the desired size.

The algorithm is simple, but implementing it directly on large corpora is inef-
ficient. Recomputing symbol pairs or updating the entire corpus after each
merge is computationally expensive.

71

A more efficient approach initializes the vocabulary with all unique words in
the corpus and their counts. Pair counts are calculated using these word
counts, and the vocabulary is updated iteratively by merging the most popular
pairs. Let’s write the code:
from collections import defaultdict

def initialize_vocabulary(corpus):
 vocabulary = defaultdict(int)
 charset = set()
 for word in corpus:
 word_with_marker = '_' + word ➊
 characters = list(word_with_marker) ➋
 charset.update(characters) ➌
 tokenized_word = ' '.join(characters) ➍
 vocabulary[tokenized_word] += 1 ➎
 return vocabulary, charset

The function generates a vocabulary that represents words as sequences of
characters and tracks their counts. Given a corpus (a list of words), it returns
two outputs: vocabulary, a dictionary mapping each word—tokenized with
spaces between characters—to its count, and charset, a set of all unique char-
acters present in the corpus.
Here’s how it works:

• Line ➊ adds a word boundary marker “_” to the start of each word to
differentiate subwords at the beginning from those in the middle. For
example, “_re” in “restart” is distinct from “re” in “agree.” This helps re-
build sentences from tokens generated using the model. When a token
starts with “_”, it marks the beginning of a new word, requiring a space
to be added before it.

• Line ➋ splits each word into individual characters.
• Line ➌ updates charset with any new characters encountered in the

word.
• Line ➍ joins characters with spaces to create a tokenized version of

the word. For example, the word “hello” becomes _ h e l l o.

72

• Line ➎ adds tokenized_word to vocabulary with its count incre-
mented.

After the initialization, BPE iteratively merges the most frequent pairs of tokens
(bigrams) in the vocabulary. By removing spaces between these pairs, it
forms progressively longer tokens.
def get_pair_counts(vocabulary):
 pair_counts = defaultdict(int)
 for tokenized_word, count in vocabulary.items():
 tokens = tokenized_word.split() ➊
 for i in range(len(tokens) - 1):
 pair = (tokens[i], tokens[i + 1]) ➋
 pair_counts[pair] += count ➌
 return pair_counts

The function counts how often adjacent token pairs appear in the tokenized
vocabulary words. The input vocabulary maps tokenized words to their
counts, and the output is a dictionary of token pairs and their total counts.

For each tokenized_word in vocabulary, we split it into tokens in line ➊. A
nested loop forms adjacent token pairs in line ➋ and increments their count by
the word’s count in line ➌.
def merge_pair(vocabulary, pair):
 new_vocabulary = {}
 bigram = re.escape(' '.join(pair)) ➊
 pattern = re.compile(r"(?<!\S)" + bigram + r"(?!\S)") ➋
 for tokenized_word, count in vocabulary.items():
 new_tokenized_word = pattern.sub("".join(pair), token
ized_word) ➌
 new_vocabulary[new_tokenized_word] = count
 return new_vocabulary

The function merges the input token pair in all tokenized words from the vo-
cabulary. It returns a new vocabulary where every occurrence of the pair is
merged into a single token. For example, if the pair is ('e', 'l') and a to-
kenized word is "_ h e l l o", merging 'e' and 'l' removes the space
between them, resulting in "_ h el l o".

73

In line ➊, the re.escape function automatically adds backslashes to special
characters in a string (like ., *, or ?), so they are interpreted as literal charac-
ters rather than having their special meaning in regular expressions.

The regular expression in line ➋ matches only whole token pairs. It ensures
the bigram is not part of a larger word by checking for the absence of non-
whitespace characters immediately before and after the match. For instance
"good morning" matches in "this is good morning", but not in "thisis-
good morning", where "good" is part of "thisisgood".

The expressions (?<!\S) and (?!\S) are regex negative lookbehind
and negative lookahead assertions that ensure a bigram stands alone.
The lookbehind checks that no non-whitespace character precedes the
bigram, meaning it follows whitespace or the start of text. The
lookahead similarly ensures no non-whitespace follows the bigram,
meaning it precedes whitespace or the end of text. Together, these pre-
vent the bigram from being part of longer words.

Finally, in line ➌, the function uses pattern.sub() to replace all occurrences
of the matched pattern with the joined pair, creating the new tokenized word.
The function below implements the BPE algorithm, merging the most frequent
token pairs iteratively until no merges remain or the target vocabulary size is
reached:
def byte_pair_encoding(corpus, vocab_size):
 vocabulary, charset = initialize_vocabulary(corpus)
 merges = []
 tokens = set(charset)
 while len(tokens) < vocab_size: ➊
 pair_counts = get_pair_counts(vocabulary)
 if not pair_counts: ➋
 break
 most_frequent_pair = max(pair_counts, key=pair_counts
.get) ➌
 merges.append(most_frequent_pair)
 vocabulary = merge_pair(vocabulary, most_frequent_pai
r) ➍

74

 new_token = ''.join(most_frequent_pair) ➎
 tokens.add(new_token) ➏

 return vocabulary, merges, charset, tokens

This function processes a corpus to produce the components needed for a to-
kenizer. It initializes the vocabulary and character set, creates an empty
merges list for storing merge operations, and sets tokens to the initial char-
acter set. Over time, tokens grows to include all unique tokens the tokenizer
will be able to generate.

The loop in line ➊ continues until the number of tokens supported by the to-
kenizer reaches vocab_size or no pairs remain to merge. Line ➋ checks if
there are no more valid pairs, in which case the loop exits. Line ➌ finds the
most frequent token pair, which is merged throughout the vocabulary in line
➍ to create a new token in line ➎. This new token is added to the tokens set
in line ➏, and the merge is recorded in merges.
The function returns four outputs: the updated vocabulary, the list of merge
operations, the original character set, and the final set of unique tokens.
The function below tokenizes a word using a trained tokenizer:
def tokenize_word(word, merges, vocabulary, charset, unk_toke
n="<UNK>"):
 word = '_' + word
 if word in vocabulary:
 return [word]
 tokens = [char if char in charset else unk_token for char
in word]

 for left, right in merges:
 i = 0
 while i < len(tokens) - 1:
 if tokens[i:i+2] == [left, right]:
 tokens[i:i+2] = [left + right]
 else:
 i += 1
 return tokens

75

This function tokenizes a word using merges, vocabulary, and charset from
byte_pair_encoding. The word is first prefixed. If the prefixed word exists
in the vocabulary, it returns it as the only token. Otherwise, the word is split
into characters, with any not in charset replaced by unk_token. These char-
acters are then iteratively merged using the order of rules in merges.
To tokenize a text, we first split it into words based on spaces and then tokenize
each word individually. The thelmbook.com/nb/2.1 notebook contains code
for training a BPE tokenizer by using a news corpus. The tokenized version of
the sentence “Let’s proceed to the language modeling chapter.” using the to-
kenizer trained in the notebook, is:
["_Let", "'", "s", "_proceed", "_to", "_the", "_language", "_
model", "ing", "_part", "."]

Here, “let’s,” and “modeling,” were broken into subwords. This indicates their
relative rarity in the training data and a small target vocabulary size (I set 5000
tokens).
The tokenize_word algorithm is inefficient due to nested loops: it iterates
over all merges in line ➍ while checking every token pair in line ➎. However,
since modern language models have vocabularies exceeding 100,000 tokens,
most input words exist in the vocabulary, bypassing subword tokenization. The
notebook’s optimized version uses caching and precomputed data structures
to eliminate these nested loops, reducing tokenization time from 0.0549 to
0.0037 seconds. While actual performance varies by system, the optimized ap-
proach consistently delivers better speed.
For languages without spaces, like Chinese, or for multilingual models, the
initial space-based tokenization is typically skipped. Instead, the text is split
into individual characters. From there, BPE proceeds as usual, merging the
most frequent character or token pairs to form subwords.
We're now ready to examine the core ideas of language modeling. We'll begin
with traditional count-based methods and cover neural network-based tech-
niques in later chapters.

2.4. Language Model
A language model predicts the next token in a sequence by estimating its con-
ditional probability based on previous tokens. It assigns a probability to all

https://www.thelmbook.com/nb/2.1

76

possible next tokens, enabling the selection of the most likely one. This capa-
bility supports tasks like text generation, machine translation, and speech
recognition. Trained on large unlabeled text corpora, language models learn
statistical patterns in language, allowing them to be used to generate human-
like text.
Formally, for a sequence 𝐬 of 𝐿 tokens (𝑡", 𝑡!, … , 𝑡D), a language model com-
putes:

 PrC𝑡 = 𝑡D4"|𝐬 = (𝑡", 𝑡!, … , 𝑡D)D (2.2)

Here, Pr represents the conditional probability distribution over the vocabulary
for the next token. A conditional probability quantifies the likelihood of one
event occurring given that another has already occurred. In language models,
it reflects the probability of a specific token being the next one, given the pre-
ceding sequence of tokens. This sequence is often referred to as the input se-
quence, context, or prompt.
The following notations are equivalent to Equation 2.2:

 Pr(𝑡D4"|𝑡", 𝑡!, … , 𝑡D) or Pr(𝑡D4"|𝐬) (2.3)

We will select different notations, ranging from concise to detailed, based on
the context.
For any token 𝑡 and sequence 𝐬, the conditional probability satisfies Pr(𝑡|𝐬) ≥
0, meaning probabilities are always non-negative. Furthermore, the probabili-
ties for all possible next tokens in the vocabulary 𝒱 must sum to 1:
∑ 𝑃E∈𝒱 (𝑡|𝐬) = 1. This ensures the model outputs a valid discrete probability
distribution over the vocabulary.
To illustrate, let’s consider an example with a vocabulary 𝒱 containing 5
words: “are,” “cool,” “language,” “models,” and “useless.” For the sequence 𝐬 =
(language, models, are), a language model could output the following proba-
bilities for each possible next word in 𝒱:

PrC𝑡 = are|𝐬 = (language, models, are)D = 0.01
PrC𝑡 = cool|𝐬 = (language, models, are)D = 0.77

PrC𝑡 = language|𝐬 = (language, models, are)D = 0.02
PrC𝑡 = models|𝐬 = (language, models, are)D = 0.15
PrC𝑡 = useless|𝐬 = (language, models, are)D = 0.05

77

The illustration demonstrates how the language model assigns probabilities
across its vocabulary for each potential next word, with “cool” receiving the
highest probability. These probabilities sum to 1, forming a valid discrete prob-
ability distribution.
This type of model is an autoregressive language model, also known as a
causal language model. Autoregression involves predicting an element in a
sequence using only its predecessors. Such models excel at text generation and
include Transformer-based chat language models (chat LMs) and all lan-
guage models discussed in this book.
In contrast, masked language models, such as BERT—a pioneering Trans-
former-based model—use a different approach. These models predict inten-
tionally masked tokens within sequences, utilizing both preceding and follow-
ing context. This bidirectional approach particularly suits tasks like text classi-
fication and named entity recognition.
Before neural networks became standard for language modeling, traditional
methods relied on statistical techniques. These count-based models, still used
in smartphone autocomplete, estimate the probability of word sequences based
on word or n-gram frequency counts learned from a corpus. To understand
these methods better, let's implement a simple count-based language model.

2.5. Count-Based Language Model
We’ll focus on a trigram model (𝑛 = 3) to illustrate how this works. In a tri-
gram model, the probability of a token is calculated based on the two preced-
ing tokens:

 Pr(𝑡$|𝑡$6!, 𝑡$6") =
𝐶(𝑡$6!, 𝑡$6", 𝑡$)
𝐶(𝑡$6!, 𝑡$6")

, (2.4)

where 𝐶(⋅) denotes the count of occurrences of an n-gram in the training data.
For instance, if the trigram “language models rock” appears 50 times in the
corpus and “language models” appears 200 times overall, then:

Pr(rock|language, models) =
50
200

= 0.25

This means that “rock” follows “language models” 25% of the time in our train-
ing data.

78

Equation 2.4 is the maximum likelihood estimate (MLE) of a token’s
probability given its context. It measures the relative frequency of a
trigram compared to all trigrams sharing the same two-token history.
With a larger training corpus, the MLE becomes more reliable for n-
grams that occur frequently. This aligns with a basic statistical princi-
ple: larger datasets yield more accurate estimates.

However, a limited-size corpus poses a problem: some n-grams we may en-
counter in practice might not appear in the training data. For instance, if the
trigram “language models sing” never appears in our corpus, its probability
would be zero according to the MLE:

Pr(sing|language, models) =
0
200

= 0

This is problematic because it assigns a zero probability to any sequence con-
taining an unseen n-gram, even if it’s a valid phrase. To solve this, several
techniques exist, one of which is backoff. The idea is simple: if a higher-order
n-gram (e.g., trigram) is not observed, we “back off” to a lower-order n-gram
(e.g., bigram). The probability Pr(𝑡$|𝑡$6!, 𝑡$6") is given by one of the following
expressions, depending on whether the condition is true:

Here, 𝐶(𝑡$6!, 𝑡$6", 𝑡$) is the count of the trigram (𝑡$6!, 𝑡$6", 𝑡$), 𝐶(𝑡$6!, 𝑡$6") and
𝐶(𝑡$6", 𝑡$) are the counts of the bigrams (𝑡$6!, 𝑡$6") and (𝑡$6", 𝑡$) respectively.
The bigram probability and unigram probability are computed as:

Pr(𝑡$|𝑡$6") =
𝐶(𝑡$6", 𝑡$)
𝐶(𝑡$6")

, Pr(𝑡$) =
𝐶(𝑡$) + 1
𝑊 + 𝑉

,

79

where 𝐶(𝑡$) is the count of the token 𝑡$, 𝑊 is the total number of tokens in the
corpus, and 𝑉 is the vocabulary size.
Adding 1 to 𝐶(𝑡$), known as add-one smoothing or Laplace smoothing, ad-
dresses zero probabilities for tokens not present in the corpus. If we used the
actual frequency Pr(𝑡$) =

B(E&)
H

, any token not found in the corpus would have
a zero probability, creating problems when the model encounters valid but
unseen tokens. Laplace smoothing solves this by adding 1 to each token count,
ensuring all tokens, including unseen ones, receive a small, non-zero probabil-
ity. The denominator is adjusted by adding 𝑉 to account for the extra counts
introduced in the numerator.
Now, let’s implement a language model with backoff in the CountLanguage-
Model class (we'll implement Laplace smoothing in the next section):
class CountLanguageModel:
 def __init__(self, n): ➊
 self.n = n
 self.ngram_counts = [{} for _ in range(n)] ➋
 self.total_unigrams = 0

 def predict_next_token(self, context): ➌
 for n in range(self.n, 1, -1): ➍
 if len(context) >= n - 1: ➎
 context_n = tuple(context[-(n - 1):]) ➏
 counts = self.ngram_counts[n - 1].get(context
_n)
 if counts:
 return max(counts.items(), key=lambda x:
x[1])[0]
 unigram_counts = self.ngram_counts[0].get(())
 if unigram_counts:
 return max(unigram_counts.items(), key=lambda x:
x[1])[0]
 return None

In line ➊, the model is initialized with an n parameter, defining the maximum
n-gram order (e.g., n=3 for trigrams). The ngram_counts list in line ➋ stores

80

n-gram frequency dictionaries for unigrams, bigrams, trigrams, etc., populated
during training. For n=3, given the corpus “Language models are powerful. Lan-
guage models are useful.” in lowercase with punctuation removed,
self.ngram_counts would contain:
ngram_counts[0] = {(): {"language": 2, "models": 2, "are": 2,
"powerful": 1, "useful": 1}}

ngram_counts[1] = {("language",): {"models": 2}, ("models",):
{"are": 2}, ("are",): {"powerful": 1, "useful": 1}, ("powerfu
l",): {"language": 1}}

ngram_counts[2] = {("language", "models"): {"are": 2}, ("mode
ls", "are"): {"powerful": 1, "useful": 1}, ("are", "powerful"
): {"language": 1}, ("powerful", "language"): {"models": 1}}

The predict_next_token method uses backoff to predict the next token.
Starting from the highest n-gram order in line ➍, it checks if the context con-
tains enough tokens for this n-gram order in line ➎. If so, it extracts the context
in line ➏ and attempts to find a match in ngram_counts. If no match is found,
it backs off to lower-order n-grams or defaults to unigram counts. For instance,
given context=["language", "models", "are"] and n=3:

• First iteration: context_n = ("models", "are")
• Second iteration (if needed): context_n = ("are",)
• Last resort: unigram counts with empty tuple key ()

If a matching context is found, the method returns the token with the highest
count for that context. For input ["language", "models"] it will return
"are", the token with highest count among values for the key ("language",
"models") in ngram_counts[2]. However, for the input ["english",
"language"] it will not find the key ("english", "language") in
ngram_counts[2], so it will backoff to ngram_counts[1] and return "mod-
els", the token with highest count among values for the key ("language",).
Now, let’s define the method that trains our model:
def train(model, tokens):
 model.total_unigrams = len(tokens)
 for n in range(1, model.n + 1): ➊
 counts = model.ngram_counts[n - 1]

81

 for i in range(len(tokens) - n + 1):
 context = tuple(tokens[i:i + n - 1]) ➋
 next_token = tokens[i + n - 1] ➌
 if context not in counts:
 counts[context] = defaultdict(int)
 counts[context][next_token] = counts[context][nex
t_token] + 1

The train method takes a model (an instance of CountLanguageModel) and
a list of tokens (the training corpus) as input. It updates the n-gram counts in
the model using these tokens.

In line ➊, the method iterates over n-gram orders from 1 to model.n (inclu-
sive). For each n, it generates n-grams of that order from the token sequence
and counts their occurrences.

Lines ➋ and ➌ extract contexts and their subsequent tokens to build a nested
dictionary where each context maps to a dictionary of following tokens and
their counts. These counts are stored in model.ngram_counts, which the
predict_next_token method later uses to make predictions based on con-
text.
Now, let’s train the model:
set_seed(42)
n = set_hyperparameters()
data_url = "https://www.thelmbook.com/data/brown"
train_corpus, test_corpus = download_and_prepare_data(data_ur
l)

model = CountLanguageModel(n)
train(model, train_corpus)

perplexity = compute_perplexity(model, test_corpus)
print(f"\nPerplexity on test corpus: {perplexity:.2f}")

contexts = [
 "i will build a",
 "the best place to",
 "she was riding a"

82

]

for context in contexts:
 words = tokenize(context)
 next_word = model.predict_next_token(words)
 print(f"\nContext: {context}")
 print(f"Next token: {next_word}")

The full implementation of this model, including the methods to retrieve and
process the training data, can be found in the thelmbook.com/nb/2.2 note-
book. Within the download_and_prepare_data method, the corpus is down-
loaded, converted to lowercase, tokenized into words, and divided into train-
ing and test partitions with a 90/10 split. Let’s take a moment to understand
why this last step is critical.
In machine learning, using the entire dataset for training leaves no way to
evaluate whether the model generalizes well. A frequent issue is overfitting,
where the model excels on training data but struggles to make accurate pre-
dictions on unseen, new data.
Partitioning the dataset into training and test sets is a standard practice to
control overfitting. It involves two steps: (1) shuffling the data and (2) splitting
it into two subsets. The larger subset, called the training data, is used for train-
ing the model, while the smaller subset, called the test data, is used to evaluate
the model’s performance on unseen examples.

The test set requires sufficient size to reliably estimate model perfor-
mance. A test ratio of 0.1 to 0.3 (10% to 30% of the entire dataset) is
common, though this varies with dataset size. For very large datasets,
even a smaller test set ratio results in enough examples to provide re-
liable performance estimates.

The training data comes from the Brown Corpus, a collection of over 1 million
words from American English texts published in 1961. This corpus is frequently
used in linguistic studies.
When you run the code, you will see the following output:
Perplexity on test corpus: 299.06

Context: i will build a

https://www.thelmbook.com/nb/2.2

83

Next word: wall

Context: the best place to
Next word: live

Context: she was riding a
Next word: horse

Ignore the perplexity number for now; we'll discuss it shortly. Count-based
language models can produce reasonable immediate continuations, making
them good for autocomplete systems. However, they have notable limitations.
These models generally work with word-tokenized corpora, as their n-gram
size is typically small (up to 𝑛 = 5). Extending beyond this would require too
much memory and lead to slower processing. Subword tokenization, while
more efficient, results in many n-grams that represent only fragments of words,
degrading the quality of next-word predictions.
Word-level tokenization creates another significant drawback: count-based
models cannot handle out-of-vocabulary (OOV) words. This is similar to the
issue seen in the bag-of-words approach discussed in Section 2.1. For exam-
ple, consider the context: “according to WHO, COVID-19 is a.” If “COVID-19”
wasn’t in the training data, the model would back off repeatedly until it relies
only on “is a,” severely limiting the context for meaningful predictions.
Count-based models are also unable to capture long-range dependencies in
language. While modern Transformer models can handle thousands of tokens,
training a count-based model with a context of 1000 tokens would require
storing counts for all n-grams from 𝑛 = 1 to 𝑛 = 1000, requiring prohibitive
amounts of memory.
Additionally, these models cannot be adapted for downstream tasks after train-
ing, as their n-gram counts are fixed, and any adjustment requires retraining
on new data.
These limitations have led to the development of advanced methods, particu-
larly neural network-based language models, which have largely replaced
count-based models in modern natural language processing. Approaches like
recurrent neural networks and transformers, which we'll discuss in the next
two chapters, handle longer contexts effectively, producing coherent and

84

context-aware text. Before exploring these methods, let's look at how to eval-
uate a language model's quality.

2.6. Evaluating Language Models
Evaluating language models measures their performance and allows compar-
ing models. Several metrics and techniques are commonly used. Let’s look at
the main ones.

2.6.1. Perplexity
Perplexity is a widely used metric for evaluating language models. It measures
how well a model predicts a text. Lower perplexity values indicate a better
model—one that is more confident in its predictions. Perplexity is defined as
the exponential of the average negative log-likelihood per token in the test
set:

Perplexity(𝒟, 𝑘) = exp −

1
𝐷
Ulog
3

$%"

PrC𝑡$|𝑡IJK(",$6:), … , 𝑡$6"D¡ (2.5)

Here, 𝒟 represents the test set, 𝐷 is the total number of tokens in it, 𝑡$ is the
𝑖th token, and PrC𝑡$|𝑡IJK(",$6:), … , 𝑡$6"D is the probability the model assigns to
𝑡$ given its preceding context window of size 𝑘, where max(1, 𝑖 − 𝑘) ensures
we start from the first token when there aren’t enough preceding tokens to fill
the context window. The notations exp(𝑥) and 𝑒,, where 𝑒 is Euler’s number,
are equivalent.
The negative log-likelihood (NLL) in Equation 2.5 is the negative logarithm of
the probabilities our language model assigns. When a model processes text like
“language models are” and assigns a probability of 0.77 to the next word “cool”,
the NLL would be −log(0.77). It’s called “negative” log-likelihood because we
take the negative of the logarithm, and “likelihood” refers to these conditional
probabilities the model computes. In language modeling, NLL serves two pur-
poses: it acts as a loss function during training to help models learn better
probability distributions (which we’ll see in the next chapter when training a
recurrent neural network language model), and as shown in the perplexity
formula, it helps us evaluate how well models predict text.
Perplexity can be understood more intuitively through its geometric mean for-
mulation. The geometric mean of a set of numbers is the 𝐷th root of their

85

product (where 𝐷 is the number of values), and perplexity is the geometric
mean of the inverse probabilities:

Perplexity(𝒟, 𝑘) = ¢£
1

PrC𝑡$|𝑡IJK(",$6:), … , 𝑡$6"D

3

$%"

¤

"
3

This form shows that perplexity represents the weighted average factor by
which the model is “perplexed” when predicting each token. A perplexity of 10
means that, on average, the model is as uncertain as if it had to choose uni-
formly between 10 possibilities at each step.

If a language model assigns equal probability to every token in a vo-
cabulary of size 𝑉, its perplexity equals 𝑉. This provides an intuitive
upper bound for perplexity—a model cannot be more uncertain than
when it assigns equal likelihood to all possible tokens.

While both formulations of perplexity shown above are mathematically equiv-
alent (proof available on the book’s wiki), the exponential form is computa-
tionally more convenient as it transforms products into sums through the log-
arithm, making calculations more numerically stable.
Let’s calculate perplexity using the example text with word-level tokenization
and ignoring punctuation: “We are evaluating a language model for English.” To
keep things simple, we assume a context of up to three words. We begin by
determining the probability of each word based on its preceding context of
three words as provided by the model. Here are the probabilities:

Pr(We) = 0.10
Pr(are ∣ We) = 0.20

Pr(evaluating ∣ We, are) = 0.05
Pr(a ∣ We, are, evaluating) = 0.50

Pr(language ∣ are, evaluating, a) = 0.30
Pr(model ∣ evaluating, a, language) = 0.40

Pr(for ∣ a, language, model) = 0.15
Pr(English ∣ language, model, for) = 0.25

Using the probabilities, we compute the negative log-likelihood for each word:

86

−logC𝑃(We)D = −log(0.10) ≈ 2.30
−logC𝑃(are ∣ We)D = −log(0.20) ≈ 1.61

−logC𝑃(evaluating ∣ We, are)D = −log(0.05) ≈ 3.00
−logC𝑃(a ∣ We, are, evaluating)D = −log(0.50) ≈ 0.69

−logC𝑃(language ∣ are, evaluating, a)D = −log(0.30) ≈ 1.20
−logC𝑃(model ∣ evaluating, a, language)D = −log(0.40) ≈ 0.92

−logC𝑃(for ∣ a, language, model)D = −log(0.15) ≈ 1.90
−logC𝑃(English ∣ language, model, for)D = −log(0.25) ≈ 1.39

Next, we sum these values and divide the sum by the number of words (8) to
get the average:

(2.30 + 1.61 + 3.00 + 0.69 + 1.20 + 0.92 + 1.90 + 1.39)/8 ≈ 1.63
Finally, we exponentiate the average negative log-likelihood to obtain the per-
plexity:

𝑒".L& ≈ 5.10
So, the model’s perplexity on this text, using a 3-word context, is about 5.10.
This means that, on average, the model acts as if it selects from roughly 5
equally likely options for each prediction.
Now, let’s calculate the perplexity of the count-based model from the previous
section. To do this, the model must be updated to return the probability of a
token given a specific context. Add this function to the CountLanguageModel
we implemented earlier:
def get_probability(self, token, context):
 for n in range(self.n, 1, -1): ➊
 if len(context) >= n - 1:
 context_n = tuple(context[-(n - 1):])
 counts = self.ngram_counts[n - 1].get(context_n)
 if counts: ➋
 total = sum(counts.values()) ➌
 count = counts.get(token, 0)
 if count > 0:
 return count / total ➍
 unigram_counts = self.ngram_counts[0].get(()) ➎
 count = unigram_counts.get(token, 0)

87

 V = len(unigram_counts)
 return (count + 1) / (self.total_unigrams + V) ➏

The get_probability function is similar to predict_next_token. Both loop
through n-gram orders in reverse (line ➊) and extract the relevant context
(context_n). If context_n matches in the n-gram counts (line ➋), the func-
tion retrieves the token counts. If no match exists, it backs off to lower-order
n-grams and, finally, unigrams (line ➎).
Unlike predict_next_token, which returns the most probable token directly,
get_probability calculates a token’s probability. In line ➌, total is the sum
of counts for tokens following the context, acting as the denominator. Line ➍
divides the token count by total to compute its probability. If no higher-order
match exists, line ➏ uses add-one smoothing with unigram counts.
The compute_perplexity method computes a language model’s perplexity
for a token sequence. It takes three arguments: the model, the token sequence,
and the context size:
def compute_perplexity(model, tokens, context_size):
 if not tokens:
 return float('inf')
 total_log_likelihood = 0
 num_tokens = len(tokens)
 for i in range(num_tokens): ➊
 context_start = max(0, i - context_size)
 context = tuple(tokens[context_start:i]) ➋
 word = tokens[i]
 probability = model.get_probability(word, context)
 total_log_likelihood += math.log(probability) ➌
 average_log_likelihood = total_log_likelihood / num_token
s ➍
 perplexity = math.exp(-average_log_likelihood) ➎
 return perplexity

In line ➊, the function iterates through each token in the sequence. For every
token:

88

• Line ➋ extracts its context, using up to context_size tokens before it.
The expression max(0, i - context_size) ensures indices stay
within bounds like in Equation 2.5.

• In line ➌, the log of the token’s probability is added to the cumulative
log-likelihood. The get_probability method from the model handles
the probability calculation.

Once all tokens are processed, line ➍ computes the average log-likelihood by
dividing the total log-likelihood by the number of tokens.

Finally, in line ➎, the perplexity is computed as the exponential of the negative
average log-likelihood, as described in Equation 2.5.
By applying this method to the test_corpus sequence from the thelm-
book.com/nb/2.2 notebook, we observe the following output:
Perplexity on test corpus: 299.06

This perplexity is very high. For example, GPT-2 has a perplexity of about 20,
while modern LLMs achieve values below 5. Later, we’ll compute perplexities
for RNN and Transformer-based models and compare them with the perplexity
of this count-based model.

2.6.2. ROUGE
Perplexity is a standard metric used to evaluate language models trained on
large, unlabeled datasets by measuring how well they predict the next token
in context. These models are referred to as pretrained models or base mod-
els. As we’ll discuss in the chapter on large language models, their ability to
perform specific tasks or answer questions comes from supervised finetuning.
This additional training uses a labeled dataset where input contexts are
matched with target outputs, such as answers or task-specific results. This en-
ables problem-solving capabilities.
Perplexity is not an ideal metric for evaluating a finetuned model. Instead,
metrics are needed that compare the model’s output to reference texts, often
called ground truth. A common choice is ROUGE (Recall-Oriented Under-
study for Gisting Evaluation). ROUGE is widely used for tasks like summariza-
tion and machine translation. It evaluates text quality by measuring overlaps,
such as tokens or n-grams, between the generated text and the reference.

https://www.thelmbook.com/nb/2.2
https://www.thelmbook.com/nb/2.2

89

ROUGE has several variants, each focusing on different aspects of text similar-
ity. Here, we’ll discuss three widely used ones: ROUGE-1, ROUGE-N, and
ROUGE-L.
ROUGE-N evaluates the overlap of n-grams between the generated and refer-
ence texts, with N indicating the length of the n-gram. One of the most com-
monly used versions is ROUGE-1.
ROUGE-1 measures the overlap of unigrams (single tokens) between the gen-
erated and reference texts. As a recall-focused metric (hence the “R” in
ROUGE), it assesses how much of the reference text is captured in the gener-
ated output.
Recall is the ratio of matching tokens to the total number of tokens in the ref-
erence text:

recall =def
Number of matching tokens

Total number of tokens in reference texts

Formally, ROUGE-1 is defined as:

ROUGE-1 =
def ∑ ∑ countE∈M(.,M)∈𝒟 (𝑡, 𝑔)

∑ length(.,M)∈𝒟 (𝑟)

Here, 𝒟 is the dataset of (generated text, reference text) pairs, count(𝑡, 𝑔)
counts how often a token 𝑡 from the reference text 𝑟 appears in the generated
text 𝑔, and the denominator is the total token count across all reference texts.
To understand this calculation, consider a simple example:

Reference text Generated text
Large language models are very im-
portant for text processing.

Large language models are useful in
processing text.

Let’s use word-level tokenization and calculate:
• Matching words: large, language, models, are, processing, text (6

words)
• Total words in the reference text: 9
• ROUGE-1: L

N
≈ 0.67

A ROUGE-1 score of 0.67 means roughly two-thirds of the words from the ref-
erence text appear in the generated text. However, this number alone has little

90

value. ROUGE scores are only useful for comparing how different language
models perform on the same test set, as they indicate which model more effec-
tively captures the content of the reference texts.
ROUGE-N extends the ROUGE metric from unigrams to n-grams while using
the same formula.
ROUGE-L relies on the longest common subsequence (LCS). This is the long-
est sequence of tokens appearing in both generated and reference texts in the
same order, without being adjacent.
Let 𝑔 and 𝑟 be the generated and reference texts with lengths 𝐿. and 𝐿M. Then:

recallLCS =
def LCS(𝑔, 𝑟)

𝐿M
, precisionLCS =

def LCS(𝑔, 𝑟)
𝐿.

Here, LCSC𝐿., 𝐿MD represents the number of tokens in the LCS between the
generated text 𝑔 and the reference text 𝑟. The recall measures the proportion
of the reference text captured by the LCS, while the precision measures the
proportion of the generated text that matches the reference. Recall and preci-
sion are combined into a single metric as follows:

ROUGE-L =
def (1 + 𝛽!) ×

recallLCS × precisionLCS
recallLCS + 𝛽! × precisionLCS

Here, 𝛽 controls the trade-off between precision and recall in the ROUGE-L
score. Since ROUGE favors recall, 𝛽 is usually set high, such as 8.
Let’s revisit the two texts used to illustrate ROUGE-L. For these sentences, there
are two valid longest common subsequences, each with a length of 5 words:

LCS 1 LCS 2
Large, language, models, are, text Large, language, models, are, pro-

cessing

Both subsequences are the longest sequences of tokens that appear in the same
order in both sentences, but not necessarily consecutively. When multiple LCS
options exist, ROUGE-L can use any of them since their lengths are identical.
Here’s how the calculations work here. The length of the LCS is 5 words. The
reference text is 9 words long, and the generated text is 8 words long. Thus,
recall and precision are:

91

recallLCS =
5
9
≈ 0.56, precisionLCS =

5
8
≈ 0.63

With 𝛽 = 8, ROUGE-L is then given by:

ROUGE-L =
(1 + 8!) ⋅ 0.56 ⋅ 0.63
0.56 + 8! ⋅ 0.63

≈ 0.56

ROUGE scores range from 0 to 1, where 1 means a perfect match between
generated and reference texts. However, even excellent summaries or transla-
tions rarely approach 1 in practice.
Choosing the right ROUGE metric depends on the task:

• ROUGE-1 and ROUGE-2 are standard starting points. ROUGE-1 checks
overall content similarity using unigram overlap, while ROUGE-2 eval-
uates local fluency and phrase accuracy using bigram matches.

• ROUGE-L is preferred over ROUGE-1 or ROUGE-2 when evaluating text
quality in terms of sentence structure and flow, particularly in summa-
rization and translation tasks, since it captures the longest sequence of
matching words that appear in the same relative order, better reflecting
grammatical coherence.

• In cases where preserving longer patterns is key—such as maintaining
technical terms or idioms—higher-order metrics like ROUGE-3 or
ROUGE-4 might be more relevant.

A combination of metrics, such as ROUGE-1, ROUGE-2, and ROUGE-L, often
gives a more balanced evaluation, covering both content overlap and structural
flexibility.
Keep in mind, though, that ROUGE has limitations. It measures lexical overlap
but not semantic similarity or factual correctness. To address these gaps,
ROUGE is often paired with human evaluations or other methods for a fuller
assessment of text quality.

2.6.3. Human Evaluation
Automated metrics are useful, but human evaluation is still necessary to assess
language models. Humans can evaluate qualities that automated metrics often
miss, like fluency and accuracy. Two common approaches for human evalua-
tion are Likert scale ratings and Elo ratings.

92

Likert scale ratings involve assigning scores to outputs using a fixed, typically
symmetric scale. Raters judge the quality by selecting a score, often from −2
to 2, where each scale point corresponds to a descriptive label. For instance,
−2 could mean “Strongly Disagree” or “Poor,” while 2 might mean “Strongly
Agree” or “Excellent.” The scale is symmetric because it includes equal levels
of agreement and disagreement around a neutral midpoint, making positive
and negative responses easier to interpret.
Likert scales are flexible for evaluating different aspects of language model
outputs, such as fluency, coherence, relevance, and accuracy. For example, a
rater could separately rate a sentence’s grammatical correctness and its rele-
vance to a prompt, both on a scale from −2 to 2.
However, the method has limitations. One issue is central tendency bias,
where some raters avoid extreme scores and stick to the middle of the scale.
Another challenge is inconsistency in how raters interpret the scale—some may
reserve a 2 for exceptional outputs, while others may assign it to any high-
quality response.
To mitigate these issues, researchers often involve multiple raters, phrase sim-
ilar questions in different ways for the same rater, and use detailed rubrics that
clearly define each scale point.
Let’s illustrate Likert scale evaluation using a scenario where machine-gener-
ated summaries of news articles are assessed.
Human raters compare a model-generated summary to the original article.
They rate it on three aspects using 5-point Likert scales: coherence, informa-
tiveness, and factual accuracy.
For example, consider the news article on the left and the generated summary
on the right:

93

Raters assess the summary based on how effectively it meets these three crite-
ria.
The scale for assessing coherence—that is, how well-organized, readable, and
logically connected the summary is—might look like this:

Very poor Poor Acceptable Good Excellent
-2 -1 0 1 2

The scale for assessing informativeness, that is, how well the summary cap-
tures the essence and main points of the original article, might look this way:

Not informative Slightly Moderately Very Extremely informative
-2 -1 0 1 2

The scale for assessing factual accuracy—that is, how precisely the summary
represents facts and data from the original article—might look like this:

Very low
Some inaccura-

cies Mostly Accurate Very accurate Perfect
-2 -1 0 1 2

In this example, raters would select one option for each of the three aspects.
The use of descriptive anchors at each point on the scale helps standardize
understanding among raters.
After collecting ratings from multiple raters across various summaries, re-
searchers analyze the data through several approaches:

94

• Calculate average scores for each aspect across all summaries and
raters to get an overall performance measure.

• Compare scores across different versions of the model to track improve-
ments.

• Analyze the correlation between different aspects (e.g., is high coher-
ence associated with high factual accuracy?).

Although Likert scale ratings were originally intended for humans, the
rise of advanced chat LMs means raters can now be either humans or
language models.

Pairwise comparison is a method where two outputs are evaluated side-by-
side, and the better one is chosen based on specific criteria. This simplifies
decision-making, especially when outputs are of similar quality or changes are
minor.
The method builds on the principle that relative judgments are easier than
absolute ones. Binary choices often produce more consistent and reliable re-
sults than absolute ratings.
In practice, raters compare pairs of outputs, such as translations, summaries,
or answers, and decide which is better based on criteria like coherence, in-
formativeness, or factual accuracy.
For example, in machine translation evaluation, raters compare pairs of trans-
lations for each source sentence, selecting which one better preserves the orig-
inal meaning in the target language. By repeating this process across many
pairs, evaluators can compare different models or versions.
Pairwise comparison helps rank models or model versions by having each rater
evaluate multiple pairs, with each model compared against others several
times. This repetition minimizes individual biases, resulting in more reliable
evaluations. A related approach is ranking, where a rater orders multiple re-
sponses by quality. Ranking requires less effort than pairwise comparisons
while still capturing relative quality.
Results from pairwise comparisons are typically analyzed statistically to deter-
mine significant differences between models. A common method for this anal-
ysis is the Elo rating system.

95

Elo ratings, originally created by Arpad Elo in 1960 for ranking chess players,
can be adapted for language model evaluation. The system assigns ratings
based on “wins” and “losses” in direct comparisons, quantifying relative model
performance.
In language model evaluation, all models typically start with an initial rating,
often set to 1500. When two models are compared, the probability of one
model “winning” is calculated using their current ratings. After each compari-
son, their ratings are updated based on the actual result versus the expected
result.
The probability of model 𝐴 with rating Elo(𝐴) winning against model 𝐵 with
rating Elo(𝐵) is:

Pr(𝐴 wins) =
1

1 + 10OElo(P)6Elo(Q)R/T??

The value 400 in the Elo formula acts as a scaling factor, creating a
logarithmic relationship between rating differences and winning prob-
abilities. Arpad Elo chose this number ensuring that a 400-point rating
difference reflects 10: 1 odds in favor of the higher-rated chess player.
While originally designed for chess, this scaling factor has proven ef-
fective in other contexts, including language model evaluation.

After a match, ratings are updated using the formula:

Elo(𝐴) ← Elo(𝐴) + 𝑘 × Cscore(𝐴) − Pr(𝐴 wins)D,

where 𝑘 (typically between 4 and 32) controls the maximum rating change,
and score(𝐴) reflects the outcome: 1 for a win, 0 for a loss, and 0.5 for a draw.
Consider an example with three models: LM", LM!, and LM&. We’ll evaluate
them based on their ability to generate coherent text continuations. Assume
their initial ratings are:

Elo(LM") = 1500
Elo(LM!) = 1500
Elo(LM&) = 1500

We’ll use 𝑘 = 32 for this example.
Consider this prompt: “The scientists were shocked when they discovered…”

96

Continuation by LM": “…a new species of butterfly in the Amazon rainforest. Its
wings were unlike anything they had ever seen before.”
Continuation by LM!: “…that the ancient artifact they unearthed was emitting
a faint, pulsating light. They couldn’t explain its source.”
Continuation by LM&: “…the results of their experiment contradicted everything
they thought they knew about quantum mechanics.”
Let’s say we conduct pairwise comparisons and get the following results:

1. LM" vs LM!: LM" wins
o Pr(LM" wins) = 1/C1 + 10O("@??6"@??)/T??RD = 0.5
o New rating for LM" ← 1500 + 32(1 − 0.5) = 1516
o New rating for LM! ← 1500 + 32(0 − 0.5) = 1484

2. LM" vs LM&: LM& wins
o Pr(LM" wins) = 1/C1 + 10O("@??6"@"L)/T??RD ≈ 0.523
o New rating for LM" ← 1516 + 32(0 − 0.523) ≈ 1499
o New rating for LM& ← 1500 + 32(1 − 0.477) ≈ 1517

3. LM! vs LM&: LM& wins
o Pr(LM! wins) = 1/C1 + 10O("@"U6"TVT)/T??RD ≈ 0.453
o New rating for LM! ← 1484 + 32(0 − 0.453) ≈ 1470
o New rating for LM& ← 1517 + 32(1 − 0.547) ≈ 1531

Final ratings after these comparisons:
Elo(LM") = 1499
Elo(LM!) = 1470
Elo(LM&) = 1531

Elo ratings quantify how models perform relative to each other. In this case,
LM& is the strongest, followed by LM", with LM! ranking last.
Performance isn’t judged from a single match. Instead, multiple pairwise
matches are used. This limits the effects of random fluctuations or biases in
individual comparisons, giving a better estimate of each model’s performance.
A variety of prompts or inputs ensures evaluation across different contexts and
tasks. When human raters are involved, several raters assess each comparison
to reduce individual bias.
To avoid order effects, both the sequence of comparisons and the presentation
of outputs are randomized. Elo ratings are updated after every comparison.

97

How many matches are needed until the results are reliable? There’s no uni-
versal number that applies to all cases. As a general guideline, some research-
ers suggest that each model should participate in at least 100–200 comparisons
before considering the Elo ratings stable and ideally 500+ comparisons for
high confidence. However, for high-stakes evaluations or when comparing very
similar models, thousands of comparisons may be necessary.

Statistical methods can be used to calculate a confidence interval for
a model’s Elo rating. Explaining these techniques is beyond the scope
of this book. For those interested, the Bradley–Terry model and boot-
strap resampling are good starting points. Both are well-documented,
with resources linked on the book’s wiki.

Elo ratings provide a continuous scale for ranking models, making it easier to
track incremental improvements. The system rewards wins against strong op-
ponents more than wins against weaker ones, and it can handle incomplete
comparison data, meaning not every model needs to be compared against
every other model. However, the choice of 𝑘 significantly affects rating vola-
tility; a poorly chosen 𝑘 can undermine the evaluation’s stability.
To address these limitations, Elo ratings are often used alongside other evalu-
ation methods. For instance, researchers might use Elo ratings for ranking
models in pairwise comparisons, while collecting Likert scale ratings to assess
absolute quality. This combined approach yields a more comprehensive view
of a language model’s performance.
Now that we’ve covered language modeling and evaluation methods, let’s ex-
plore a more advanced model architecture: recurrent neural networks (RNNs).
RNNs made significant progress in processing text. They introduced the ability
to maintain context over long sequences, allowing for the creation of more
powerful language models.

98

Chapter 3. Recurrent Neural Network
In this chapter, we explore recurrent neural networks, a fundamental architec-
ture that revolutionized sequential data processing. While transformers have
become dominant in many applications, understanding RNNs first provides an
ideal stepping stone—their elegant design introduces key sequential processing
concepts that make Transformer mathematics more intuitive. We'll examine
RNNs' structure and applications in language modeling, building essential
foundations for more advanced architectures.

3.1. Elman RNN
A recurrent neural network, or RNN, is a neural network designed for se-
quential data. Unlike feedforward neural networks, RNNs include loops in
their connections, enabling information to carry over from one step in the se-
quence to the next. This makes them well-suited for tasks like time series anal-
ysis, natural language processing, and other sequential data problems.
To illustrate the sequential nature of RNNs, let’s consider a neural network
with a single unit. Consider the input document “Learning from text is cool.”
Ignoring case and punctuation, the matrix representing this document would
be as follows:

Word Embedding vector
learning [0.1,0.2,0.6]1
from [0.2,0.1,0.4]1
text [0.1,0.3,0.3]1
is [0.0,0.7,0.1]1
cool [0.5,0.2,0.7]1
PAD [0.0,0.0,0.0]1

Each row of the matrix represents a word’s embedding learned during neural
network training. The order of words is preserved. The matrix dimensions are
(sequence length, embedding dimensionality). Sequence length specifies the
maximum number of words in a document. Shorter documents are padded
with padding tokens (like PAD in this example), while longer ones are trun-
cated. Padding uses dummy embeddings, usually zero vectors.
More formally, the matrix would look like this:

99

𝐗 =

⎣
⎢
⎢
⎢
⎢
⎡
0.1 0.2 0.6
0.2 0.1 0.4
0.1 0.3 0.3
0.0 0.7 0.1
0.5 0.2 0.7
0.0 0.0 0.0⎦

⎥
⎥
⎥
⎥
⎤

Here, we have five 3D embedding vectors, 𝐱", … , 𝐱@, representing each word
in the document. For instance, 𝐱" = [0.1,0.2,0.6]1, 𝐱! = [0.2,0.1,0.4]1, and so
on. The sixth vector is a padding vector.
The Elman RNN, introduced by Jeffrey Locke Elman in 1990 as the simple
recurrent neural network, processes a sequence of embedding vectors one at
a time, as illustrated below:

At each time step 𝑡, the current input embedding 𝐱E and the previous hidden
state 𝐡E6" are combined by multiplying them with trainable weight matrices
𝐖W and 𝐔W, adding a bias vector 𝐛W, and producing the updated hidden state
𝐡E. Unlike MLP units, which output scalars, an RNN unit outputs vectors and
acts as an entire layer. The initial hidden state 𝐡? is usually a zero vector.
A hidden state is a memory vector that captures information from previous
steps in a sequence. Updated at each step using current input and past state, it
helps neural networks use context from earlier words to predict the next word
in a sentence.
To deepen the network, we add a second RNN layer. The first layer’s outputs,
𝐡E, become inputs to the second, whose outputs are the network’s final out-
puts:

100

Figure 3.1: A two-layer Elman RNN. The first layer’s outputs serve as inputs to the second

layer.

3.2. Mini-Batch Gradient Descent
Before coding the RNN model, we need to discuss the shape of the input data.
In Section 1.7, we used the entire dataset for each gradient descent step. Here,
and for training all future models, we’ll adopt mini-batch gradient descent,
a widely used method for large models and datasets. Mini-batch gradient de-
scent calculates derivatives over smaller data subsets, which speeds up learn-
ing and reduces memory usage.
With mini-batch gradient descent, the data shape is organized as (batch size,
sequence length, embedding dimensionality). This structure divides the train-
ing set into fixed-size mini-batches, each containing sequences of embeddings
with consistent lengths. (From this point on, “batch” and “mini-batch” will be
used interchangeably.)
For example, if the batch size is 2, the sequence length is 4, and the embedding
dimensionality is 3, the mini-batch can be represented as:

batch" = R
seq"," seq",! seq",& seq",T
seq!," seq!,! seq!,& seq!,T

S

Here, seq$,2, for 𝑖 ∈ {1,2} and 𝑗 ∈ {1, … ,4} is an embedding vector.

Let’s have the following embeddings for each sequence:

101

seq": s

[0.1,0.2,0.3]
[0.4,0.5,0.6]
[0.7,0.8,0.9]
[1.0,1.1,1.2]

v

seq!: s

[1.3,1.4,1.5]
[1.6,1.7,1.8]
[1.9,2.0,2.1]
[2.2,2.3,2.4]

v

The mini-batch will look like this:

batch" = R[0.1,0.2,0.3] [0.4,0.5,0.6] [0.7,0.8,0.9] [1.0,1.1,1.2]
[1.3,1.4,1.5] [1.6,1.7,1.8] [1.9,2.0,2.1] [2.2,2.3,2.4]S

During each step of gradient descent, we:
1. Select a mini-batch from the training set,
2. Pass it through the neural network,
3. Compute the loss,
4. Calculate gradients,
5. Update model parameters,
6. Repeat from step 1.

Mini-batch gradient descent often achieves faster convergence compared to
using the entire training set per step. It efficiently handles large models and
datasets by using modern hardware’s parallel processing capabilities. In
PyTorch, models require the first dimension of the input data to be the batch
dimension, even if there’s only one example in the batch.

3.3. Programming an RNN
Let’s implement an Elman RNN unit:
import torch
import torch.nn as nn

class ElmanRNNUnit(nn.Module):
 def __init__(self, emb_dim):
 super().__init__()
 self.Uh = nn.Parameter(torch.randn(emb_dim, emb_dim))
➊

102

 self.Wh = nn.Parameter(torch.randn(emb_dim, emb_dim))
➋
 self.b = nn.Parameter(torch.zeros(emb_dim)) ➌

 def forward(self, x, h):
 return torch.tanh(x @ self.Wh + h @ self.Uh + self.b)
➍

In the constructor:

• Lines ➊ and ➋ initialize self.Uh and self.Wh, the weight matrices for
the hidden state and input vector, with random values.

• Line ➌ sets self.b, the bias vector, to zero.

In the forward method, line ➍ handles the computation for each time step. It
processes the current input x and the previous hidden state h, both shaped
(batch_size, emb_dim), combines them with the weight matrices and bias,
and applies the tanh activation. The output is the new hidden state, also of
shape (batch_size, emb_dim).
The @ character is the matrix multiplication operator in PyTorch. We use x @
self.Wh rather than self.Wh @ x because of the way PyTorch handles batch
dimensions in matrix multiplication. When working with batched inputs, x has
a shape of (batch_size, emb_dim), while self.Wh has a shape of (emb_dim,
emb_dim). Remember from Section 1.6 that for two matrices to be multiplia-
ble, the number of columns in the left matrix must be the same as the number
of rows in the right matrix. This is satisfied in x @ self.Wh.
Now, let’s define the class ElmanRNN, which implements a two-layer Elman
RNN using ElmanRNNUnit as its core building block:
class ElmanRNN(nn.Module):
 def __init__(self, emb_dim, num_layers):
 super().__init__()
 self.emb_dim = emb_dim
 self.num_layers = num_layers
 self.rnn_units = nn.ModuleList(
 [ElmanRNNUnit(emb_dim) for _ in range(num_layers)
]
) ➊

103

 def forward(self, x):
 batch_size, seq_len, emb_dim = x.shape ➋
 h_prev = [
 torch.zeros(batch_size, emb_dim, device=x.device)
➌
 for _ in range(self.num_layers)
]
 outputs = []
 for t in range(seq_len): ➍
 input_t = x[:, t]
 for l, rnn_unit in enumerate(self.rnn_units):
 h_new = rnn_unit(input_t, h_prev[l])
 h_prev[l] = h_new # Update hidden state
 input_t = h_new # Input for next layer
 outputs.append(input_t) # Collect outputs
 return torch.stack(outputs, dim=1) ➎

In line ➊ of the constructor, we initialize the RNN layers by creating a Mod-
uleList containing ElmanRNNUnit instances—one per layer. Using Mod-
uleList instead of a regular Python list ensures the parent module (Elman-
RNN) properly registers all RNN unit parameters. This guarantees that calling
.parameters() or .to(device) on the parent module includes parameters
from all modules in the ModuleList.
In the forward method:

• Line ➋ extracts batch_size, seq_len, and emb_dim from the input
tensor x.

• Line ➌ initializes the hidden states h_prev for all layers with zero ten-
sors. Each hidden state in the list has the shape (batch_size,
emb_dim).

We store hidden states for each layer in a list instead of a multidimen-
sional tensor because we need to modify them during processing. In-
place modifications of tensors can disrupt PyTorch’s automatic differ-
entiation system, which might result in incorrect gradient calculations.

• Line ➍ iterates over time steps t in the input sequence. For each t:

104

o Extract the input at time t: input_t = x[:, t].
o For each layer l:

§ Compute the new hidden state h_new from input_t and
h_prev[l].

§ Update the hidden state: h_prev[l] = h_new (updates in
place).

§ Set input_t = h_new to pass to the next layer.
o Append the output of the last layer: outputs.append(input_t).

• Once all time steps are processed, line ➎ converts the outputs list into
a tensor by stacking it along the time dimension. The resulting tensor
has the shape (batch_size, seq_len, emb_dim).

3.4. RNN as a Language Model
An RNN-based language model uses ElmanRNN as its building block:
class RecurrentLanguageModel(nn.Module):
 def __init__(self, vocab_size, emb_dim, num_layers, pad_i
dx):
 super().__init__()
 self.embedding = nn.Embedding(
 vocab_size,
 emb_dim,
 padding_idx=pad_idx
) ➊
 self.rnn = ElmanRNN(emb_dim, num_layers)
 self.fc = nn.Linear(emb_dim, vocab_size)

 def forward(self, x):
 embeddings = self.embedding(x)
 rnn_output = self.rnn(embeddings)
 logits = self.fc(rnn_output)
 return logits

The RecurrentLanguageModel class integrates three components: an embed-
ding layer, the ElmanRNN defined earlier, and a final linear layer.

In the constructor, line ➊ defines the embedding layer. This layer transforms
input token indices into dense vectors. The padding_idx parameter ensures

105

that padding tokens are represented by zero vectors. (We’ll cover the embed-
ding layer in the next section.)
Next, we initialize the custom ElmanRNN, specifying the embedding dimension-
ality and the number of layers. Finally, we add a fully connected layer, which
converts the RNN’s output into vocabulary-sized logits for each token in the
sequence.
In the forward method:

• We pass the input x through the embedding layer. Input x has shape
(batch_size, seq_len), and the output embeddings have shape
(batch_size, seq_len, emb_dim).

• We then pass the embedded input through our ElmanRNN, obtaining
rnn_output with shape (batch_size, seq_len, emb_dim).

• Finally, we apply the fully connected layer to the RNN output, produc-
ing logits for each token in the vocabulary at each position in the se-
quence. The output logits have shape (batch_size, seq_len, vo-
cab_size).

3.5. Embedding Layer
An embedding layer, implemented as nn.Embedding in PyTorch, maps token
indices from a vocabulary to dense, fixed-size vectors. It acts as a learnable
lookup table, where each token is assigned a unique embedding vector. During
training, these vectors are adjusted to capture meaningful numerical represen-
tations of the tokens.
Let’s see how an embedding layer works. Imagine a vocabulary with five to-
kens, indexed from 0 to 4. We want each token to have a 3D embedding vector.
To begin, we create an embedding layer:
import torch
import torch.nn as nn

vocab_size = 5 # Number of unique tokens
emb_dim = 3 # Size of each embedding vector
emb_layer = nn.Embedding(vocab_size, emb_dim)

106

The embedding layer initializes the embedding matrix 𝐄 with random values.
In this case, the matrix has 5 rows (one for each token) and 3 columns (the
embedding dimensionality):

𝐄 =

⎣
⎢
⎢
⎢
⎡
0.2 −0.4 0.1

−0.3 0.8 −0.5
0.7 0.1 −0.2

−0.6 0.5 0.4
0.9 −0.7 0.3⎦

⎥
⎥
⎥
⎤

Each row in 𝐄 represents the embedding vector for a specific token in the vo-
cabulary.
Now, let’s input a sequence of token indices:
token_indices = torch.tensor([0, 2, 4])

The embedding layer retrieves the rows of 𝐄 corresponding to the input indi-
ces:

Embeddings = ¸
0.2 −0.4 0.1
0.7 0.1 −0.2
0.9 −0.7 0.3

¹

This output is a matrix whose number of rows equals the input sequence length
and whose number of columns equals the embedding dimensionality:
embeddings = embedding_layer(token_indices)
print(embeddings)

The output might look like this:
tensor([[0.2, -0.4, 0.1],
 [0.7, 0.1, -0.2],
 [0.9, -0.7, 0.3]])

The embedding layer can manage padding tokens as well. Padding ensures
sequences in a mini-batch have the same length. To prevent the model from
updating embeddings for padding tokens during training, the layer maps them
to a zero vector that remains unchanged. For example, we can define the pad-
ding index as follows:
emb_layer = nn.Embedding(vocab_size, emb_dim, padding_idx=0)

With this configuration, the embedding for token 0 (padding token) is always
[0,0,0]1.

107

Given the input:
token_indices = torch.tensor([0, 2, 4])
embeddings = emb_layer(token_indices)
print(embeddings)

The result would be:
tensor([[0.0, 0.0, 0.0], # Padding token
 [0.7, 0.1, -0.2], # Token 2 embedding
 [0.9, -0.7, 0.3]]) # Token 4 embedding

With modern language models, vocabularies often include hundreds of thou-
sands of tokens, and embedding dimensions are typically several thousands.
This makes the embedding matrix a significant part of the model, sometimes
containing up to 2 billion parameters.

3.6. Training an RNN Language Model
Start by importing libraries and defining utility functions:
import torch, torch.nn as nn

def set_seed(seed):
 random.seed(seed)
 torch.manual_seed(seed)
 torch.cuda.manual_seed_all(seed) ➊
 torch.backends.cudnn.deterministic = True ➋
 torch.backends.cudnn.benchmark = False ➌

The set_seed function enforces reproducibility by setting the Python random
seed, the PyTorch CPU seed, and, in line ➊, the CUDA seed for all GPUs
(Graphics Processing Units). CUDA is NVIDIA’s parallel computing platform
and API that enables significant performance improvements in computing by
leveraging the power of GPUs. Using torch.cuda.manual_seed_all ensures
consistent GPU-based random behavior, while lines ➋ and ➌ disable CUDA’s
auto-tuner and enforce deterministic algorithms, guaranteeing identical re-
sults across different GPU models.
With the model class ready, we’ll train our neural language model. First, we
install the transformers package—an open-source library providing APIs and

108

tools to easily download, train and use pretrained models from the Hugging
Face Hub:
$ pip3 install transformers

The package offers a Python API for training that works with both PyTorch
and TensorFlow. For now, we only need it to get a tokenizer.
Now we import transformers, set the tokenizer, define the hyperparameter
values, prepare the data, and instantiate the model, loss function, and opti-
mizer objects:
from transformers import AutoTokenizer

device = torch.device("cuda" if torch.cuda.is_available() els
e "cpu") ➊
tokenizer = AutoTokenizer.from_pretrained(
 "microsoft/Phi-3.5-mini-instruct"
) ➋
vocab_size = len(tokenizer) ➌

emb_dim, num_layers, batch_size, learning_rate, num_epochs =
get_hyperparameters()

data_url = "https://www.thelmbook.com/data/news"
train_loader, test_loader = download_and_prepare_data(
 data_url, batch_size, tokenizer) ➍

model = RecurrentLanguageModel(
 vocab_size, emb_dim, num_layers, tokenizer.pad_token_id
)
initialize_weights(model) ➎
model.to(device)

criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_to
ken_id) ➏
optimizer = torch.optim.AdamW(model.parameters(), lr=learning
_rate)

Line ➊ detects a CUDA device if it’s available. Otherwise, it defaults to CPU.

109

CUDA is not the only GPU acceleration framework available for train-
ing neural networks—PyTorch also provides native support for check-
ing availability of MPS (Apple Metal) through its is_available()
method. In this book, though, we will use CUDA as it remains the most
widely used platform for machine learning acceleration.

Most models on the Hugging Face Hub include the tokenizer that was used to
train them. Line ➋ initializes the Phi 3.5 mini tokenizer. It was trained on a
large text corpus using the byte-pair encoding algorithm and has a vocabulary
size of 32,064.

Line ➌ retrieves the tokenizer’s vocabulary size. Line ➍ downloads and pre-
pares the dataset—a collection of news sentences from online articles—to-
kenizing them and creating DataLoader objects. We'll explore DataLoader
shortly. For now, think of them as iterators over batches.

Line ➎ initializes the model parameters. Initial parameter values can greatly
influence the training process. They can affect how quickly training progresses
and the final loss value. Certain initialization techniques, like Xavier initiali-
zation, have shown good results in practice. The initialize_weights func-
tion, implementing this method, is defined in the notebook.

Line ➏ creates the loss function with the ignore_index parameter. This en-
sures the loss is not calculated for padding tokens.
Now, let’s look at the training loop:

for epoch in range(num_epochs): ➊
 model.train() ➋
 for batch in train_loader: ➌
 input_seq, target_seq = batch
 input_seq = input_seq.to(device) ➍
 target_seq = target_seq.to(device) ➎
 batch_size_current, seq_len = input_seq.shape ➏
 optimizer.zero_grad()
 output = model(input_seq)
 output = output.reshape(batch_size_current * seq_len,
vocab_size) ➐

https://www.thelmbook.com/nb/3.1

110

 target = target_seq.reshape(batch_size_current * seq_
len) ➑
 loss = criterion(output, target) ➒
 loss.backward()
 optimizer.step()

Line ➊ iterates over epochs. An epoch is a single pass through the entire da-
taset. Training for multiple epochs can improve the model, especially with lim-
ited training data. The number of epochs is a hyperparameter that you adjust
based on the model’s performance on the test set.

Line ➋ calls model.train() at the start of each epoch to set the model in
training mode. This is important for models that have layers behaving differ-
ently during training vs. evaluation.

Although our RNN model doesn’t use such layers, calling
model.train() ensures the model is properly configured for training.
This avoids unexpected behavior and keeps consistency, especially if
future changes add layers dependent on the mode.

Line ➌ iterates over batches. Each batch is a tuple: one tensor contains input
sequences, and the other contains target sequences. Lines ➍ and ➎ move these
tensors to the same device as the model. If the model and data are on different
devices, PyTorch raises an error.

Line ➏ retrieves the batch size and sequence length from input_seq (tar-
get_seq has the same shape). These dimensions are needed to reshape the
model’s output tensor (batch_size_current, seq_len, vocab_size) and
target tensor (batch_size_current, seq_len) into compatible shapes for the
cross-entropy loss function. In line ➐, the output is reshaped to
(batch_size_current * seq_len, vocab_size), and in line ➑, the target
is flattened to batch_size_current * seq_len, allowing the loss calculation
in line ➒ to process all tokens in the batch simultaneously and return the av-
erage loss per token.
This concludes the training loop implementation. The full RNN language
model training implementation is in the thelmbook.com/nb/3.1 notebook.
Now, let’s examine the DataLoader and Dataset classes that make this batch
processing possible.

https://www.thelmbook.com/nb/3.1

111

3.7. Dataset and DataLoader
As mentioned earlier, the download_and_prepare_data function returns two
loader objects: train_loader and test_loader. I asked you to think of them
as iterators over batches of data. But what are they, exactly?
These classes were designed to manage data efficiently during training. While
this book doesn’t focus on data loading and manipulation, a brief explanation
is important for clarity.
The Dataset class serves as an interface to your actual data source. By imple-
menting its __len__ method, you can get the size of the dataset. By defining
__getitem__, you can access individual examples. These examples can come
from many “physical” sources: files, databases, or even data generated on the
fly.
Let’s look at an example. Assume we have a JSONL file called data.jsonl,
where each line is a JSON object containing two input features and a label.
Here’s how a couple of lines might look:
{"feature1": 1.0, "feature2": 2.0, "label": 3.0}
{"feature1": 4.0, "feature2": 5.0, "label": 9.0}
...

Here’s how you can create a custom Dataset to read this file:
import json
import torch
from torch.utils.data import Dataset

class JSONDataset(Dataset):
 def __init__(self, file_path):
 self.data = []
 with open(file_path, 'r') as f:
 for line in f:
 item = json.loads(line)
 features = [item['feature1'], item['feature2'
]]
 label = item['label']
 self.data.append((features, label))

 def __len__(self):

112

 return len(self.data)

 def __getitem__(self, idx):
 features, label = self.data[idx]
 features = torch.tensor(features, dtype=torch.float32
)
 label = torch.tensor(label, dtype=torch.long)
 return features, label

In this example:

• __init__ reads the file and stores the data in memory,
• __len__ returns the total number of examples,
• __getitem__ retrieves a single example and converts it to tensors.

We can access individual examples like this:
dataset = JSONDataset('data.jsonl')
features, label = dataset[0]

A DataLoader is used with a Dataset to manage tasks like batching, shuffling,
and loading data in parallel. For example:
from torch.utils.data import DataLoader

dataset = JSONLDataset('data.jsonl') ➊

data_loader = DataLoader(
 dataset,
 batch_size=32, # Number of examples per batch
 shuffle=True, # Shuffle data at every epoch
 num_workers=0 # Number of subprocesses for data loading
) ➋

num_epochs = 5
for epoch in range(num_epochs):
 for batch_features, batch_labels in data_loader: ➌
 print(f"Batch features shape: {batch_features.shape}")
 print(f"Batch labels shape: {batch_labels.shape}")
 # Feed batch_features and batch_labels into your mode
l

113

Line ➊ creates a Dataset instance. Line ➋ then wraps the dataset in a Data-
Loader. Finally, line ➌ iterates over the DataLoader for five epochs. With
shuffle=True, the data is shuffled before batching in each epoch. This pre-
vents the model from learning the order of the training data.
With num_workers=0, data loading happens in the main process. This simple
setup may not be the most efficient, especially for large datasets. Using a pos-
itive value for num_workers makes PyTorch spawn that many worker pro-
cesses, enabling parallel data loading. This can significantly speed up training
by preventing data loading from becoming a bottleneck.
Output:
Batch features shape: torch.Size([32, 2])
Batch labels shape: torch.Size([32])

By using a well-designed Dataset with a DataLoader, you can scale your
training pipeline to handle large datasets, optimize data loading with parallel
workers, and experiment with different batching strategies. This approach
streamlines the training process, letting you concentrate on model design and
optimization.

3.8. Training Data and Loss Computation
When studying neural language models, a key aspect is understanding the
structure of a training example. The text corpus is split into overlapping input
and target sequences. Each input sequence aligns with a target sequence
shifted by one token. This setup trains the model to predict the next word at
each position in the sequence.
For instance, take the sentence “We train a recurrent neural network as a lan-
guage model.” After tokenizing it with the Phi 3.5 mini tokenizer, we get:
["_We", "_train", "_a", "_rec", "urrent", "_neural", "_networ
k", "_as", "_a", "_language", "_model", "."]

To create one training example, we convert the sentence into input and target
sequences by shifting tokens forward by one position:
Input: ["_We", "_train", "_a", "_rec", "urrent", "_neural", "
_network", "_as", "_a", "_language", "_model"]

114

Target: ["_train", "_a", "_rec", "urrent", "_neural", "_netwo
rk", "_as", "_a", "_language", "_model", "."]

A training example doesn't need to be a complete sentence. Modern language
models process sequences up to their context window length—the maximum
tokens (like 8192) they can handle at once. The window limits how far apart
the model can connect relationships in text. Training splits text into window-
sized chunks, each target sequence shifted one token forward from its input.
During training, the RNN processes one token at a time, updating its hidden
states layer by layer. At each step, it generates logits aimed at predicting the
next token in the sequence. Each logit corresponds to a vocabulary token and
is converted into probabilities using softmax. These probabilities are then used
to compute the loss.
Each training example results in multiple predictions and losses. For example,
the model first processes “_We” and tries to predict “_train” by assigning prob-
abilities to all vocabulary tokens. The loss is computed using the probability of
“_train,” as defined in Equation 2.1. Next, the model processes “_train” to pre-
dict “_a,” generating another loss. This continues for every token in the input
sequence. For the above example, the model makes 11 predictions and calcu-
lates 11 losses.
The losses are averaged across the tokens in a training example and all exam-
ples in the batch. The average loss expression is then used in backpropagation
to update the model’s parameters.
Let’s break down the loss calculation for each position with some made-up
numbers:

• Position 1:
o Target token: “_train”
o Logit for “_train”: −0.5
o After applying softmax to the logits, suppose the probability of

“_train” is 0.1
o Contribution to the total loss by Equation 2.1 is −log(0.1) = 2.30

• Position 2:
o Target token: “_a”
o Logit for “_a”: 3.2
o After softmax, the probability for “_a”: 0.05

115

o Contribution to loss: −log(0.05) = 2.99
• Position 3:

o The probability for “_rec”: 0.02
o Contribution to loss: −log(0.02) = 3.91

• Position 4:
o The probability for “urrent”: 0.34
o Contribution to loss: −log(0.34) = 1.08

We continue until calculating the loss contribution for the final token, the pe-
riod:

• Position 11:
o Target token: “.”
o Logit for “.”: −1.2
o After softmax, the probability for “.”: 0.11
o Contribution to loss: −log(0.11) = 2.21

The final loss is calculated by taking the average of these values:
(2.30 + 2.99 + 3.91 + 1.08 + ⋯+ 2.21)

11
= 2.11 (hypothetically)

During training, the objective is to minimize this loss. This involves improving
the model so that it assigns higher probabilities to the correct target tokens at
each position.
The full code for training the RNN-based language model can be found in
thelmbook.com/nb/3.1. I used the following hyperparameter values: emb_dim
= 128, num_layers = 2, batch_size = 128, learning_rate = 0.001,
and num_epochs = 1.
Here are three continuations for the prompt “The President” generated at later
training steps:
The President refused to comment on the best news in the five
on BBC .
The President has been a `` very serious '' and `` unacceptab
le '' .
The President 's office is not the first time to be able to t
ake the lead .

https://www.thelmbook.com/nb/3.1

116

When Elman introduced RNNs in 1990, his experiments used se-
quences averaging 3.92 words, limited by the hardware of the time. By
2014, advances in computing and improved activation functions made
it possible to train RNNs on sequences hundreds of words long, turning
them from an academic idea into a practical tool.

At training start, our model produced nearly random tokens, but gradually im-
proved, reaching a perplexity of 72.41—better than the count-based model’s
299.06 but far behind GPT-2’s 20 and modern LLMs’ sub-5 scores.
Three key factors explain this performance gap:

1. The model is small, with just 8,292,619 parameters, mostly in the em-
bedding layer.

2. The context size we used was relatively short—30 tokens.
3. The Elman RNN’s hidden state gradually “forgets” information from

earlier tokens.
Long short-term memory (LSTM) networks improved upon RNNs but still
struggled with very long sequences. Transformers later superseded both archi-
tectures, becoming dominant in natural language processing by 2023 through
better handling of long contexts and improved parallel computation enabling
larger models.

Interest in RNNs was reignited in 2024 with the invention of the
minLSTM and xLSTM architectures, which achieve performance com-
parable to Transformer-based models. This resurgence reflects a
broader trend in AI research: no model type is ever permanently obso-
lete. Researchers often revisit and refine older ideas, adapting them to
address modern challenges and leverage current hardware capabili-
ties.

With this, we've completed our study of recurrent neural networks and their
applications in language modeling. In the remainder of the book, we'll examine
transformer neural networks and language modeling based on them. We'll in-
vestigate their approach to tasks like question answering, document classifica-
tion, and other practical applications.

117

Chapter 4. Transformer
Transformer models have greatly advanced NLP. They overcome RNNs’ limi-
tations in managing long-range dependencies and enable parallel processing
of input sequences. There are three main Transformer architectures: encoder-
decoder, initially formulated for machine translation; encoder-only, typically
used for classification; and decoder-only, commonly found in chat LMs.
In this chapter, we’ll explore the decoder-only Transformer architecture in de-
tail, as it is the most widely used approach for training autoregressive lan-
guage models.
The transformer architecture introduces two key innovations: self-attention
and positional encoding. Self-attention enables the model to assess how each
word relates to all others during prediction, while positional encoding captures
word order and sequential patterns. Unlike RNNs, transformers process all to-
kens simultaneously, using positional encod-
ing to maintain sequential context despite
parallel processing of each token. This chap-
ter explores these fundamental elements in
detail.
A decoder-only Transformer (referred to
simply as “decoder” from here on) is made up
of multiple identical5 layers, known as de-
coder blocks, stacked vertically as shown on
the right.
As you can see, training a decoder involves
pairing each input sequence with a target se-
quence that is shifted forward by one token —
the same method used for RNN-based lan-
guage models.

4.1. Decoder Block
Each decoder block has two sub-layers: self-attention and a position-wise mul-
tilayer perceptron (MLP) as shown below:

5 Decoder blocks share the same architecture but have distinct trainable parameters
unique to each block.

118

The illustration simplifies certain aspects to avoid introducing too many new
concepts at once. We’ll introduce the missing details step by step.
Let’s take a closer look at what happens in a decoder block, starting with the
first one:

The first decoder block processes input token embeddings. For this example,
we use 6-dimensional input and output embeddings, though in practice these
dimensions grow larger with parameter count and token vocabulary. The self-
attention layer, transforms each input embedding vector 𝐱E into a new vector
𝐠E for every token 𝑡, from 1 to 𝐿, where 𝐿 represents the input length.

Here, we simplified each unit as a square, following the same approach
we used for the four-unit network in Section 1.5. While our earlier
chapters showed information in a neural network flowing from left to
right, we’ve now shifted to a bottom-to-top orientation—the standard

119

convention for high-level language model diagrams in the literature.
We’ll maintain this vertical orientation from now on.

After self-attention, the position-wise MLP independently processes each vec-
tor 𝐠E one at a time. Each decoder block has its own MLP with unique param-
eters, and within a block, this same MLP is applied independently to each po-
sition’s vector, taking one 𝐠E as input and producing one 𝐳E as output. When
the MLP finishes processing each position sequentially, the number of output
vectors 𝐳E equals the number of input tokens 𝐱E.
The output vectors 𝐳E then serve as inputs to the next decoder block. This pro-
cess repeats through each decoder block, preserving a number of output vec-
tors equal to the number of input tokens 𝐱E.

4.2. Self-Attention
To see how self-attention works, let’s start with an intuitive comparison.
Transforming 𝐠E into 𝐳E is straightforward: a position-wise MLP takes an input
vector and outputs a new vector by applying a learned transformation. This is
what feedforward networks are designed to do. However, self-attention can
seem more complex.
Consider a 5-token example: [“we,” “train,” “a,” “transformer,” “model”], and
assume a decoder with a maximum input sequence length of 4.
In each decoder block, the self-attention function relies on three tensors of
trainable parameters: 𝐖X, 𝐖Y, and 𝐖Z. Here, 𝑄 stands for “query,” 𝐾 for
“key,” and 𝑉 for “value.”
Let’s assume these tensors are 6 × 6. This means each of the four 6-dimensional
input vectors will be transformed into four 6-dimensional output vectors. Let’s
use the second token, 𝐱!, representing the word “train,” as our illustrative ex-
ample. To compute the output 𝐠! for 𝐱!, the self-attention layer works in six
steps.

4.2.1. Step 1 of Self-Attention
Compute matrices 𝐐, 𝐊, and 𝐕 as shown below:

120

Figure 4.1: Matrix multiplication in the self-attention layer.

In the illustration, we combined the four input embeddings 𝐱", 𝐱!, 𝐱&, and 𝐱T
into a matrix 𝐗. Then, we multiplied 𝐗 by the weight matrices 𝐖X, 𝐖Y, and
𝐖Z to create matrices 𝐐, 𝐊, and 𝐕. These matrices hold 6-dimensional query,
key, and value vectors, respectively. Since the process generates the same num-
ber of query, key, and value vectors as input embeddings, each input embed-
ding 𝐱E corresponds to a query vector 𝐪E, a key vector 𝐤E, and a value vector
𝐯E.

4.2.2. Step 2 of Self-Attention
Taking the second token 𝐱! as our example, we compute attention scores by
taking the dot product of its query vector 𝐪! with each key vector 𝐤E. Let’s
assume the resulting scores are:

𝐪! ⋅ 𝐤" = 4.90, 𝐪! ⋅ 𝐤! = 17.15, 𝐪! ⋅ 𝐤& = 9.80, 𝐪! ⋅ 𝐤T = 12.25
In vector format:

𝐬𝐜𝐨𝐫𝐞𝐬! = [4.90,17.15,9.80,12.25]1

121

4.2.3. Step 3 of Self-Attention
To obtain the scaled scores, we divide each attention score by the square root
of the key vector's dimensionality. In our example, since the key vector has a
dimensionality of 6, we divide all scores by √6 ≈ 2.45, yielding:

𝐬𝐜𝐚𝐥𝐞𝐝_𝐬𝐜𝐨𝐫𝐞𝐬! = R
4.9
2.45

,
17.15
2.45

,
9.8
2.45

,
12.25
2.45

S
1

= [2,7,4,5]1

4.2.4. Step 4 of Self-Attention
We then apply the causal mask to the scaled scores. (If the reason for using
the causal mask isn’t clear yet, it will be explained in detail soon.) For the
second input position, the causal mask is:

𝐜𝐚𝐮𝐬𝐚𝐥_𝐦𝐚𝐬𝐤! =
def [0,0, −∞,−∞]1

We add the scaled scores to the causal mask, resulting in the masked scores:
𝐦𝐚𝐬𝐤𝐞𝐝_𝐬𝐜𝐨𝐫𝐞𝐬! = 𝐬𝐜𝐚𝐥𝐞𝐝_𝐬𝐜𝐨𝐫𝐞𝐬! + 𝐜𝐚𝐮𝐬𝐚𝐥_𝐦𝐚𝐬𝐤! = [2,7, −∞,−∞]1

4.2.5. Step 5 of Self-Attention
We apply the softmax function to the masked scores to produce the attention
weights:

𝐚𝐭𝐭𝐞𝐧𝐭𝐢𝐨𝐧_𝐰𝐞𝐢𝐠𝐡𝐭𝐬! = softmax([2,7, −∞,−∞]1)
Since scores of −∞ become zero after applying the exponential function, the
attention weights for the third and fourth positions will be zero. The remaining
two weights are calculated as:

𝐚𝐭𝐭𝐞𝐧𝐭𝐢𝐨𝐧_𝐰𝐞𝐢𝐠𝐡𝐭𝐬! = Ð
𝑒!

𝑒! + 𝑒U
,

𝑒U

𝑒! + 𝑒U
, 0,0Ñ

1

	 ≈ [0.0067,0.9933,0,0]1

Dividing attention scores by the square root of the key dimensionality
helps prevent the dot products from growing too large in magnitude
as the dimensionality increases, which could lead to extremely small
gradients after applying softmax (due to very large negative or posi-
tive values pushing the softmax outputs to 0 or 1).

122

4.2.6. Step 6 of Self-Attention
We compute the output vector 𝐠! for the input embedding 𝐱! by taking a
weighted sum of the value vectors 𝐯", 𝐯!, 𝐯&, and 𝐯T using the attention weights
from the previous step:

𝐠! ≈ 0.0067 ⋅ 𝐯" + 0.9933 ⋅ 𝐯! + 0 ⋅ 𝐯& + 0 ⋅ 𝐯T
As you can see, the decoder’s output for position 2 depends only on (or, we
can say “attends only to”) the inputs at positions 1 and 2, with position 2 hav-
ing a much stronger influence. This effect comes from the causal mask, which
restricts the model from attending to future positions when generating an out-
put for a given position. This property is essential for maintaining the auto-
regressive nature of language models, ensuring that predictions for each po-
sition rely solely on previous and current inputs, not future ones.

While this token primarily attends to itself in our example, attention
patterns vary across different contexts. A token may attend strongly to
other tokens providing relevant semantic or syntactic information, de-
pending on sentence structure.

The vectors 𝐪E, 𝐤E, and 𝐯E can be interpreted as follows: each input position
(token or embedding) seeks information about other positions. For example, a
token like “I” might look for a name in another position, allowing the model
to process “I” and the name in a similar way. To enable this, each position 𝑡 is
assigned a query 𝐪E.
The self-attention mechanism calculates a dot product between 𝐪E and every
key 𝐤[across all positions 𝑝. A larger dot-product indicates greater similarity
between the vectors. If position 𝑝’s key 𝐤[aligns closely with position 𝑡’s query
𝐪E, then position 𝑝’s value 𝐯[contributes more significantly to the final result.

The concept of attention emerged before the Transformer. In 2014,
Dzmitry Bahdanau, while studying under Yoshua Bengio, addressed a
fundamental challenge in machine translation: enabling an RNN to fo-
cus on the most relevant parts of a sentence. Drawing from his own
experience learning English—where he moved his focus between dif-
ferent parts of the text—Bahdanau developed a mechanism for the
RNN to “decide” which input words were most important at each

123

translation step. This mechanism, which Bengio then termed attention,
became a cornerstone of modern neural networks.

The process used to calculate 𝐠! is repeated for each position in the input se-
quence, resulting in a set of output vectors: 𝐠", 𝐠!, 𝐠&, and 𝐠T. Each position
has its own causal mask, so when calculating 𝐠", 𝐠&, and 𝐠T, a different causal
mask is applied for each position. The full causal mask for all positions is shown
below:

𝐌 =
def
s

0 −∞ −∞ −∞
0 0 −∞ −∞
0 0 0 −∞
0 0 0 0

v

As you can see, the first token attends only to itself, the second to itself and
the first, the third to itself and the first two, and the last to itself and all pre-
ceding tokens.
The general formula for computing attention for all positions is:

𝐆 = attention(𝐐, 𝐊, 𝐕) =def softmax�
𝐐𝐊1

Ô𝑑:
+𝐌�𝐕

Here, 𝐐 and 𝐕 are 𝐿 × 𝑑: query and value matrices. 𝐊1 is the 𝑑: × 𝐿 transposed
key matrix. 𝑑: is the dimensionality of the key, query, and value vectors, and
𝐿 is the sequence length.
While we computed the attention scores explicitly for 𝐱! earlier, the matrix
multiplication 𝐐𝐊1 calculates the scores for all positions at once. This method
makes the process much faster.
This completes the definition of self-attention.

4.3. Position-Wise Multilayer Perceptron
After the masked self-attention layer, each output vector 𝐠E is individually pro-
cessed by a multilayer perceptron (MLP). The MLP applies a sequence of ad-
ditional transformations:

𝐳E = 𝐖!CReLU(𝐖"𝐠E + 𝐛")D + 𝐛!

Here, 𝐖", 𝐖!, 𝐛", and 𝐛! are learned parameters. The resulting vector 𝐳E is
then either passed to the next decoder block or, if it’s the final decoder block,
used to generate the output vector.

124

This component is a position-wise multilayer perceptron, which is why
I use that term. The literature may refer to it as a feedforward network,
dense layer, or fully connected layer, but these names can be mislead-
ing. The entire Transformer is a feedforward neural network. Addition-
ally, dense or fully connected layers typically incorporate one weight
matrix, one bias vector, and an output non-linearity. The position-wise
MLP in a Transformer, however, utilizes two weight matrices, two bias
vectors, and omits an output non-linearity.

4.4. Rotary Position Embedding
The Transformer architecture, as described so far, does not inherently account
for word order. The causal mask ensures that each token cannot attend to
tokens on its right, but rearranging tokens on the left does not affect the atten-
tion weights of a given token. This is unlike RNNs, where hidden states are
computed sequentially, each depending on the previous one. Changing word
order in RNNs alters the hidden states and, consequently, the output. In con-
trast, Transformers calculate attention across all tokens at once, without se-
quential dependency.
To handle word order, Transformers need to incorporate positional infor-
mation. A widely used method for this is rotary position embedding (RoPE),
which applies position-dependent rotations to the query and key vectors in the
attention mechanism. One key benefit of RoPE is its ability to generalize effec-
tively to sequences longer than those seen during training. This allows models
to be trained on shorter sequences—saving time and computational re-
sources—while still supporting much longer contexts at inference.
RoPE encodes positional information by rotating the query and key vectors.
This rotation occurs before the attention computation. The illustration on the
next page shows how it works in 2D. The black arrow labeled “Original” shows
a position-less key or query vector in self-attention. RoPE embeds positional
information by rotating this vector according to the token’s position.6 The col-
ored arrows show the resulting rotated vectors for positions 1, 3, 5, and 7.

6 In practice, RoPE operates by rotating pairs of adjacent dimensions within query and key
vectors, rather than rotating the entire vectors themselves, as we will explore shortly.

125

A key property of RoPE is that the angle between any two rotated vectors en-
codes the distance between their positions in the sequence. For example, the
angle between positions 1 and 3 is the same as the angle between positions 5
and 7, since both pairs are two positions apart.
So, how do we rotate vectors? We use matrix multiplication! Rotation matri-
ces are widely used in fields like computer graphics to rotate 3D scenes—one
of the original purposes of GPUs (the “G” in GPU stands for graphical) before
they were applied to neural network training.
In two dimensions, the rotation matrix for an angle 𝜃 is:

𝐑\ = Rcos(𝜃) −sin(𝜃)
sin(𝜃) cos(𝜃)S

Let’s rotate the two-dimensional vector 𝐪 = [2,1]1. To do this, we multiply 𝐪
by the rotation matrix 𝐑\. The result is a new vector, representing 𝐪 rotated
counterclockwise by an angle 𝜃.
For a 45∘ rotation (𝜃 = 𝜋/4 radians), we can use the special values cos(𝜃) =
sin(𝜃) = √!

!
. This gives us the rotation matrix:

126

𝐑T@∘ =

⎣
⎢
⎢
⎢
⎡√2
2

−
√2
2

√2
2

√2
2 ⎦
⎥
⎥
⎥
⎤

To find the rotated vector, we multiply 𝐑T@∘ by 𝐪:

𝐪rotated = 𝐑T@∘ ⋅ 𝐪 =

⎣
⎢
⎢
⎢
⎡√2
2

−
√2
2

√2
2

√2
2 ⎦
⎥
⎥
⎥
⎤
�21�

Computing this multiplication step by step:

𝐪rotated =

⎣
⎢
⎢
⎢
⎡√2
2
⋅ 2 −

√2
2
⋅ 1

√2
2
⋅ 2 +

√2
2
⋅ 1⎦
⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡√2
2
(2 − 1)

√2
2
(2 + 1)⎦

⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡√2
2
⋅ 1

√2
2
⋅ 3⎦
⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡ √2
2
3√2
2 ⎦
⎥
⎥
⎥
⎤

The figure below illustrates 𝐪 and its rotated version for 𝜃 = 45∘:

For a position 𝑡, RoPE rotates each pair of dimensions in the query and key
vectors defined as:

𝐪E = �𝑞E
("), 𝑞E

(!), … , 𝑞E
O_.6"R, 𝑞E

O_.R�
1

𝐤E = �𝑘E
("), 𝑘E

(!), … , 𝑘E
(_(6"), 𝑘E

(_()�
1

127

Here, 𝑑` and 𝑑: are the (even) dimensionality of the query and key vectors.
RoPE rotates pairs of dimensions indexed as (2𝑝 − 1,  2𝑝), where each pair’s
index 𝑝 ranges from 1 to 𝑑`/2.

To split the dimensions of 𝐪E into 𝑑`/2 pairs, we group them like this:

�𝑞E
("), 𝑞E

(!)�
1
, �𝑞E

(&), 𝑞E
(T)�

1
, … , �𝑞E

O_.6"R, 𝑞E
O_.R�

1

When we write 𝐪E(𝑝), it represents the pair �𝑞E
(![6"), 𝑞E

(![)�. For example, 𝐪E(3)
corresponds to:

�𝑞E
(!⋅&6"), 𝑞E

(!⋅&)� = �𝑞E
(@), 𝑞E

(L)�

Each pair 𝑝 undergoes a rotation based on the token position 𝑡 and a rotation
frequency 𝜃[:

RoPEC𝐪E(𝑝)D =
def
Ð
cosC𝜃[𝑡D −sinC𝜃[𝑡D
sinC𝜃[𝑡D cosC𝜃[𝑡D

Ñ ¸
𝑞E
(![6")

𝑞E
(![) ¹

Applying the matrix-vector multiplication rule, the rotation results in the fol-
lowing 2D vector:

RoPEC𝐪E(𝑝)D
= �𝑞E

(![6")cosC𝜃[𝑡D − 𝑞E
(![)sinC𝜃[𝑡D, 𝑞E

(![6")sinC𝜃[𝑡D

+ 𝑞E
(![)cosC𝜃[𝑡D�

1
,

where 𝜃[is the rotation frequency for the 𝑝th pair. It is defined as:

𝜃[=
def 1
𝛩!([6")/_.

Here, 𝛩 is a constant. Initially set to 10,000, later experiments demonstrated
that higher values of 𝛩—such as 500,000 (used in Llama 2 and 3 series of
models) or 1,000,000 (in Qwen 2 and 2.5 series)—enable support for larger
context sizes (hundreds of thousands of tokens).
The full rotated embedding RoPE(𝐪E) is constructed by concatenating all the
rotated pairs:

RoPE(𝐪E) =
def concat �RoPEC𝐪E(1)D,  RoPEC𝐪E(2)D, … ,  RoPE �𝐪EC𝑑`/2D��

128

Note how the rotation frequency 𝜃[decreases quickly for each subsequent pair
because of the exponential term in the denominator. This enables RoPE to cap-
ture fine-grained local position information in the early dimensions, where ro-
tations are more frequent, and coarse-grained global position information in
the later dimensions, where rotations slow down. This combination creates
richer positional encoding, allowing the model to differentiate token positions
in a sequence more effectively than using a single rotation frequency across all
dimensions.
To illustrate the process, consider a 6-dimensional query vector at position 𝑡
and 𝛩 = 10,000:

𝐪E = �𝑞E
("), 𝑞E

(!), 𝑞E
(&), 𝑞E

(T), 𝑞E
(@), 𝑞E

(L)�
1
=
def [0.8,0.6,0.7,0.3,0.5,0.4]1

First, we split it into three pairs (𝑑`/2 = 3):

𝐪E(1) = �𝑞E
("), 𝑞E

(!)� = [0.8,0.6]1

𝐪E(2) = �𝑞E
(&), 𝑞E

(T)� = [0.7,0.3]1

𝐪E(3) = �𝑞E
(@), 𝑞E

(L)� = [0.5,0.4]1

Each pair 𝑝 undergoes a rotation by angle 𝜃[𝑡, where:

𝜃[=
1

10000!([6")/_.

Let the position 𝑡 be 100. First, we calculate the rotation angles for each pair
(in radians):

𝜃" =
1

10000!("6")/L
=

1
10000?/L

= 1.0000, therefore: 𝜃"𝑡 = 100.00

𝜃! =
1

10000!(!6")/L
=

1
10000!/L

≈ 0.0464, therefore: 𝜃!𝑡 = 4.64

𝜃& =
1

10000!(&6")/L
=

1
10000T/L

≈ 0.0022, therefore: 𝜃&𝑡 = 0.22

The rotated pair 1 is:

RoPEC𝐪"??(1)D = Rcos(100) −sin(100)
sin(100) cos(100)S �

0.8
0.6� ≈ � 0.86 0.51

−0.51 0.86
� �0.80.6�

= [0.99,0.11]1
The rotated pair 2 is:

129

RoPEC𝐪"??(2)D = Rcos(4.64) −sin(4.64)
sin(4.64) cos(4.64)S �

0.7
0.3� ≈ �−0.07 1.00

−1.00 −0.07� �
0.7
0.3�

= [0.25, −0.72]1
The rotated pair 3 is:

RoPEC𝐪"??(3)D = Rcos(0.22) −sin(0.22)
sin(0.22) cos(0.22)S �

0.5
0.4

� ≈ �0.98 −0.21
0.21 0.98� �

0.5
0.4
�

= [0.40,0.50]1
These is what the original and rotated pairs look like when plotted:

The final RoPE-encoded vector is the concatenation of these pairs:

RoPE(𝐪"??) ≈ [0.99,0.11,0.25, −0.72,0.40,0.50]1
The math for RoPE(𝐤E) is the same as for RoPE(𝐪E). In each decoder block,
RoPE is applied to each row of the query (𝐐) and key (𝐊) matrices within the
self-attention mechanism.

Value vectors only provide the information that is selected and com-
bined after the attention weights are determined. Since the positional
relationships are already captured in the query-key alignment, value
vectors don’t need their own rotary embeddings. In other words, the
value vectors simply “deliver” the content once the positional-aware
attention has identified where to look.

Recall that 𝐐 and 𝐊 are generated by multiplying the decoder block inputs by
weight matrices 𝐖X and 𝐖Y, as illustrated in Figure 4.1. RoPE is applied im-
mediately after obtaining 𝐐 and 𝐊, and before the attention scores are calcu-
lated.

130

RoPE is applied across all decoder blocks, ensuring positional information
flows consistently throughout the network's depth. The illustration below
shows its implementation in two sequential decoder blocks.

In this graph, the outputs of the second decoder block are used to compute
logits for each position. This is achieved by multiplying the outputs of the final
decoder block by a matrix of shape (embedding dimensionality, vocabulary
size) shared across all positions. We'll explore this part in more detail when we
implement the decoder model in Python.
The self-attention mechanism we’ve described would work as is. However,
transformers typically employ an enhanced version called multi-head atten-
tion. This allows the model to focus on multiple aspects of information simul-
taneously. For example, one attention head might capture syntactic relation-
ships, another might emphasize semantic similarities, and a third could detect
long-range dependencies between tokens.

131

4.5. Multi-Head Attention
Once you understand self-attention, understanding multi-head attention is rel-
atively straightforward. For each head ℎ, from 1 to 𝐻, there is a separate triplet
of attention matrices:

ÜC𝐖W
X,𝐖W

Y,𝐖W
ZDÝW∈",…,c

Each triplet is applied to the input vectors 𝐱", … , 𝐱T, producing 𝐻 matrices 𝐆W.
For each head, this gives four vectors 𝐠W,", … , 𝐠W,T, as shown in Figure 4.2 for
three heads (𝐻 = 3). As you can see, the multi-head self-attention mechanism
processes an input sequence through multiple self-attention “heads.” For in-
stance, with 3 heads, each head calculates self-attention scores for the input
tokens independently. RoPE is applied separately in each head.
All input tokens 𝐱", … , 𝐱T are processed by all three heads, producing output
matrices 𝐆", 𝐆!, and 𝐆&. Each matrix 𝐆W has as many rows as there are input
tokens, meaning each head generates an embedding for every token. The em-
bedding dimensionality of each 𝐆W is reduced to one-third of the total embed-
ding dimensionality. As a result, each head outputs lower-dimensional embed-
dings compared to the original embedding size.

132

Figure 4.2: 3-head self-attention.

The outputs from the three heads are concatenated along the embedding di-
mension in the concatenation and projection layer, creating a single matrix
that integrates information from all heads. This matrix is then transformed by
the projection matrix 𝐖d, resulting in the final output matrix 𝐆. This output
is passed to the position-wise MLP:

Concatenating the matrices 𝐆", 𝐆!, and 𝐆& restores the original embedding
dimensionality (e.g., 6 in this case). However, applying the trainable parame-
ter matrix 𝐖d enables the model to combine the heads’ information more ef-
fectively than mere concatenation.

133

Modern large language models often use up to 128 heads.

At this stage, the reader understands the Transformer model architecture at a
high level. Two key technical details remain to explore: layer normalization
and residual connections, both essential components that enable the Trans-
former’s effectiveness. Let’s begin with residual connections.

4.6. Residual Connection
Residual connections (or skip connections) are essential to the Transformer
architecture. They solve the vanishing gradient problem in deep neural net-
works, enabling the training of much deeper models.
A network containing more than two layers is called a deep neural network.
Training them is called deep learning. Before ReLU and residual connections,
the vanishing gradient problem severely limited network depth. Remember
that during gradient descent, partial derivatives update all parameters by tak-
ing small steps in the opposite direction of the gradient. In deeper networks,
these updates become very small in earlier layers (those closer to the input),
effectively halting parameter adjustment. Residual connections strengthen
these updates by creating pathways for the gradient to “bypass” certain layers,
hence the term skip connections.
To better understand the vanishing gradient problem, let’s analyze a 3-layer
neural network expressed as a composite function:

𝑓(𝑥) = 𝑓& �𝑓!C𝑓"(𝑥)D�,
where 𝑓" represents the first layer, 𝑓! represents the second layer, and 𝑓& rep-
resents the third (output) layer. Let these functions be defined as follows:

𝑧 = 𝑓"(𝑥) =
def
𝑤"𝑥 + 𝑏"

𝑟 = 𝑓!(𝑧) =
def
𝑤!𝑧 + 𝑏!

𝑦 = 𝑓&(𝑟) =
def
𝑤&𝑟 + 𝑏&

Here, 𝑤e and 𝑏e are scalar weights and biases for each layer 𝑙 ∈ {1,2,3}.
Let’s define the loss function 𝐿 in terms of the network output 𝑓(𝑥) and the
true label 𝑦 as 𝐿(𝑓(𝑥), 𝑦). The gradient of the loss 𝐿 with respect to 𝑤", denoted
as)D

)'!
, is given by:

134

∂𝐿
∂𝑤"

=
∂𝐿
∂𝑓

⋅
∂𝑓
∂𝑤"

=
∂𝐿
∂𝑓&

⋅
∂𝑓&
∂𝑓!

⋅
∂𝑓!
∂𝑓"

⋅
∂𝑓"
∂𝑤"

,

where:
∂𝑓&
∂𝑓!

= 𝑤&, 
∂𝑓!
∂𝑓"

= 𝑤!, 
∂𝑓"
∂𝑤"

= 𝑥

So, we can write:
∂𝐿
∂𝑤"

=
∂𝐿
∂𝑓&

⋅ 𝑤& ⋅ 𝑤! ⋅ 𝑥

The vanishing gradient problem occurs when weights like 𝑤! and 𝑤& are small
(less than 1). When multiplied together, they produce even smaller values,
causing the gradient for earlier weights such as 𝑤" to approach zero. This issue
becomes particularly severe in networks with many layers.
Take large language models as an example. These networks often include 32
or more decoder blocks. To simplify, assume all blocks are fully connected lay-
ers. If the average weight value is around 0.5, the gradient for the input layer
parameters becomes 0.5&! ≈ 0.0000000002. This is extremely small. After
multiplying by the learning rate, updates to the early layers become negligible.
As a result, the network stops learning effectively.
Residual connections offer a solution to the vanishing gradient problem by cre-
ating shortcuts in the gradient computation path. The basic idea is simple: in-
stead of passing only the output of a layer to the next one, the layer’s input is
added to its output. Mathematically, this is written as:

𝑦 = 𝑓(𝑥) + 𝑥,
where 𝑥 is the input, 𝑓(𝑥) is the layer’s computed function, and 𝑦 is the output.
This addition forms the residual connec-
tion. Graphically, it is shown in the pic-
ture on the right. In this illustration, the
input 𝑥 is processed both through the
layer (represented as 𝑓(𝑥)) and added directly to the layer’s output.
Now let’s introduce residual connections into our 3-layer network. We’ll see
how this changes gradient computation and mitigates the vanishing gradient
issue. Starting with the original network 𝑓(𝑥) = 𝑓& �𝑓!C𝑓"(𝑥)D�, let’s add resid-
ual connections to layers 2 and 3:

135

𝑧 ← 𝑓"(𝑥) =
def
𝑤"𝑥 + 𝑏"

𝑟 ← 𝑓!(𝑧) =
def
𝑤!𝑧 + 𝑏! + 𝑧

𝑦 ← 𝑓&(𝑟) =
def
𝑤&𝑟 + 𝑏& + 𝑟

Our composite function becomes:
𝑓(𝑥) = 𝑤&[𝑤!(𝑤"𝑥 + 𝑏") + 𝑏! + 𝑤"𝑥 + 𝑏"] + 𝑏& + 𝑤!(𝑤"𝑥 + 𝑏") + 𝑏! + 𝑤"𝑥

+ 𝑏"
Now, let’s calculate the gradient of the loss 𝐿 with respect to 𝑤":

∂𝐿
∂𝑤"

=
∂𝐿
∂𝑓

⋅
∂𝑓
∂𝑤"

Expanding)-
)'!

:

∂𝑓
∂𝑤"

=
∂
∂𝑤"

Ð
C𝑤&C𝑤!(𝑤"𝑥 + 𝑏") + 𝑏! + (𝑤"𝑥 + 𝑏")D + 𝑏&D +

C𝑤!(𝑤"𝑥 + 𝑏") + 𝑏! + (𝑤"𝑥 + 𝑏")D
Ñ

= (𝑤&𝑤! + 𝑤& + 𝑤! + 1) ⋅ 𝑥

Therefore, the full gradient is:
∂𝐿
∂𝑤"

=
∂𝐿
∂𝑓

⋅ (𝑤&𝑤! + 𝑤& + 𝑤! + 1) ⋅ 𝑥

Comparing this to our original gradient without residual connections:
∂𝐿
∂𝑤"

=
∂𝐿
∂𝑓

⋅ 𝑤& ⋅ 𝑤! ⋅ 𝑥

We observe that residual connections introduce three additional terms: 𝑤&, 𝑤!,
and 1. This guarantees that the gradient will not vanish completely, even when
𝑤! and 𝑤& are small, due to the added constant term 1.
For example, if 𝑤! = 𝑤& = 0.5 as in the previous case:

• Without residual connections: 0.5 ⋅ 0.5 = 0.25
• With residual connections: 0.5 ⋅ 0.5 + 0.5 + 0.5 + 1 = 2.25

The illustration below depicts an encoding block with residual connections:

136

As shown, each decoder block includes two residual connections. The layers
are now named like Python objects, which we will implement shortly. Addi-
tionally, two RMSNorm layers have been added. Let’s discuss their purpose.

4.7. Root Mean Square Normalization
The RMSNorm layer applies root mean square normalization to the input
vector. This operation takes place just before the vector enters the self-atten-
tion layer and the position-wise MLP. Let’s illustrate this with a three-dimen-
sional vector.

Suppose we have a vector 𝐱 = [𝑥("), 𝑥(!), 𝑥(&)]1. To apply RMS normalization,
we first calculate the root mean square (RMS) of the vector:

137

RMS(𝐱) = ^
1
3
U(𝑥($))!
&

$%"

= ß1
3
[(𝑥("))! + (𝑥(!))! + (𝑥(&))!]

Then, we normalize the vector by dividing each component by the RMS value
to obtain 𝐱9:

𝐱9 =
𝐱

RMS(𝐱) = Ð
𝑥(")

RMS(𝐱) ,
𝑥(!)

RMS(𝐱) ,
𝑥(&)

RMS(𝐱)Ñ
1

Finally, we apply the scale factor 𝛾 to each dimension of 𝐱9:

𝐱‾ = RMSNorm(𝐱) =def 𝛄⊙ 𝐱9 = J𝛾(")𝑥9("), 𝛾(!)𝑥9(!), 𝛾(&)𝑥9(&)K
1
,

where ⊙ denotes the element-wise product. The vector 𝛄 is a trainable pa-
rameter, and each RMSNorm layer has its own independent 𝛄.
The primary purpose of RMSNorm is to stabilize training by keeping the scale
of the input to each layer consistent. This improves numerical stability, helping
to prevent gradient updates that are excessively large or small.
Now that we’ve covered the key components of the Transformer architecture,
let’s summarize how a decoder block processes its input:

1. The input embeddings 𝐱E first go through RMS normalization.
2. The normalized embeddings 𝐱‾ E are processed by the multi-head self-at-

tention mechanism, with RoPE applied to key and query vectors.
3. The self-attention output 𝐠E is added to the original input 𝐱E (residual

connection).
4. This sum, 𝐠e E, undergoes RMS normalization again.
5. The normalized sum 𝐠‾ E is passed through the multilayer perceptron.
6. The perceptron output 𝐳E is added to the pre-RMS-normalization vector
𝐠e E (another residual connection).

7. The result, 𝐳eE, is the output of the decoder block, serving as input for
the next block (or the final output layer if it’s the last block).

This sequence is repeated for each decoder block in the Transformer.

138

4.8. Key-Value Caching
During training, the decoder can process all positions in parallel because at
each block it computes the query, key, and value matrices, 𝐐 = 𝐗𝐖X, 𝐊 =
𝐗𝐖Y, and 𝐕 = 𝐗𝐖Z, for the entire sequence 𝐗. However, during an autoregres-
sive (left-to-right) inference, tokens must be generated one at a time. Nor-
mally, each time we generate a new token, we would have to:

1. Calculate the key, query, and value vectors for the new token.
2. Recalculate the key and value matrices for all previous tokens.
3. Merge these with the new token’s key and value vectors to compute

self-attention for the new token.
Key-value caching skips step 2 by saving the key and value matrices from
earlier tokens, avoiding repeated calculations. Since 𝐖Y and 𝐖Z are fixed after
training, the key and value vectors of earlier tokens stay constant during infer-
ence. These vectors can be stored (“cached”) after being computed once. For
every new token:

• Its key and value vectors are computed using 𝐖Y and 𝐖Z.
• These vectors are appended to the cached key-value pairs for self-atten-

tion.
Query vectors, however, are not cached because they depend on the current
token being processed. Every time a new token is added, its query vector must
be computed on-the-fly to attend to all cached keys and values.
This approach eliminates reprocessing the rest of the sequence, cutting com-
putation significantly for long sequences. In each decoder block, cached keys
and values are stored per attention head with shapes (𝐿 × 𝑑W) for both matri-
ces, where 𝐿 grows by one with each new token, and 𝑑W is the dimensionality
of the query, key, and value vectors for that head. For a model with 𝐻 attention
heads, the combined key and value caches in each decoder block have shapes
(𝐻 × 𝐿 × 𝑑W).

RoPE applies position-dependent rotations to vectors, but this doesn’t
interfere with caching. When a new token arrives, it simply takes the
next available position index (if the sequence has 𝐿 tokens, the new
one becomes position 𝐿 + 1), while previously processed tokens retain
their original positions from 1 through 𝐿. This means the cached keys
and values, already rotated according to their respective positions,

139

remain unchanged. The rotation is only applied to the new token at
position 𝐿 + 1.

Now that we understand how the Transformer operates, we’re ready to start
coding.

4.9. Transformer in Python
Let’s begin implementing the decoder in Python by defining the Attention-
Head class:
class AttentionHead(nn.Module):
 def __init__(self, emb_dim, d_h):
 super().__init__()
 self.W_Q = nn.Parameter(torch.empty(emb_dim, d_h))
 self.W_K = nn.Parameter(torch.empty(emb_dim, d_h))
 self.W_V = nn.Parameter(torch.empty(emb_dim, d_h))
 self.d_h = d_h

 def forward(self, x, mask):
 Q = x @ self.W_Q ➊
 K = x @ self.W_K
 V = x @ self.W_V ➋

 Q, K = rope(Q), rope(K) ➌

 scores = Q @ K.transpose(-2, -1) / math.sqrt(self.d_h
) ➍
 masked_scores = scores.masked_fill(mask == 0, float("
-inf")) ➎
 attention_weights = torch.softmax(masked_scores, dim=
-1) ➏
 return attention_weights @ V ➐

This class implements a single attention head in the multi-head attention
mechanism. In the constructor, we initialize three trainable weight matrices:
the query matrix W_Q, the key matrix W_K, and the value matrix W_V. Each of
these is a Parameter tensor of shape (emb_dim, d_h), where emb_dim is the

140

input embedding dimension and d_h is the dimensionality of the query, key,
and value vectors for this attention head.
In the forward method:

• Lines ➊ and ➋ compute the query, key, and value matrices by multiply-
ing the input vector x with the respective weight matrices. Given that x
has shape (batch_size, seq_len, emb_dim), Q, K, and V each have
shape (batch_size, seq_len, d_h).

• Line ➌ applies the rotary positional encoding to Q and K. After the
query and key vectors are rotated, line ➍ computes the attention
scores. Here’s a breakdown:

o K.transpose(-2, -1) swaps the last two dimensions of K. If K
has shape (batch_size, seq_len, d_h), transposing it results in
(batch_size, d_h, seq_len). This prepares K for matrix multi-
plication with Q.

o Q @ K.transpose(-2, -1) performs batch matrix multiplica-
tion, resulting in a tensor of attention scores of shape
(batch_size, seq_len, seq_len).

o As mentioned in Section 4.2, we divide by sqrt(d_h) for numer-
ical stability.

When the matrix multiplication operator @ is applied to tensors with
more than two dimensions, PyTorch uses broadcasting. This tech-
nique handles dimensions that aren’t directly compatible with the @
operator, which is normally defined only for two-dimensional tensors
(matrices). In this case, PyTorch treats the first dimension as the batch
dimension, performing the matrix multiplication separately for each
example in the batch. This process is known as batch matrix multipli-
cation.

• Line ➎ applies the causal mask. The mask tensor has the shape
(seq_len, seq_len) and contains 0s and 1s. The masked_fill func-
tion replaces all cells in the input matrix where mask == 0 with nega-
tive infinity. This prevents attention to future tokens. Since the mask
lacks the batch dimension while scores includes it, PyTorch uses

141

broadcasting to apply the mask to the scores of each sequence in the
batch.

• Line ➏ applies softmax to the scores along the last dimension, turning
them into attention weights. Then, line ➐ computes the output by mul-
tiplying these attention weights with V. The resulting output has the
shape (batch_size, seq_len, d_h).

Given the attention head class, we can now define the MultiHeadAttention
class:
class MultiHeadAttention(nn.Module):
 def __init__(self, emb_dim, num_heads):
 super().__init__()
 d_h = emb_dim // num_heads ➊
 self.heads = nn.ModuleList([
 AttentionHead(emb_dim, d_h)
 for _ in range(num_heads)
]) ➋
 self.W_O = nn.Parameter(torch.empty(emb_dim, emb_dim)
) ➌

 def forward(self, x, mask):
 head_outputs = [head(x, mask) for head in self.heads]
➍
 x = torch.cat(head_outputs, dim=-1) ➎
 return x @ self.W_O ➏

In the constructor:

• Line ➊ calculates d_h, the dimensionality of each attention head, by di-
viding the model’s embedding dimensionality emb_dim by the number
of heads.

• Line ➋ creates a ModuleList containing num_heads instances of At-
tentionHead. Each head takes the input dimensionality emb_dim and
outputs a vector of size d_h.

• Line ➌ initializes W_O, a learnable projection matrix with shape
(emb_dim, emb_dim) to combine the outputs from all attention heads.

142

In the forward method:

• Line ➍ applies each attention head to the input x of shape
(batch_size, seq_len, emb_dim). Each head’s output has shape
(batch_size, seq_len, d_h).

• Line ➎ concatenates all heads’ outputs along the last dimension. The
resulting x has shape (batch_size, seq_len, emb_dim) since
num_heads * d_h = emb_dim.

• Line ➏ multiplies the concatenated output by the projection matrix
W_O. The output has the same shape as input.

Now that we have multi-head attention, the last piece needed for the decoder
block is the position-wise multilayer perceptron. Let’s define it:
class MLP(nn.Module):
 def __init__(self, emb_dim):
 super().__init__()
 self.W_1 = nn.Parameter(torch.empty(emb_dim, emb_dim
* 4))
 self.B_1 = nn.Parameter(torch.empty(emb_dim * 4))
 self.W_2 = nn.Parameter(torch.empty(emb_dim * 4, emb_
dim))
 self.B_2 = nn.Parameter(torch.empty(emb_dim))

 def forward(self, x):
 x = x @ self.W_1 + self.B_1 ➊
 x = torch.relu(x) ➋
 x = x @ self.W_2 + self.B_2 ➌
 return x

In the constructor, we initialize learnable weights and biases.
In the forward method:

• Line ➊ multiplies the input x by the weight matrix W_1 and adds the
bias vector B_1. The input has shape (batch_size, seq_len,
emb_dim), so the result has shape (batch_size, seq_len, emb_dim *
4).

• Line ➋ applies the ReLU activation function element-wise, adding non-
linearity.

143

• Line ➌ multiplies the result by the second weight matrix W_2 and adds
the bias vector B_2, reducing the dimensionality back to (batch_size,
seq_len, emb_dim).

The first linear transformation expands to 4 times the embedding dimension-
ality (emb_dim * 4) to provide the network with greater capacity for learning
complex patterns and relationships between variables. The 4x factor balances
expressiveness and efficiency. After expanding the dimensionality, it’s com-
pressed back to the original embedding dimensionality (emb_dim). This en-
sures compatibility with residual connections, which require matching dimen-
sionalities. Empirical results support this expand-and-compress approach as an
effective trade-off between computational cost and performance.
With all components defined, we’re ready to set up the complete decoder
block:
class DecoderBlock(nn.Module):
 def __init__(self, emb_dim, num_heads):
 super().__init__()
 self.norm1 = RMSNorm(emb_dim)
 self.attn = MultiHeadAttention(emb_dim, num_heads)
 self.norm2 = RMSNorm(emb_dim)
 self.mlp = MLP(emb_dim)

 def forward(self, x, mask):
 attn_out = self.attn(self.norm1(x), mask) ➊
 x = x + attn_out ➋
 mlp_out = self.mlp(self.norm2(x)) ➌
 x = x + mlp_out ➍
 return x

The DecoderBlock class represents a single decoder block in a Transformer
model. In the constructor, we set up the necessary layers: two RMSNorm layers,
a MultiHeadAttention instance (configured with the embedding dimension-
ality and number of heads), and an MLP layer.
In the forward method:

• Line ➊ applies RMSNorm to the input x, which has shape (batch_size,
seq_len, emb_dim). The output of RMSNorm keeps this shape. This

144

normalized tensor is then passed to the multi-head attention layer,
which outputs a tensor of the same shape.

• Line ➋ adds a residual connection by combining the attention output
attn_out with the original input x. The shape doesn’t change.

• Line ➌ applies the second RMSNorm to the result from the residual con-
nection, retaining the same shape. This normalized tensor is then
passed through the MLP, which outputs another tensor with shape
(batch_size, seq_len, emb_dim).

• Line ➍ adds a second residual connection, combining mlp_out with its
unnormalized input. The decoder block’s final output shape is
(batch_size, seq_len, emb_dim), ready for the next decoder block or
the final output layer.

With the decoder block defined, we can now build the decoder transformer
language model by stacking multiple decoder blocks sequentially:
class DecoderLanguageModel(nn.Module):
 def __init__(
 self, vocab_size, emb_dim,
 num_heads, num_blocks, pad_idx
):
 super().__init__()
 self.embedding = nn.Embedding(
 vocab_size, emb_dim,
 padding_idx=pad_idx
) ➊
 self.layers = nn.ModuleList([
 DecoderBlock(emb_dim, num_heads) for _ in range(n
um_blocks)
]) ➋
 self.output = nn.Parameter(torch.rand(emb_dim, vocab_
size)) ➌

 def forward(self, x):
 x = self.embedding(x) ➍
 _, seq_len, _ = x.shape
 mask = torch.tril(torch.ones(seq_len, seq_len, device
=x.device)) ➎

145

 for layer in self.layers: ➏
 x = layer(x, mask)
 return x @ self.output ➐

In the constructor of the DecoderLanguageModel class:

• Line ➊ creates an embedding layer that converts input token indices to
dense vectors. The padding_idx specifies the ID of the padding token,
ensuring that padding tokens are mapped to zero vectors.

• Line ➋ creates a ModuleList with num_blocks DecoderBlock in-
stances, forming the stack of decoder layers.

• Line ➌ defines a matrix to project the last decoder block’s output to
logits over the vocabulary, enabling next token prediction.

In the forward method:

• Line ➍ converts the input token indices to embeddings. The input ten-
sor x has shape (batch_size, seq_len); the output has shape
(batch_size, seq_len, emb_dim).

• Line ➎ creates the causal mask.
• Line ➏ applies each decoder block to the input tensor x with shape

(batch_size, seq_len, emb_dim), producing an output tensor of the
same shape. Each block refines the sequence and passes it to the next
until the final block.

• Line ➐ projects the output of the final decoder block to vocabulary-
sized logits by multiplying it with the self.output matrix, which has
shape (emb_dim, vocab_size). After this batched matrix multiplica-
tion, the final output has shape (batch_size, seq_len, vocab_size),
providing scores for each token in the vocabulary at each position in
the input sequence. This output can then be used to generate the
model’s predictions as we will discuss in the next chapter.

The training loop for DecoderLanguageModel is the same as for the RNN (Sec-
tion 3.6), so it is not repeated here for brevity. Implementations of RMSNorm
and RoPE are also skipped. Training data is prepared just like for the RNN: the
target sequence is offset by one position relative to the input sequence, as de-
scribed in Section 3.7. The complete code for training the decoder language
model is available in the thelmbook.com/nb/4.1 notebook.

https://www.thelmbook.com/nb/4.1

146

In the notebook, I used these hyperparameter values: emb_dim = 128,
num_heads = 8, num_blocks = 2, batch_size = 128, learning_rate =
0.001, num_epochs = 1, and context_size = 30. With these settings, the
model achieved a perplexity of 55.19, improving on the RNN’s 72.23. This is a
good result given the comparable number of trainable parameters (8,621,963
for the Transformer vs. 8,292,619 for the RNN). The real strengths of trans-
formers, however, become apparent at larger scales of model size, context
length, and training data. Reproducing experiments at such scales in this book
is, of course, impractical.
Let’s look at some continuations of the prompt “The President” generated by
the decoder model at later training steps:
The President has been in the process of a new deal to make a
decision on the issue .

The President 's office said the government had `` no intenti
on of making any mistakes '' .

The President of the United States has been a key figure for
the first time in the past ## years .

The “#” characters in the training data represent individual digits. For exam-
ple, “##” likely represents the number of years.

If you’ve made it this far, well done! You now understand the mechanics of
language models. But understanding the mechanics alone won’t let you fully
appreciate what modern language models are capable of. To truly understand,
you need to work with one.
In the next chapter, we’ll explore large language models (LLMs). We’ll discuss
why they’re called large and what’s so special about the size. Then, we’ll cover
how to finetune an existing LLM for practical tasks like question answering
and document classification, as well as how to use LLMs to address a variety
of real-world problems.

147

Chapter 5. Large Language Model
Large language models have transformed NLP through their remarkable capa-
bilities in text generation, translation, and question-answering. But how can a
model trained solely to predict the next word achieve these results? The an-
swer lies in two factors: scale and supervised finetuning.

5.1. Why Larger Is Better
LLMs are built with a large number of parameters, large context windows, and
trained on large corpora backed by substantial computational resources. This
scale enables them to learn complex language patterns and even memorize
information.
Creating a chat LM, capable of handling dialogue and following complex in-
structions, involves two stages. The first stage is pretraining on a massive da-
taset, often containing trillions of tokens. In this phase, the model learns to
predict the next token based on context—similar to what we did with the RNN
and decoder models, but at a vastly larger scale.
With more parameters and extended context windows, the model aims to “un-
derstand” the context as deeply as possible to improve the next token predic-
tion and minimize the cross-entropy loss. For example, consider this context:
The CRISPR-Cas9 technique has revolutionized genetic engineer
ing by enabling precise modifications to DNA sequences. The p
rocess uses a guide RNA to direct the Cas9 enzyme to a specif
ic location in the genome. Once positioned, Cas9 acts like mo
lecular scissors, cutting the DNA strand. This cut activates
the cell's natural repair mechanisms, which scientists can ex
ploit to

To accurately predict the next token, the model must know:
1) about CRISPR-Cas9 and its components, such as guide RNA and Cas9

enzyme,
2) how CRISPR-Cas9 works—locating specific DNA sequences and cutting

DNA,
3) about cellular repair mechanisms, and
4) how these mechanisms enable gene editing.

148

A well-trained LLM might suggest continuations like “insert new genetic mate-
rial” or “delete unwanted genes.” Choosing “insert” or “delete” over vague
terms like “change” or “fix” requires encoding the context into embedding vec-
tors that reflect a deeper understanding of the gene-editing process, rather
than relying on surface-level patterns as count-based models do.
It’s intuitive to think that if words and paragraphs can be represented by dense
embedding vectors, then entire documents or complex explanations could the-
oretically be represented this way too. However, before LLMs were discovered,
NLP researchers believed embeddings could only represent basic concepts like
“animal,” “building,” “economy,” “technology,” “verb,” or “noun.” This belief
is evident in the conclusion of one of the most influential papers of the 2010s,
which detailed the training of a state-of-the-art language model at that time:

“As with all text generated by language models, the sample does not make
sense beyond the level of short phrases. The realism could perhaps be im-
proved with a larger network and/or more data. However, it seems futile
to expect meaningful language from a machine that has never been ex-
posed to the sensory world to which language refers.” (Alex Graves, “Gen-
erating Sequences With RNNs,” 2014)

GPT-3 showed some ability to continue relatively complex patterns. But only
with GPT-3.5—able to handle multi-stage dialogue and follow elaborate in-
structions—it became clear that something unexpected happens when a lan-
guage model surpasses a certain parameter scale and is pretrained on a suffi-
ciently large corpus.
Scale is fundamental to building a capable LLM. Let’s look at the core features
that make LLMs “large” and how these features contribute to their capabilities.

5.1.1. Large Parameter Count
One of the most striking features of LLMs is the sheer number of parameters
they contain. While our decoder model has around 8 million parameters, state-
of-the-art LLMs can reach hundreds of billions or even trillions of parameters.
In a transformer model, the number of parameters is largely determined by the
embedding dimensionality (emb_dim) and the number of decoder blocks
(num_blocks). As these values increase, the parameter count grows quadrati-
cally with embedding dimensionality in the self-attention and MLP layers, and

149

linearly with the number of decoder blocks. Doubling the embedding dimen-
sionality roughly quadruples the number of parameters in the attention and
MLP components of each decoder block.

Open-weight models are models with publicly accessible trained pa-
rameters. These can be downloaded and used for tasks like text gener-
ation or finetuned for specific applications. However, while the
weights are open, the model’s license governs its permitted uses, in-
cluding whether commercial use is allowed. Licenses like Apache 2.0
and MIT permit unrestricted commercial use, but you should always
review the license to confirm your intended use aligns with the crea-
tors’ terms.

The table below shows key features of several open-weight LLMs compared to
our tiny model:

 num_blocks emb_dim num_heads vocab_size
Our model 2 128 8 32,011
Llama 3.1 8B 32 4,096 32 128,000
Gemma 2 9B 42 3,584 16 256,128
Gemma 2 27B 46 4,608 32 256,128
Llama 3.1 70B 80 8,192 64 128,000
Llama 3.1 405B 126 16,384 128 128,000

By convention, the number before “B” in the name of an open-weight model
indicates its total number of parameters in billions.

If you were to store each parameter of a 70B model as a 32-bit float
number, it would require about 280GB of RAM—more storage than
the Apollo 11 guidance computer had by a factor of over 30 million
times.

This massive number of parameters allows LLMs to learn and represent a vast
amount of information about grammar, semantics, world knowledge, and ex-
hibit reasoning capabilities.

150

5.1.2. Large Context Size
Another crucial aspect of LLMs is their ability to process and maintain much
larger contexts than earlier models. While our decoder model used a context
of only 30 tokens, modern LLMs can handle contexts of thousands—and some-
times even millions—of tokens.

GPT-3’s 2,048-token context could accommodate roughly 4 pages of
text. In contrast, Llama 3.1’s 128,000-token context is large enough to
fit the entire text of “Harry Potter and the Sorcerer’s Stone” with room
to spare.

The key challenge with processing long texts in transformer models lies in the
self-attention mechanism’s computational complexity. For a sequence of length
n, self-attention requires computing attention scores between every pair of to-
kens, resulting in quadratic 𝑂(𝑛!) time and space complexity. This means that
doubling the input length quadruples both the memory requirements and com-
putational cost. This quadratic scaling becomes particularly problematic for
long documents—for instance, a 10,000-token input would require computing
and storing 100 million attention scores for each attention layer.
The increased context size is made possible through architectural improve-
ments and optimizations in attention computation. Techniques like grouped-
query attention and FlashAttention (which are beyond the scope of this
book) enable efficient memory management, allowing LLMs to handle much
larger contexts without excessive computational costs.
LLMs typically undergo pretraining on shorter contexts around 4K-8K tokens,
as the attention mechanism’s quadratic complexity makes training on long se-
quences computationally intensive. Additionally, most training data naturally
consists of shorter sequences.
Long-context capabilities emerge through long-context pretraining, a special-
ized stage following initial training. This process involves:

1. Incremental training for longer contexts: The model's context win-
dow gradually expands from 4,000-8,000 tokens to 128,000-256,000
tokens through a series of incremental stages. Each stage increases the
context length and continues training until the model meets two key
criteria: restoring its performance on short-context tasks while

151

successfully handling longer-context challenges like “needle in a hay-
stack” evaluations.

A needle in a haystack test evaluates a model’s ability to identify and
utilize relevant information buried within a very long context, typically
by placing a crucial piece of information early in the sequence and ask-
ing a question that requires retrieving that specific detail from among
thousands of tokens of unrelated text.

2. Efficient scaling for self-attention: To handle the computational de-
mands of self-attention’s quadratic scaling with sequence length, the
approach implements context parallelism. This method splits input se-
quences into manageable chunks and uses an all-gather mechanism for
memory-efficient processing.

All-gather is a collective communication operation in distributed com-
puting where each GPU shares its local data with all other GPUs, ag-
gregating the data so that every GPU ends up with a complete, concat-
enated dataset.

5.1.3. Large Training Dataset
The third factor behind LLMs’ capabilities is the size of the corpus used for
training. While our decoder was trained on a small corpus of news sentences
with about 25 million tokens, modern LLMs use datasets with trillions of to-
kens. These datasets often include:

1) books and literature from different genres and eras,
2) web pages and online articles on diverse topics,
3) academic papers and scientific studies,
4) social media posts and discussions, and
5) code repositories and technical documents.

The diversity and scale of these datasets allow LLMs to learn a broad vocabu-
lary, understand multiple languages, acquire knowledge on a wide array of
topics—from history and science to current events and pop culture—adapt to

152

various writing styles and formats, and acquire basic reasoning and problem-
solving skills.

The illustration above depicts the composition of LLM training datasets, using
the open Dolma dataset as an example. Segments represent different docu-
ment types, with sizes scaled logarithmically to prevent web pages—the largest
category—from overwhelming the visualization. Each segment shows both to-
ken count (in billions) and percentage of the corpus. While Dolma’s 3 trillion
tokens are substantial, they fall short of more recent datasets like Qwen 2.5’s
18 trillion tokens, a number likely to grow in future iterations.

It would take approximately 51,000 years for a human to read the en-
tire Dolma dataset, reading 8 hours every day at 250 words per minute.

Since neural language models train on such vast corpora, they typically process
the data just once. This single-epoch training approach prevents overfitting
while reducing computational demands. Processing these enormous datasets

153

multiple times would be extremely time-consuming and may not yield signifi-
cant additional benefits.

5.1.4. Large Amount of Compute
If you tried to process 3 trillion tokens of the Dolma dataset on a single modern
GPU, it would take over 100 years—which helps explain why major language
models require massive computing clusters. Training an LLM demands signifi-
cant computing power, often measured in FLOPs (floating-point operations)
or GPU-hours. For context, while training our decoder model might take a few
hours on a single GPU, modern LLMs can require thousands of GPUs running
for months.
The computational demands grow with three main factors:

1) the number of parameters in the model,
2) the size of the training corpus, and
3) the context length used during training.

For example, training the Llama 3.1 series of models consumed approximately
40 million GPU-hours—equivalent to running a single GPU continuously for
almost 4600 years. Llama 3.1’s training process uses an advanced system called
4D parallelism, which integrates four different parallel processing methods to
efficiently distribute the model across thousands of GPUs.
The four dimensions of parallelism are: tensor parallelism, which partitions
weight matrices (𝐖X, 𝐖Y, 𝐖Z, 𝐖d, 𝐖", 𝐖!) across devices; pipeline paral-
lelism, which assigns specific transformer layers to different GPUs; context
parallelism, which segments input sequences for processing long sequences;
and data parallelism, which enables simultaneous batch processing across
GPUs with post-step synchronization.

Each of these four parallelism dimensions could merit its own chapter,
and thus a full exploration of them lies beyond this book’s scope.

Training large language models can cost tens to hundreds of millions of dol-
lars. These expenses include hardware, electricity, cooling, and engineering
expertise. Such costs limit the development of state-of-the-art LLMs to large
tech companies and well-funded research labs. However, open-weight models

154

have lowered the barrier, enabling smaller organizations to leverage existing
models through methods like supervised finetuning and prompt engineering.

5.2. Supervised Finetuning
During pretraining, the model learns most of its capabilities. However, since it
is trained only to predict the next word, its default behavior is to continue the
input. For instance, if you input “Explain how machine learning works,” the
pretrained model might respond with something like “and also name three
most popular algorithms.” This is not what users would expect. The model’s
ability to follow instructions, answer questions, and hold conversations is de-
veloped through a process called supervised finetuning.
Let’s compare the behavior of a pretrained model and the same model fine-
tuned to follow instructions and answer questions.
We’ll use two models: google/gemma-2-2b, pretrained for next-token predic-
tion, and google/gemma-2-2b-it, a finetuned version for instruction follow-
ing.

Models on the Hugging Face Hub follow this naming convention:
“creator/model” with no spaces. The “model” part typically includes
information about the model’s version, number of parameters, and
whether it was finetuned for conversation or instruction-following. In
the name google/gemma-2-2b-it, we see that the creator is Google,
the model has version 2, 2 billion parameters, and it was finetuned to
follow instructions (with “it” standing for “instruction-tuned”).

The prompt we’ll use is the following:
Continue the list: apple, orange, tomato.

This is the output of the pretrained-only google/gemma-2-2b given the above
prompt:
The list of fruits and vegetables that are good for you is lo
ng. But there are some that are better than others.

The best fruits and vegetables are those that are high in fib
er, low in sugar, and high in vitamins and minerals.

The best fruits and vegetables are those that are high in fib

155

er, low in sugar, and high in vitamins and minerals.
...

The output isn’t complete—the model keeps repeating the same sentence end-
lessly. As you can see, the output is quite similar to what we observed with our
decoder model. While google/gemma-2-2b, being larger, produces more co-
herent sentence structures, the text still fails to align with the context, which
clearly requests a list of fruits.
Now, let’s apply the finetuned google/gemma-2-2b-it to the same input. The
output is:
Here are a few more fruits to continue the list:

* **Banana**
* **Grapefruit**
* **Strawberry**
* **Pineapple**
* **Blueberry**

Let me know if you'd like more!

As you can see, the model with the same number of parameters now follows
the instruction. This change is achieved through supervised finetuning.
Supervised finetuning, or simply finetuning, modifies a pretrained model’s
parameters to specialize it for specific tasks. The goal isn’t to train the model
to answer every question or follow every instruction. Instead, finetuning “un-
locks” the knowledge and skills the model already learned during pretraining.
Without finetuning, this knowledge remains “hidden” and is used mainly for
predicting the next token, not for problem-solving.
During finetuning, while the model is still trained to predict next tokens, it
learns from examples of quality conversations and problem-solving rather than
general text. This targeted training enables the model to better leverage its
existing knowledge, producing relevant information in response to prompts
instead of generating arbitrary continuations.

156

5.3. Finetuning a Pretrained Model
As discussed, training an LLM from scratch is a complex and expensive under-
taking that requires significant computational resources, vast amounts of high-
quality training data, as well as deep expertise in machine learning research
and engineering.
The good news is that open-weight models often come with permissive li-
censes, allowing you to use or finetune them for business tasks. While models
up to 8 billion parameters can be finetuned in a Colab notebook (in the paid
version that supports more powerful GPUs), the process is time-consuming,
and single-GPU memory constraints may limit model size and prompt length.
To speed up finetuning and process longer contexts, organizations often use
servers with multiple high-end GPUs running in parallel. Each GPU has sub-
stantial VRAM (video random access memory), which stores models and data
during computation. By distributing the model’s weights across the GPUs’ com-
bined memory, finetuning becomes significantly faster than relying on a single
GPU. This approach is called model parallelism.

PyTorch supports model parallelism with methods like Fully Sharded
Data Parallel (FSDP). FSDP enables efficient distribution of model pa-
rameters across GPUs by sharding the model—splitting it into smaller
parts. This way, each GPU processes only a portion of the model.

Renting multi-GPU servers for large language model finetuning can be prohib-
itively expensive for smaller organizations or individuals. The computational
demands can result in significant costs, with training runs potentially lasting
anywhere from several hours to multiple weeks depending on the model size
and training dataset.
Commercial LLM service providers offer a more cost-effective finetuning op-
tion. They charge based on the number of tokens in the training data and use
various techniques to lower costs. Though these methods aren’t covered in this
book, you can find an up-to-date list of LLM finetuning services with pay-per-
token pricing on the book’s wiki.
Let’s finetune a pretrained LLM to generate an emotion. Our dataset has the
following structure:

157

{"text": "i slammed the door and screamed in rage", "label":
"anger"}
{"text": "i danced and laughed under the bright sun", "label"
: "joy"}
{"text": "tears rolled down my face in silence today", "label
": "sadness"}
...

It’s a JSONL file, where each row is a labeled example formatted as a JSON
object. The text key contains a text expressing one of six emotions; the label
key is the corresponding emotion. The label can be one of six values: sadness,
joy, love, anger, fear, and surprise. Thus, we have a document classification
problem with six classes.
We'll finetune GPT-2, a pretrained model licensed under the MIT license,
which permits unrestricted commercial use. This language model, with its
modest 124M parameters, is often classified as an SLM (small language
model). Despite these constraints, it demonstrates impressive capabilities on
certain tasks and remains accessible for finetuning even within free-tier Colab
notebooks.
Before training a complex model, it’s wise to establish baseline performance.
A baseline is a simple, easy-to-implement solution that sets the minimum ac-
ceptable performance level. Without it, we can’t determine if a complex
model’s performance justifies its added complexity.
We'll use logistic regression with bag of words as our baseline. This pairing
has proven effective for document classification. Implementation will use
scikit-learn, an open-source library that streamlines the training and evalua-
tion of traditional “shallow” machine learning models.

5.3.1. Baseline Emotion Classifier
First, we install scikit-learn:
$ pip3 install scikit-learn

Now, let’s load the data and prepare it for machine learning:7

7 We will load the data from the book’s website to ensure it remains accessible. The da-
taset’s original source is https://huggingface.co/datasets/dair-ai/emotion. It was first used
in Saravia et al., “CARER: Contextualized Affect Representations for Emotion

https://huggingface.co/datasets/dair-ai/emotion

158

random.seed(42) ➊

data_url = "https://www.thelmbook.com/data/emotions"
X_train_text, y_train, X_test_text, y_test = download_and_spl
it_data(
 data_url, test_ratio=0.1
) ➋

The function download_and_split_data (defined in the thelm-
book.com/nb/5.1 notebook) downloads a compressed dataset from a specified
URL, extracts the training examples, and splits the dataset into training and
test partitions. The test_ratio parameter in line ➋ specifies the fraction of
the dataset to reserve for testing. Setting a seed in ➊ ensures that the random
shuffle in line ➋ produces the same result on every execution for reproducibil-
ity.
With the data loaded and split into training and test sets, we transform it into
a bag-of-words:
from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer(max_features=10_000, binary=True
)
X_train = vectorizer.fit_transform(X_train_text)
X_test = vectorizer.transform(X_test_text)

CountVectorizer’s fit_transform method converts training data into the
bag-of-words format. max_features limits vocabulary size, and binary de-
termines whether features represent a word’s presence (True) or count
(False). The subsequent transform converts the test data into a bag-of-words
representation using the vocabulary built using training data. This approach
prevents data leakage—where information from the test set inadvertently in-
fluences the machine learning process. Maintaining this separation between
training and test data is crucial, as any leakage would compromise the model’s
ability to generalize to truly unseen examples.

Recognition,” Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, 2018.

https://www.thelmbook.com/nb/5.1
https://www.thelmbook.com/nb/5.1

159

The logistic regression implementation in scikit-learn accepts labels as strings,
so there is no need to convert them to numbers. The library handles the con-
version automatically.
Now, let’s train a logistic regression model:
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

model = LogisticRegression(random_state=42, max_iter=1000)
model.fit(X_train, y_train) # Model is trained here

y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

train_accuracy = accuracy_score(y_train, y_train_pred)
test_accuracy = accuracy_score(y_test, y_test_pred)

print(f"Training accuracy: {train_accuracy * 100:.2f}%")
print(f"Test accuracy: {test_accuracy * 100:.2f}%")

Output:
Training accuracy: 0.9854
Test accuracy: 0.8855

The LogisticRegression object is first created. Its fit method, called next,
trains the model8 on the training data. Afterward, the model predicts outcomes
for both the training and test sets, and the accuracy for each is calculated.
The random_state parameter in LogisticRegression sets the seed for the
random number generator. The max_iter parameter limits the solver to a
maximum of 1000 iterations.

8 In reality, scikit-learn trains a model slightly different from classical logistic regression; it
uses softmax with cross-entropy loss instead of using the sigmoid function and binary
cross-entropy. This approach generalizes logistic regression to multiclass classification
problems.

160

A solver is the algorithm that optimizes a model’s parameters. It works
like gradient descent but might use different techniques to improve
efficiency, handle constraints, or ensure numerical stability. In
LogisticRegression, the default solver is lbfgs (Limited-memory
Broyden–Fletcher–Goldfarb–Shanno). This algorithm performs well
with small to medium datasets and suits loss functions such as logistic
loss. Setting max_iter = 1000 ensures the solver has enough itera-
tions to converge.

The accuracy metric calculates the proportion of correct predictions out of all
predictions:

Accuracy =
Number of correct predictions
Total number of predictions

As you can see, the model overfits: it performs almost perfectly on the training
data but significantly worse on the test data. To address this, we can adjust the
hyperparameters of our algorithm. Let’s try incorporating bigrams and in-
crease the vocabulary size to 20,000:
vectorizer = CountVectorizer(max_features=20_000,
ngram_range=(1, 2))

This adjustment leads to slight improvement on the test set, but it still falls
short compared to the training set performance:
Training accuracy: 0.9962
Test accuracy: 0.8910

Now that we see a simple approach achieves a test accuracy of 0.8910, any
more complex solution must outperform this baseline. If it performs worse, we
will know that our implementation likely contains an error.
Let’s finetune GPT-2 to generate emotion labels as text. This approach is easy
to implement since no additional classification output layer is needed. Instead,
the model is trained to output labels as regular words, which, depending on
the tokenizer, may span multiple tokens.

5.3.2. Emotion Generation
First, we get the data, model, and tokenizer:

161

from transformers import AutoTokenizer, AutoModelForCausalLM

set_seed(42)
data_url = "https://www.thelmbook.com/data/emotions"
model_name = "openai-community/gpt2"

device = torch.device("cuda" if torch.cuda.is_available() els
e "cpu")

tokenizer = AutoTokenizer.from_pretrained(model_name) ➊
tokenizer.pad_token = tokenizer.eos_token ➋

model = AutoModelForCausalLM.from_pretrained(model_name).to(d
evice) ➌

num_epochs, batch_size, learning_rate = get_hyperparameters()

train_loader, test_loader = download_and_prepare_data(
 data_url, tokenizer, batch_size
)

The AutoModelForCausalLM class from the transformers library, used in
line ➌, automatically loads a pretrained autoregressive language model. Line
➊ loads the pretrained tokenizer. The tokenizer used in GPT-2 does not include
a padding token. Therefore, in line ➋, we set the padding token by reusing the
end-of-sequence token.
Now, we set up the training loop:
for epoch in range(num_epochs):
 for input_ids, attention_mask, labels in train_loader:
 input_ids = input_ids.to(device)
 attention_mask = attention_mask.to(device) ➊
 labels = labels.to(device)
 outputs = model(
 input_ids=input_ids,
 labels=labels,
 attention_mask=attention_mask
)

162

 outputs.loss.backward()
 optimizer.step()
 optimizer.zero_grad()

The attention_mask in line ➊ is a binary tensor showing which tokens in
the input are actual data and which are padding. It has 1s for real tokens and
0s for padding tokens. This mask is different from the causal mask, which
blocks positions from attending to future tokens.
Let’s illustrate input_ids, labels, and attention_mask for a batch of two
simple examples:

Text Emotion
I feel very happy joy
So sad today sadness

We convert these examples into text completion tasks by adding a task defini-
tion and solution:

Table 5.1: Text completion template.

Task Solution
Predict emotion: I feel very happy\nEmotion: joy
Predict emotion: So sad today\nEmotion: sadness

In the table above, “\n” denotes a new line character, while “\nEmotion:”
marks the boundary between the task description and the solution. This for-
mat, while optional, helps the model use its pretrained understanding of text.
The sole new ability to be learned during finetuning is generating one of six
outputs: sadness, joy, love, anger, fear, or surprise—no other outputs.

LLMs gained emotion classification skills during pretraining partly be-
cause of the widespread use of emojis online. Emojis acted as labels
for the text around them.

Assuming a simple tokenizer that splits strings by spaces and assigns unique
IDs to each token, here’s a hypothetical token-to-ID mapping:

Token ID Token ID
Predict 1 So 8

163

Token ID Token ID
emotion: 2 sad 9
I 3 today 10
feel 4 joy 11
very 5 sadness 12
happy 6 [EOS] 0
\nEmo-
tion:

7 [PAD] −1

The special [EOS] token indicates the end of generation, while [PAD] serves
as a padding token. The following examples show how texts are converted to
token IDs:

Text Token IDs
Predict emotion: I feel very happy\nEmotion: [1, 2, 3, 4, 5, 6, 7]
joy [11]
Predict emotion: So sad today\nEmotion: [1, 2, 8, 9, 10, 7]
sadness [12]

We then concatenate the input tokens with the completion tokens and append
the [EOS] token so the model learns to stop generating once the emotion label
generation is completed. The input_ids tensor contains these concatenated
token IDs. The labels tensor is made by replacing all input text tokens with
−100 (a special masking value), while keeping the actual token IDs for the
completion and [EOS] tokens. This ensures the model only computes loss on
predicting the completion tokens, not on reproducing the input text.

The value −100 is a special token ID in PyTorch (and similar frame-
works) used to exclude specific positions during loss computation.
When finetuning language models, this ensures the model concen-
trates on predicting tokens for the desired output (the “solution”) ra-
ther than the tokens in the input (the “task”).

Here’s the resulting table:

164

Text input_ids labels
Predict emotion: I feel
very happy\nEmotion:
joy

[1, 2, 3, 4,
5, 6, 7, 11, 0]

[-100, -100, -100, -100,
-100, -100, -100, 11, 0]

Predict emotion: So
sad today\nEmotion:
sadness

[1, 2, 8, 9,
10, 7, 12, 0]

[-100, -100, -100, -100,
-100, -100, 12, 0]

To form a batch, all sequences must have the same length. The longest se-
quence has 9 tokens (from the first example), so we pad the shorter sequences
to match that length. Here’s the final table showing how the input_ids, la-
bels, and attention_mask are adjusted after padding:

input_ids labels attention_mask
[1, 2, 3, 4, 5,
6, 7, 11, 0]

[-100, -100, -100, -100, -100,
-100, -100, 11, 0]

[1, 1, 1, 1, 1,
1, 1, 1, 1]

[1, 2, 8, 9, 10,
7, 12, 0, -1]

[-100, -100, -100, -100, -100,
-100, 12, 0, -100]

[1, 1, 1, 1, 1,
1, 1, 1, 0]

In input_ids, all sequences have a length of 9 tokens. The second example is
padded with the [PAD] token (ID −1). In the attention_mask, real tokens
are marked as 1, while padding tokens are marked as 0.
This padded batch is now ready for the model to handle.
After finetuning the model with num_epochs = 2, batch_size = 16, and
learning_rate = 0.00005, it achieves a test accuracy of 0.9415. This is more
than 5 percentage points higher than the baseline result of 0.8910 obtained
with logistic regression.

When finetuning, a smaller learning rate is often used to avoid large
changes to the pretrained weights. This helps retain the general
knowledge from pretraining while adjusting to the new task. A com-
mon choice is 0.00005 (5 × 106@), as it often works well in practice.
However, the best value depends on the specific task and model.

The full code for supervised finetuning of an LLM is available in the thelm-
book.com/nb/5.2 notebook. You can adapt this code for any text generation
task by updating the data files (while keeping the same JSON format) and

https://www.thelmbook.com/nb/5.2
https://www.thelmbook.com/nb/5.2

165

adjusting Task and Solution in Table 5.1 with text relevant to the specific busi-
ness problem.
Let’s see how this code can be adapted for finetuning for a general instruction-
following task.

5.3.3. Finetuning to Follow Instructions
While similar to the emotion generation task, let’s quickly review the specifics
of finetuning a large language model to follow arbitrary instructions.
When finetuning a language model for instruction-following, the first step is
choosing a prompting format or prompting style. For emotion generation,
we used this format:
Predict emotion: {text}
Emotion: {emotion}

This format allows the LLM to see where the Task part ends (“\nEmotion:”)
and the Solution starts. When we finetune for a general-purpose instruction
following, we cannot use “\nEmotion:” as a separator. We need a more general
format. Since first open-weight models were introduced, many prompting for-
mats were used by various people and organizations. Below, there are only
two of them, named after famous LLMs using these formats:
Vicuna:
USER: {instruction}
ASSISTANT: {solution}

Alpaca:
Instruction:
{instruction}

Response:
{solution}

ChatML (chat markup language) is a prompting format used in many popular
finetuned LLMs. It provides a standardized way to encode chat messages, in-
cluding the role of the speaker and the content of the message.

166

The format uses two tags: <|im_start|> to indicate the start of a message
and <|im_end|> to mark its end. A basic ChatML message structure looks like
this:
<|im_start|>{role}
{message}
<|im_end|>

The message is either an instruction (question) or a solution (answer). The
role is usually one of the following: system, user, and assistant. For ex-
ample:
<|im_start|>system
You are a helpful assistant.
<|im_end|>
<|im_start|>user
What is the capital of France?
<|im_end|>
<|im_start|>assistant
The capital of France is Paris.
<|im_end|>

The user role is the person who asks questions or gives instructions. The as-
sistant role is the chat LM providing responses. The system role specifies
instructions or context for the model’s behavior. The system message, known
as the system prompt, can include private details about the user, like their
name, age, or other information useful for the LLM-based application.
The prompting format has little impact on the quality of a finetuned model
itself. However, when working with a model finetuned by someone else, you
need to know the format used during finetuning. Using the wrong format could
affect the quality of the model’s outputs.
After transforming the training data into the chosen prompting format, the
training process uses the same code as the emotion generation model. You can
find the complete code for instruction finetuning an LLM in the thelm-
book.com/nb/5.3 notebook.
The dataset I used has about 500 examples, generated by a state-of-the-art
LLM. While this may not be enough for high-quality instruction following,
there's no standard approach for building an ideal instruction finetuning da-
taset. Online datasets vary widely, from thousands to millions of examples of

https://www.thelmbook.com/nb/5.3
https://www.thelmbook.com/nb/5.3

167

varying quality. Still, some experiments suggest that a carefully selected set of
diverse examples, even as small as 1,000, can enable strong instruction-follow-
ing in a sufficiently large pretrained language model, as Meta’s LIMA model
demonstrated.
A consensus among the practitioners is that the quality, not quantity, of exam-
ples is crucial for achieving state-of-the-art results in instruction finetuning.
The training examples can be found in this file:
data_url = "https://www.thelmbook.com/data/instruct"

It has the following structure:
...
{"instruction": "Translate 'Good night' into Spanish.", "solu
tion": "Buenas noches"}
{"instruction": "Name primary colors.", "solution": "Red, blu
e, yellow"}
...

The instructions and examples used during finetuning fundamentally
shape a model's behavior. Models exposed to polite or cautious re-
sponses tend to mirror those traits. Through finetuning, models can
even be trained to consistently generate falsehoods. Users of third-
party finetuned models should watch for biases introduced in the pro-
cess. “Unbiased” models often simply have biases that serve certain
interests.

To understand the impact of instruction finetuning, let’s first see how a pre-
trained model handles instructions without any special training. Let’s first use
a pretrained GPT-2:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

device = torch.device("cuda" if torch.cuda.is_available() els
e "cpu")

tokenizer = AutoTokenizer.from_pretrained("openai-community/g
pt2")

168

tokenizer.pad_token = tokenizer.eos_token

model = AutoModelForCausalLM.from_pretrained("openai-communit
y/gpt2").to(device)

instruction = "Who is the President of the United States?"
inputs = tokenizer(instruction, return_tensors="pt").to(devic
e)

outputs = model.generate(
 input_ids=inputs["input_ids"],
 attention_mask=inputs["attention_mask"],
 max_new_tokens=32,
 pad_token_id=tokenizer.pad_token_id
)

generated_text = tokenizer.decode(outputs[0], skip_special_to
kens=True)
print(generated_text)

Output:
Who is the President of the United States?

The President of the United States is the President of the Un
ited States.

The President of the United States is the President of the Un
ited States.

Again, like google/gemma-2-2b, the model exhibits sentence repetition. Now,
let’s look at the output after finetuning on our instruction dataset. The infer-
ence code for an instruction-finetuned model must follow the prompting for-
mat used during finetuning. The build_prompt method applies the ChatML
prompting format to our instruction:
def build_prompt(instruction, solution = None):
 wrapped_solution = ""
 if solution:
 wrapped_solution = f"\n{solution}\n<|im_end|>"
 return f"""<|im_start|>system

169

You are a helpful assistant.
<|im_end|>
<|im_start|>user
{instruction}
<|im_end|>
<|im_start|>assistant""" + wrapped_solution

The same build_prompt function is used for both training and testing. During
training, it takes both instruction and solution as input. During testing, it
only receives instruction.
Now, let’s define the function that generates text:
def generate_text(model, tokenizer, prompt, max_new_tokens=10
0):
 input_ids = tokenizer(prompt, return_tensors="pt").to(mod
el.device)

 end_tokens = tokenizer.encode("<|im_end|>", add_special_t
okens=False) ➊

 stopping = [EndTokenStoppingCriteria(end_tokens, model.de
vice)] ➋

 output_ids = model.generate(
 input_ids=input_ids["input_ids"],
 attention_mask=input_ids["attention_mask"],
 max_new_tokens=max_new_tokens,
 pad_token_id=tokenizer.pad_token_id,
 stopping_criteria=stopping
)[0]

 generated_ids = output_ids[input_ids["input_ids"].shape[1
]:] ➌
 generated_text = tokenizer.decode(generated_ids).strip()
 return generated_text

Line ➊ encodes the <|im_end|> tag into token IDs which will be used to indi-
cate the end of generation. Line ➋ sets up a stopping criterion using the

170

EndTokenStoppingCriteria class (defined below), ensuring the generation
halts when end_tokens appear. Line ➌ slices the generated tokens to remove
the input prompt, leaving only the newly generated text.
The EndTokenStoppingCriteria class defines the signal to stop generating
tokens:
from transformers import StoppingCriteria

class EndTokenStoppingCriteria(StoppingCriteria):
 def __init__(self, end_tokens, device):
 self.end_tokens = torch.tensor(end_tokens).to(device)
➊

 def __call__(self, input_ids, scores):
 do_stop = []
 for sequence in input_ids: ➋
 if len(sequence) >= len(self.end_tokens):
 last_tokens = sequence[-len(self.end_tokens):
] ➌
 do_stop.append(torch.all(last_tokens == self.
end_tokens)) ➍
 else:
 do_stop.append(False)
 return torch.tensor(do_stop, device=input_ids.device)

In the constructor:

• Line ➊ converts the end_tokens list into a PyTorch tensor and moves
it to the specified device. This ensures the tensor is on the same device
as the model.

In the __call__ method, line ➋ loops through the generated sequences in the
batch. For each:

• Line ➌ takes the last len(end_tokens) tokens and stores them in
last_tokens.

• Line ➍ checks if last_tokens match end_tokens. If they do, True is
added to the do_stop list, which tracks whether to stop generation for
each sequence in the batch.

171

This is how we call the inference for a new instruction:
input_text = "Who is the President of the United States?"
prompt = build_prompt(input_text)
generated_text = generate_text(model, tokenizer, prompt)
print(generated_text.replace("<|im_end|>", "").strip())

Output:
George W. Bush

Since GPT-2 is a relatively small language model and wasn’t finetuned on re-
cent facts, this confusion about presidents isn’t surprising. What matters here
is that the finetuned model now interprets the instruction as a question and
responds accordingly.

5.4. Sampling From Language Models
To generate text with a language model, we convert the output logits into to-
kens. Greedy decoding, which selects the highest probability token at each
step, is effective for tasks like math or factual questions that demand precision.
However, many tasks benefit from randomness. Brainstorming story ideas, for
instance, improves with diverse outputs. Debugging code can gain from alter-
native suggestions when the first attempt fails. Even in summarization or trans-
lation, sampling helps explore equally valid phrasings when the model is un-
certain.
To address this, we sample from the probability distribution instead of always
choosing the most likely token. Different techniques allow us to control how
much randomness to introduce.
Let’s explore some of these techniques.

5.4.1. Basic Sampling with Temperature
The simplest approach converts logits to probabilities using the softmax func-
tion with a temperature parameter 𝑇:

Pr(𝑗) =
expC𝑜(2)/𝑇D

∑ expZ
:%" (𝑜(:)/𝑇)

where 𝑜(2) represents the logit for token 𝑗, Pr(𝑗) gives its resulting probability,
and 𝑉 denotes the vocabulary size. The temperature 𝑇 determines the sharp-
ness of the probability distribution:

172

• At 𝑇 = 1, we obtain standard softmax probabilities.
• As 𝑇 → 0, the distribution focuses on the highest probability tokens.
• As 𝑇 → ∞, the distribution approaches uniformity.

For example, if we have logits [4,2,0]1 for tokens “cat”, “dog”, and “bird” (as-
suming only three words in the vocabulary), here’s how different temperatures
affect the probabilities:

𝑇 Probabilities Comment
0.5 [0.98,0.02,0.00]1 More focused on “cat”
1.0 [0.87,0.12,0.02]1 Standard softmax
2.0 [0.67,0.24,0.09]1 More evenly distributed

Temperature controls the balance between creativity and determinism. Low
values (0.1–0.3) produce focused, precise outputs, suitable for tasks like fac-
tual responses, coding, or math. Moderate values (around 0.7–0.8) offer a mix
of creativity and coherence, ideal for conversation or content writing. High
values (1.5–2.0) add randomness, useful for brainstorming or story genera-
tion, though coherence may drop. Extreme values (near 0 or above 2) are
rarely used.
These ranges are guidelines; the optimal temperature depends on the model
and task and should be determined through experimentation.
Given the vocabulary and probabilities, this Python function returns the sam-
pled token:
import numpy as np

def sample_token(probabilities, vocabulary):
 if len(probabilities) != len(vocabulary): ➊
 raise ValueError("Mismatch between the two inputs' sizes
.")

 if not np.isclose(sum(probabilities), 1.0, rtol=1e-5): ➋
 raise ValueError("Probabilities must sum to 1.")

 return np.random.choice(vocabulary, p=probabilities) ➌

173

The function performs two checks before sampling. Line ➊ ensures there is one
probability for each token in the vocabulary. Line ➋ confirms the probabilities
sum to 1, allowing for a small tolerance due to floating-point precision. Once
these validations pass, line ➌ handles the sampling. It selects a token from the
vocabulary based on the probabilities, so a token with a 0.7 probability is cho-
sen roughly 70% of the time when the function is run repeatedly.

5.4.2. Top-𝒌 Sampling
While temperature helps control randomness, it allows sampling from the en-
tire vocabulary, including very unlikely tokens that the model assigns ex-
tremely low probabilities to. Top-k sampling addresses this by limiting the
sampling pool to the 𝑘 most likely tokens as follows:

1) Sort tokens by probability,
2) Keep only the top 𝑘 tokens,
3) Renormalize their probabilities to sum to 1,
4) Sample from this reduced distribution.

We can update sample_token to support both temperature and top-𝑘 sam-
pling:
def sample_token(logits, vocabulary, temperature=0.7,
top_k=50):
 if len(logits) != len(vocabulary):
 raise ValueError("Mismatch between logits and vocabulary
sizes.")
 if temperature <= 0:
 raise ValueError("Temperature must be positive.")
 if top_k < 1:
 raise ValueError("top_k must be at least 1.")
 if top_k > len(logits):
 raise ValueError("top_k must be at most len(logits).")

 logits = logits / temperature ➊
 cutoff = np.sort(logits)[-top_k] ➋
 logits[logits < cutoff] = float("-inf") ➌

 probabilities = np.exp(logits - np.max(logits)) ➍

174

 probabilities /= probabilities.sum() ➎

 return np.random.choice(vocabulary, p=probabilities)
The function begins by validating inputs: ensuring logits match the vocabulary
size, temperature is positive, top-k is at least 1, and top-𝑘 does not exceed the
vocabulary size. Line ➊ scales the logits by the temperature. Line ➋ determines
the top-𝑘 cutoff by sorting the logits and selecting the 𝑘th largest value. Line ➌
discards less likely tokens by setting logits below the cutoff to negative infinity.
Line ➍ converts the remaining logits into probabilities using a numerically sta-
ble softmax. Line ➎ ensures the probabilities sum to 1.

Subtracting np.max(logits) before exponentiating avoids numerical
overflow. Large logits can produce excessively large exponentials.
Shifting the largest logit to 0 keeps values stable while preserving their
relative proportions.

The value of 𝑘 depends on the task. Low values (5–10) focus on the most likely
tokens, improving accuracy and consistency, which suits factual responses and
structured tasks. Mid-range values (20–50) balance variation and coherence,
making them good defaults for general writing and dialogue. High values
(100–500) allow more diversity, useful for creative tasks. These ranges are
practical guidelines, but the best 𝑘 depends on the model, vocabulary size, and
application. Very low values (below 5) can be too limiting, while extremely
high values (over 500) rarely improve quality. Experimentation is necessary to
find the best setting.

5.4.3. Nucleus (Top-p) Sampling
Nucleus sampling, or top-p sampling, takes a different approach to token
selection. Instead of using a fixed number of tokens, it selects the smallest
group of tokens whose cumulative probability exceeds a threshold 𝑝.
Here’s how it works for 𝑝 = 0.9:

1) Rank tokens by probability,
2) Add tokens to the subset until their cumulative probability surpasses

0.9,
3) Renormalize the probabilities of this subset,
4) Sample from the adjusted distribution.

175

This method adapts to the context. It might select just a few tokens for highly
focused distributions or many tokens when the model is less certain.
In practice, these three methods are often used together in the following se-
quence:

1. Temperature scaling (e.g., 𝑇 = 0.7) adjusts the randomness by sharp-
ening or softening the probabilities of tokens.

2. Top-k filtering (e.g., 𝑘 = 50) limits the sampling pool to the 𝑘 most
probable tokens, ensuring computational efficiency and preventing ex-
tremely low-probability tokens from being considered.

3. Top-p filtering (e.g., 𝑝 = 0.9) further refines the sampling pool by se-
lecting the smallest set of tokens whose cumulative probability meets
the threshold 𝑝.

5.4.4. Penalties
Modern language models use penalty parameters alongside temperature and
filtering methods to manage text diversity and quality. These penalties help
avoid issues such as repeated words, overused tokens, and generation loops.
The frequency penalty adjusts token probabilities based on how often they’ve
appeared in the generated text so far. When a token appears multiple times,
its probability is reduced proportionally to its appearance count. The penalty
is applied by subtracting a scaled version of the token’s count from its logits
before the softmax:

𝑜(2) ← 𝑜(2) − 𝛼 ⋅ count(𝑗),
where 𝛼 is the frequency penalty parameter. Higher values (0.8-1.0) decrease
the model’s likelihood to repeat the same line verbatim or getting stuck in a
loop.
The presence penalty modifies token probabilities based on whether they ap-
pear anywhere in the generated text, regardless of count:

𝑜(2) ← �𝑜
(2) − 𝛾, if token 𝑗 is in generated text,
𝑜(2), otherwise

Here, 𝛾 is the presence penalty parameter. Higher values of 𝛾 (0.7-1.0) in-
crease the model’s likelihood to talk about new topics.

176

The optimal values depend on the specific task. For creative writing, higher
penalties encourage novelty. For technical documentation, lower penalties
maintain precision and consistency.
The complete implementation of sample_token that combines temperature,
top-𝑘, top-𝑝, and the two penalties can be found in the thelmbook.com/nb/5.4
notebook.

5.5. Low-Rank Adaptation (LoRA)
Finetuning LLMs through adjustment of their billions of parameters requires
extensive computational resources and memory, creating barriers for those
with limited infrastructure.
LoRA (low-rank adaptation) offers a solution by updating only a small por-
tion of parameters. It adds to the model small matrices to capture adjustments
instead of altering the full model. This approach achieves similar performance
with a fraction of the training effort.

5.5.1. The Core Idea
In the Transformer, most parameters are found in the weight matrices of self-
attention and position-wise MLP layers. Rather than modifying the large
weight matrices directly, LoRA introduces two smaller matrices for each. Dur-
ing finetuning, these smaller matrices are trained to capture the required ad-
justments, while the original weight matrices stay “frozen.”
Consider a 𝑑 × 𝑘 weight matrix 𝐖? in a pretrained model. Instead of updating
𝐖? directly during finetuning, we modify the process like this:

1. Freeze the original weights: The matrix 𝐖? remains unchanged dur-
ing finetuning.

2. Add two small matrices: Introduce an 𝑑 × 𝑟 matrix 𝐀 and an 𝑟 × 𝑘
matrix 𝐁, where 𝑟—referred to as the rank—is an integer much smaller
than both 𝑑 and 𝑘 (e.g., 𝑟 = 8).

3. Adjust the weights: Compute the adapted weight matrix 𝐖 during
finetuning as:

𝐖 = 𝐖? +
𝛼
𝑟
𝛥𝐖 = 𝐖? +

𝛼
𝑟
𝐀𝐁

 Here, 𝛥𝐖 = 𝐀𝐁 represents the adjustment to 𝐖?, scaled by the scaling
factor f

M
.

https://www.thelmbook.com/nb/5.4

177

The matrices 𝐀 and 𝐁, together, are called a LoRA adapter. Their product,
𝛥𝐖, acts as an update matrix that adjusts the original weights 𝐖? to enhance
performance on a new task. Since 𝐀 and 𝐁 are much smaller than 𝐖?, this
method significantly reduces the number of trainable parameters.
For example, if 𝐖? has dimensions 1024 × 1024, it would contain over a mil-
lion parameters to finetune directly (1,048,576 parameters). With LoRA, we
introduce 𝐀 with dimensions 1024 × 8 (8,192 parameters) and 𝐁 with dimen-
sions 8 × 1024 (8,192 parameters). This setup requires only 8,192 + 8,192 =
16,384 parameters to be trained.
The adapted weight matrix 𝐖 is used in the layers of the finetuned trans-
former, replacing the original matrix 𝐖? to alter the token embeddings as they
pass through the transformer blocks. The creation of 𝐖 is illustrated below:

The scaling factor f

M
 controls the size of the weight updates introduced by LoRA

during finetuning. Both 𝑟 and 𝛼 are hyperparameters, with 𝛼 typically set as a
multiple of 𝑟. For example, if 𝑟 = 8, 𝛼 might be 16, resulting in a scaling factor
of 2. The optimal values for 𝑟 and 𝛼 are found experimentally by assessing the
finetuned LLM’s performance on the test set.

178

LoRA is usually applied to the weight matrices in the self-attention layers—
specifically the query, key, and value weight matrices 𝐖X, 𝐖Y, 𝐖Z, and the
projection matrix 𝐖d. It can also be applied to the weight matrices 𝐖" and
𝐖! in the position-wise MLP layers.
Finetuning LLMs with LoRA is faster than a full model finetune and uses less
memory for gradients, enabling the finetuning of very large models on limited
hardware.

5.5.2. Parameter-Efficient Finetuning (PEFT)
The Hugging Face Parameter-Efficient Finetuning (PEFT) library provides a
simple way to implement LoRA in transformer models. Let’s install it first:
$ pip3 install peft

We can modify our previous code by incorporating the PEFT library to apply
LoRA:
from peft import get_peft_model, LoraConfig, TaskType

peft_config = LoraConfig(
 task_type=TaskType.CAUSAL_LM, # Specify the task type
 inference_mode=False, # Set to False for trainin
g
 r=8, # Set the rank r
 lora_alpha=16 # LoRA alpha
)

model = get_peft_model(model, peft_config)

The LoraConfig object defines the parameters for LoRA finetuning:
• task_type specifies the task, which in this case is causal language

modeling,
• r is the LoRA adapter rank,
• lora_alpha is the scaling factor 𝛼.

The function get_peft_model wraps the original model and integrates LoRA
adapters. How does it decide which matrices to augment? PEFT is designed to
detect standard LLM architectures. When finetuning models such as Llama,
Gemma, Mistral, or Qwen, it automatically applies LoRA to the appropriate
layers. For custom transformers—like the decoder from Chapter 4—you can

179

add the target_modules parameter to specify which matrices should use
LoRA:
peft_config = LoraConfig(
 #same as above
 target_modules=["W_Q","W_K","W_V","W_O"]
)

Next, we set up the optimizer as usual:
optimizer = torch.optim.AdamW(model.parameters(), lr=learning
_rate)

In PyTorch, the requires_grad attribute controls whether a tensor tracks op-
erations for automatic differentiation. When requires_grad=True, PyTorch
keeps track of all operations on the tensor, enabling gradient computation dur-
ing the backward pass. To freeze a model parameter (preventing updates dur-
ing training), set its requires_grad to False:
import torch.nn as nn

model = nn.Linear(2, 1) # Linear layer: y = WX + b

print(model.weight.requires_grad)
print(model.bias.requires_grad)

model.bias.requires_grad = False
print(model.bias.requires_grad)

Output:
True
True
False

The PEFT library ensures that only the LoRA adapter parameters have re-
quires_grad=True, keeping all other model parameters frozen.
After wrapping the model with get_peft_model, the training loop stays the
same. For instance, finetuning GPT-2 on an emotion generation task using
LoRA with r=16 and lora_alpha=32 achieves a test accuracy of 0.9420. This
is marginally better than the 0.9415 from full finetuning. Generally, LoRA

180

tends to perform slightly worse than full finetuning. However, the outcome
depends on the choice of hyperparameters, dataset size, base model, and task.
The full code for GPT-2 finetuning with LoRA is available in the thelm-
book.com/nb/5.5 notebook. You can customize it for your own tasks by mod-
ifying the dataset and LoRA settings.

5.6. LLM as a Classifier
When finetuning GPT-2 for emotion prediction, we didn’t turn it into a classi-
fier. Instead, it generated the class name as text. While this method works, it’s
not always optimal for classification tasks. A different approach is to train the
model to produce logits for each emotion class.
We can attach a classification head to a pretrained LLM. This is a fully con-
nected layer with a softmax activation mapping logits to class probabilities.
In transformers, there is a class designed to make this easier. Instead of load-
ing the model with AutoModelForCausalLM, we use AutoModelForSe-
quenceClassification:
from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained(
 model_path, num_labels=6
)
For pretrained autoregressive language models, the class maps the embedding
of the final (right-most) non-padding token from the last decoder block to a
vector with dimensionality matching the number of classes (6 in this case).
The structure of this modification is as follows:

https://www.thelmbook.com/nb/5.5
https://www.thelmbook.com/nb/5.5

181

As you can see, once the final decoder block processes the input (the second
block in our example), the output embedding 𝐳T,! of the last token is passed
through the classification head’s weight matrix, 𝐖B. This projection converts
the embedding into logits, one per class.
The parameter tensor 𝐖B is initialized with random values and trained on the
labeled emotions dataset. Training relies on cross-entropy to measure the loss
between the predicted probability distribution and the one-hot encoded true
class label. This error is backpropagated, updating the weights in both the clas-
sification head and the rest of the model. This can be combined with LoRA.
After finetuning with num_epochs = 8, batch_size = 16, and learn-
ing_rate = 0.00005, the model reaches a test accuracy of 0.9460. This is
slightly better than the 0.9415 accuracy from finetuning the unmodified model
to generate class labels as text. The improvement might be more noticeable
with a different base model or dataset.
The code for finetuning GPT-2 as an emotion classifier is available on the wiki
in the thelmbook.com/nb/5.6 notebook. It can be easily adapted for any text
classification task by replacing the data in the file while keeping the same JSON
format.

https://www.thelmbook.com/nb/5.6

182

5.7. Prompt Engineering
Chat language models, or chat LMs, are language models finetuned on dia-
logue examples. This finetuning resembles instruction finetuning but uses
multi-turn conversation inputs, such as those in the ChatML format, with the
targets being the assistant’s responses.
Despite its simplicity, the conversational interface allows solving various prac-
tical problems. This section explores best practices for using chat LMs to ad-
dress such problems known as prompt engineering techniques.

5.7.1. Features of a Good Prompt
To get the best results from a chat LM, you need a well-crafted prompt. The
key components of a strong prompt include:

1. Situation: Describe why you’re asking for help.
2. Role: Define the expert persona the model should emulate.
3. Task: Give clear, specific instructions about what the model must do.
4. Output format: Explain how you expect the response to be structured,

such as bullet points, JSON, or code.
5. Constraints: Mention any limitations, preferences, or requirements.
6. Quality criteria: Define what makes a response satisfactory.
7. Examples: Provide few-shot examples of inputs with expected outputs.
8. Call to action: Restate the task simply and ask the model to perform it.

Putting input-output examples in the prompt is called few-shot prompting or
in-context learning. These examples include both positive cases showing de-
sired outputs and negative ones demonstrating incorrect responses. Adding
explanations that connect incorrect responses to specific constraints helps
model understand why they are wrong.
Here’s an example of a prompt that includes some of the above elements:
Situation: I'm creating a system to analyze insurance claims.
It processes adjuster reports to extract key details for disp
lay in a SaaS platform.

Your role: Act as a seasoned insurance claims analyst familia
r with industry-standard classifications.

Task: Identify the type of incident, the primary cause, and t

183

he significant damages described in the report.

Output format: Return a JSON object with this structure:
{
 "type": "string", // Incident type
 "cause": "string", // Primary cause
 "damage": ["string"] // Major damages
}

<examples>
 <example>
 <input>
 Observed two-vehicle accident at an intersection. Ins
ured's car was hit after the other driver ran a red light. Wi
tnesses confirm. The vehicle has severe front-end damage, air
bags deployed, and was towed from the scene.
 </input>
 <output>
 {
 "type": "collision",
 "cause": "failure to stop at signal",
 "damage": ["front-end damage", "airbag deployment
"]
 }
 </output>
 </example>
 <example>
 ...
 </example>
</examples>

Call to action: Extract the details from this report:

"Arrived at the scene of a fire at a residential building. Ex
tensive damage to the kitchen and smoke damage throughout. Fi
re caused by unattended cooking. Neighbors evacuated; no inju
ries reported."

184

Section names such as “Situation,” “Your role,” or “Task” are optional.
When working on a prompt, keep in mind that the attention mechanism in
LLMs has limitations. It might concentrate on certain parts of a prompt while
overlooking others. A good prompt strikes a balance between detail and brev-
ity. Excessive detail can overwhelm the model, while insufficient detail risks
leaving gaps that the model may fill with incorrect assumptions.

I used XML tags for few-shot examples because they clearly define ex-
ample boundaries and are familiar to LLMs from pretraining on struc-
tured data. Furthermore, chat LM models are often finetuned using
conversational examples with XML structures. Using XML isn’t manda-
tory though, but could be helpful.

5.7.2. Followup Actions
The first solution from a model is often imperfect. User analysis and follow-up
are key to getting the most out of a chat LM. Common follow-up actions in-
clude:

1. Asking the LLM whether its solution contains errors or can be simpli-
fied without breaking the constraints.

2. Copying the solution and starting a new conversation from scratch with
the same LLM. In this new conversation, the user can ask the model to
validate the solution as if it were “provided by an expert,” without re-
vealing it was generated by the same model.

3. Using a different LLM to review or enhance the solution.
4. For code outputs, running the code in the execution environment, ana-

lyzing the results, and giving feedback to the model. If code fails, the
full error message and stack traceback can be shared with the model.

When working with the same chat LM for follow-ups, especially in tasks like
coding or handling complex structured outputs, it’s generally a good idea to
start fresh after three-five exchanges. This recommendation comes from two
key observations:

1. Chat LMs are typically finetuned using examples of short conversations.
Creating long, high-quality conversations for finetuning is both difficult
and costly, so the training data often lacks examples of long

185

interactions focused on problem solving. As a result, the model per-
forms better with shorter exchanges.

2. Long contexts can cause errors to accumulate. In the self-attention
mechanism, the softmax is applied over many positions to compute
weights for combining value vectors. As the context length increases,
inaccuracies build up, and the model’s “focus” may shift to irrelevant
details or earlier mistakes.

When starting fresh, it’s important to update the initial prompt with key details
from earlier follow-ups. This helps the model avoid repeating previous mis-
takes. By consolidating the relevant information into a clear, concise starting
point, you ensure the model has the context it needs without relying on the
long and noisy history of the prior conversation.

5.7.3. Code Generation
One valuable use of chat LMs is generating code. The user describes the desired
code, and the model tries to generate it. As we know, modern LLMs are pre-
trained on vast collections of open-source code across many programming lan-
guages. This pretraining allows them to learn syntax and many standard or
widely used libraries. Seeing the same algorithms implemented in different
languages also enables LLMs to form shared internal representations (like syn-
onyms in word2vec), making them generally indifferent to the programming
language when reading or creating code.
Moreover, much of this code includes comments and annotations, which help
the model understand the code’s purpose—what it is designed to achieve.
Sources like StackOverflow and similar forums add further value by providing
examples of problems paired with their solutions. The exposure to such data
gave LLMs an ability to respond with relevant code. Supervised finetuning im-
proved their skill in interpreting user requests and turning them into code.
As a result, LLMs can generate code in nearly any language. For high-quality
results, users must specify in detail what code should do. For example, provid-
ing a detailed docstring like this:
Write Python code that implements a method with the following
specifications:

def find_target_sum(numbers: list[int], target: int) -> tuple

186

:
 """Find pairs of indices in a list whose values sum to a
target.

 Args:
 numbers: List of integers to search through. Can be e
mpty.
 target: Integer sum to find.

 Returns:
 Tuple of two distinct indices whose values sum to tar
get,
 or None if no solution exists.

 Examples:
 >>> find_target_sum([2, 7, 11, 15], 9)
 (0, 1)
 >>> find_target_sum([3, 3], 6)
 (0, 1)
 >>> find_target_sum([1], 5)
 None
 >>> find_target_sum([], 0)
 None

 Requirements:
 - Time complexity: O(n)
 - Space complexity: O(n)
 - Each index can only be used once
 - If multiple solutions exist, return any valid solut
ion
 - All numbers and target can be any valid integer
 - Return None if no solution exists
 """

Providing a highly detailed docstring can sometimes feel as time-consuming as
coding the function itself. A less detailed description might seem more practi-
cal, but this increases the likelihood of the generated code not fully meeting
user needs. In such cases, users can review the output and refine their instruc-
tions with additional requests or constraints.

187

By the way, the book’s official website, thelmbook.com, was created
entirely through collaboration with an LLM. While it wasn’t generated
perfectly on the first try, through iterative feedback, multiple conver-
sation restarts, and switching between different chat LLMs when
needed, I refined every element you see—from the graphics to the an-
imations—until they met my vision.

Language models can generate functions, classes, or even entire applications.
However, the chance of success decreases as the level of abstraction increases.
If the problem resembles model’s training data, the model performs well with
minimal input. However, for novel or unique business or engineering prob-
lems, detailed instructions are crucial for good results.

If you decide to use a brief prompt to save time, ask the model to pose
clarifying questions. You can also request it to describe the code it
plans to generate first. This allows you to adjust or add details to the
instructions before code is created.

5.7.4. Documentation Synchronization
A common challenge in software development is keeping documentation syn-
chronized with code changes. As codebases evolve, documentation often be-
comes outdated, leading to confusion and reduced maintainability. LLMs offer
an automated solution to this problem through integration with version con-
trol systems.
The process involves creating a documentation synchronization pipeline that
leverages the LLM’s ability to understand both code and natural language.
When developers stage changes for commit, the pipeline:

1. Uses an LLM to analyze the staged differences and identify affected
documentation files in the project’s documentation directory. The
model examines code changes and determines which documentation
files might need updates.

2. Both the existing documentation content and staged code changes are
then passed to another LLM call. This second step generates updated
documentation that reflects the code modifications while maintaining
the existing documentation’s style and structure.

https://www.thelmbook.com/

188

3. Places the updated documentation in the staging area alongside code
changes. This allows developers to review both code and documenta-
tion updates together before committing, ensuring accuracy and main-
taining a single source of truth.

This approach treats documentation as a first-class citizen in the development
process, ensuring it evolves alongside the code.

While LLMs can help maintain documentation alignment, they should
not operate autonomously. Human review remains crucial to verify the
accuracy of generated documentation updates and ensure they align
with the team’s communication standards.

This pipeline is especially useful for keeping API documentation, architectural
descriptions, and implementation guides up to date. However, like other LLM-
based systems, it must include safeguards against hallucinations. We discuss
this next.

5.8. Hallucinations
A major challenge with LLMs is their tendency to produce content that seems
plausible but is factually incorrect. These inaccuracies, called hallucinations,
create problems for using LLMs in production systems where reliability and
accuracy are required.

5.8.1. Reasons for Hallucinations
Hallucinations in LLMs are by design. As we know, these models are optimized
to predict the next token that fits the context, not to ensure factual accuracy.
During pretraining, they learn to generate coherent text by following language
patterns. However, no training dataset can cover every fact. When the model
faces knowledge gaps, it tries to fill them with plausible content based on pat-
terns it recognizes. This often results in fabricated details. Here’s an example
of hallucinated information from a widely used chat LM:

189

As you can imagine, “Blockchain Quantum Neural Network (BQNN)”
is not a real concept. The LLM’s two-page explanation, including de-
tailed descriptions of how it works, is entirely fabricated.

Low quality of training data also contributes to hallucinations. During pretrain-
ing on large volumes of internet text, models are exposed to both accurate and
inaccurate information. They learn these inaccuracies but lack the ability to
differentiate between truth and falsehood.
Finally, LLMs generate text one token at a time. This approach means that
errors in earlier tokens can cascade, leading to increasingly incoherent outputs.

5.8.2. Preventing Hallucinations
Hallucinations cannot be completely avoided, but they can be minimized. A
practical way to reduce hallucinations is by grounding the model’s responses
in verified information. This is done by including relevant factual context di-
rectly in the prompt. For instance, rather than posing an open-ended question,
we can provide specific documents or data for the model to reference and in-
struct the model to only answer based on the provided documents.
This method, called retrieval-augmented generation (RAG), anchors the
model’s output to verifiable facts. The model still generates text but does so—
most of the time—within the limits of the provided context, which significantly
reduces hallucinations.
Here's how RAG works: a user submits a query, and the system searches a
knowledge base—like a document repository or database—for relevant infor-
mation. It uses keyword matching and embedding-based search, where the
query is converted into an embedding vector. Documents with similar

190

embeddings are retrieved using cosine similarity. To handle long documents,
they are split into smaller chunks before embedding.
The retrieved content is added to the prompt alongside the user’s question.
This approach merges the strengths of traditional information retrieval with
the language generation capabilities of LLMs. For example, if a user asks about
a company’s latest quarterly results, the RAG system would first retrieve the
most recent financial reports and use them to produce the response, avoiding
reliance on potentially outdated training data.
Another way to reduce hallucinations is by finetuning the model on reliable,
domain-specific knowledge using unlabeled documents. For instance, a ques-
tion-answering system for law firms could be finetuned on legal documents,
case law, and statutes to improve accuracy within the legal domain. This ap-
proach is often referred to as domain-specific pretraining.
For critical applications, implementing a multi-step verification workflow can
provide additional protection against hallucinations. This might involve using
multiple models with different architectures or training data to cross-validate
responses and having domain experts review generated content before it’s used
in production.
However, it’s important to recognize that hallucinations cannot be completely
eliminated with current LLM technology. While we can implement various
safeguards and detection mechanisms, the most robust approach is to design
systems that account for this limitation.
For instance, in a customer service application, an LLM could draft responses,
but human review would be necessary before sending messages containing
specific product details or policy information. Similarly, in a code generation
system, the model might generate code, but automated tests and human re-
view should always occur before deployment.

The potential for hallucinations was notably demonstrated when Air
Canada’s customer service chatbot provided incorrect information
about bereavement travel rates to a passenger. The chatbot falsely
claimed that customers could book full-price tickets and later apply for
reduced fares, contradicting the airline’s actual policy. When the pas-
senger tried to claim the fare reduction, Air Canada’s denial led to a
small claims court case, resulting in an $812 CAD (near $565 USD)
compensation order. This case highlights the tangible business

191

consequences of AI inaccuracies, including financial losses, customer
frustration, and reputational damage.

Success with LLMs lies in recognizing that hallucinations are an inherent limi-
tation of the technology. However, this issue can be managed through thought-
ful system design, safeguards, and a clear understanding of when and where
these models should be applied.

5.9. LLMs, Copyright, and Ethics
The widespread deployment of LLMs has introduced novel challenges in cop-
yright law, particularly regarding training data usage and the legal status of
AI-generated content. These issues affect both the companies developing LLMs
and the businesses building applications with them.

5.9.1. Training Data
The first major copyright consideration involves training data. LLMs are
trained on large text datasets that include copyrighted material such as books,
articles, and software code. While some claim that this might qualify as fair
use,9 this has not been tested in court. The issue is further complicated by the
models’ capacity to output protected content. This legal uncertainty has al-
ready sparked high-profile lawsuits from authors and publishers against AI
companies, posing risks for businesses using LLM applications.

Meta’s decision to withhold its multimodal Llama model from the Eu-
ropean Union in July 2024 exemplifies the growing tension between
AI development and regulatory compliance. Citing concerns over the
region’s “unpredictable” regulatory environment, particularly regard-
ing the use of copyrighted and personal data for training, Meta joined
other tech giants like Apple in limiting AI deployments in European

9 Fair use is a U.S. legal doctrine. Other regions handle copyright exceptions differently.
The EU relies on “fair dealing” and specific statutory exceptions, Japan has distinct copy-
right limitations, and other countries apply unique rules for permitted uses. This variation
complicates global LLM deployment, as training data allowed under U.S. fair use might
violate copyright laws elsewhere.

192

markets. This restriction highlights the challenges companies face in
balancing innovation with regional regulations.

When selecting models for commercial use, companies should review the train-
ing documentation and license terms. Models trained primarily on public do-
main or properly licensed materials involve lower legal risks. However, the
massive datasets required for effective LLMs make it nearly impossible to avoid
copyrighted material entirely. Businesses need to understand these risks and
factor them into their development strategies.
Beyond legal issues, training LLMs on copyrighted material raises ethical con-
cerns. Even when legally permissible, using copyrighted works without consent
may appear exploitative, especially if the model outputs compete with the cre-
ators’ work. Transparency about training data sources and proactive engage-
ment with creators can help address these concerns. Ethical practices should
also involve compensating creators whose contributions significantly improve
the model, fostering a more equitable system.

5.9.2. Generated Content
The copyright status of content generated by LLMs presents challenges that
traditional copyright law cannot easily resolve. Copyright law is built around
the assumption of human authorship, leaving it unclear whether AI-generated
works qualify for protection or who the rightful owner might be. Another issue
is that LLMs can sometimes reproduce portions of their training data verbatim,
including copyrighted material. This ability to generate exact reproductions—
beyond learning abstract patterns—raises serious legal questions.
Some businesses address these challenges by using LLMs as assistive tools ra-
ther than independent creators. For example, a marketing team might use an
LLM to draft text, leaving human writers to edit and finalize it. This approach
maintains clearer copyright ownership while leveraging AI's efficiency. Simi-
larly, software developers use LLMs to generate code snippets, which they re-
view and integrate into larger systems. By 2024, this practice had grown sig-
nificantly—at Google, over 25% of all code was generated by LLMs and then
refined by developers.
To minimize copyright risks in LLM applications, companies often implement
technical safeguards.

193

One method involves comparing model outputs against a database of copy-
righted materials to detect verbatim copies. For example, a company may
maintain a repository of copyrighted texts and employ similarity detection
methods—such as cosine similarity or edit distance—to flag outputs that sur-
pass a defined similarity threshold.
However, these methods are not foolproof. Paraphrased content can make the
output formally distinct while remaining substantively similar, which auto-
mated systems may fail to detect. To handle this, businesses often supplement
these tools with human review to ensure compliance.

5.9.3. Open-Weight Models
The copyright status of model weights poses legal questions separate from
those concerning training data or generated outputs. Model weights encode
patterns learned during training and could be viewed as derivative works of
the training data. This leads to the question: does sharing weights amount to
indirectly redistributing the original copyrighted materials, even in their trans-
formed form? Some argue that weights are an abstract transformation and
constitute new intellectual property. Others contend that if weights can repro-
duce fragments of the training data, they inherently include copyrighted con-
tent and should be treated similarly under copyright law.
This debate carries serious implications for open-source AI development. If
model weights are classified as derivative works, sharing and distributing mod-
els trained on copyrighted data could become legally restricted, even if the
training process qualifies as fair use. As a result, some organizations have
shifted to training models solely on public domain or explicitly licensed con-
tent. However, this strategy often limits the effectiveness of the models, as the
smaller, restricted datasets typically lead to reduced performance.
As laws around LLMs evolve, businesses must stay flexible. They may need to
adjust workflows as courts define legal boundaries or revise policies as AI-spe-
cific legislation appears. Consulting intellectual property lawyers with AI ex-
pertise can help manage these risks.

5.9.4. Broader Ethical Considerations
Beyond copyright concerns, LLMs raise significant ethical challenges that affect
society at large. One fundamental issue is explainability. While LLMs can

194

articulate reasoning for their outputs and provide detailed explanations when
asked, this verbal explanation capability differs from true algorithmic trans-
parency. The model’s explanations are post-hoc rationalizations—generated
text that sounds plausible but may not reflect the actual computational process
that produced the original output. This creates a unique challenge where the
model appears transparent while its underlying decision-making process re-
mains opaque. This limitation becomes particularly significant in high-stakes
applications like healthcare or legal services.
The question of bias presents another challenge. LLMs trained on internet data
inevitably absorb societal biases present in their training data. These models
can perpetuate or amplify discriminatory patterns in areas such as gender,
race, age, and cultural background. For instance, they might generate different
responses to equivalent prompts that only differ in demographic details, or
produce content that reinforces stereotypes.
Organizations deploying LLMs must implement structured evaluation proto-
cols, including automated bias detection across demographic groups and au-
dits using standardized test sets. This should include deploying concrete safe-
guards like toxic language filters, mandatory human review for high-stakes
decisions, and clear user notifications about AI involvement.

195

Chapter 6. Further Reading
You’ve learned the core concepts of language modeling throughout this book.
There are many advanced topics to explore on your own, and this final chapter
provides pointers for further study. I’ve chosen topics that represent important
current developments in the field, from architectural innovations to security
considerations.

6.1. Mixture of Experts
Mixture of experts (MoE) is an architectural pattern designed to increase
model capacity without a proportional rise in cost. Instead of a single position-
wise MLP processing all tokens in a decoder block, MoE uses multiple special-
ized sub-networks called experts. A router network (or gate network) de-
cides which tokens are processed by which experts.
The core idea is activating only a subset of experts for each token. This sparse
activation reduces active computations while enabling larger overall parame-
ter counts. Sparse MoE layers replace traditional MLP layers, using techniques
like top-k routing and load balancing to efficiently assign tokens to experts.
This concept gained attention with the Switch Transformer and has been ap-
plied in models such as Mixtral 8x7B, which has 47B total parameters but only
activates about 13B during inference.

6.2. Model Merging
Model merging combines multiple pretrained models to make use of their
complementary strengths. Techniques include model soups, SLERP (spherical
interpolation that maintains parameter norms), and task vector algorithms
such as TIES-Merging and DARE.
These methods generally rely on some architectural similarity or compatibility
between models. The passthrough method stands out by concatenating layers
from different LLMs. This approach can create models with unconventional
parameter counts (e.g., 13B by merging two 7B models). Such models are of-
ten called frankenmerges.
mergekit is a popular open-source tool for merging and combining language
models that implements many of these techniques. It provides a flexible con-
figuration system for experimenting with different merging strategies and ar-
chitectures.

196

6.3. Model Compression
Model compression addresses deploying LLMs in resource-limited environ-
ments by reducing size and computation needs without greatly sacrificing per-
formance. Neural networks are often over-parameterized, containing redun-
dant units that can be optimized.
Key methods include post-training quantization, which lowers parameter
precision (e.g., 32-bit floats to 8-bit integers), quantization-aware training,
training models at lower precision, such as QLoRA (quantized low-rank adap-
tation), unstructured pruning, removing individual weights by importance,
structured pruning, removing components like layers or attention heads, and
knowledge distillation, where a smaller “student” model learns from a larger
“teacher” model.

6.4. Preference-Based Alignment
Preference-based alignment methods help align LLMs with user values and
intent, so they produce helpful and safe outputs. A widely used approach is
reinforcement learning from human feedback (RLHF), where humans rank
model responses, a reward model is trained on these rankings, and then the
LLM is finetuned to optimize for higher reward.
Another approach is constitutional AI (CAI), which uses a set of guiding prin-
ciples or a “constitution” that the model refers to when producing its output;
the model can self-critique and revise its responses based on these principles.
Both strategies address the problem that LLMs, when trained on vast internet
text, may generate harmful or misaligned responses, but they differ in how
they incorporate human oversight and explicit guidelines.

6.5. Advanced Reasoning
Advanced reasoning techniques enable large language models to handle com-
plex tasks by (1) training them to generate an explicit chain of thought (CoT)
for step-by-step reasoning and (2) equipping them with function calling ca-
pabilities to invoke external APIs or tools, thereby addressing limitations of
simple prompt-response patterns. Chain-of-thought reasoning can significantly
improve performance on tasks such as multi-step mathematics and logical in-
ference, while function calling allows offloading specialized computations to
external frameworks.

197

Additionally, tree of thought (ToT) extends CoT by exploring multiple reason-
ing paths in a tree-like structure. Self-consistency further refines reasoning by
aggregating multiple CoT outputs for the most consistent answer. ReAct (rea-
soning+act) integrates reasoning with action-taking, allowing models to in-
teract with environments dynamically. Program-aided language models
(PAL) leverage interpreters (e.g., Python) to execute code for precise calcula-
tions.

6.6. Language Model Security
Jailbreak attacks and prompt injection are major security vulnerabilities in
LLMs. Jailbreaks bypass the model’s safety controls by crafting specific inputs
that trick the model into producing restricted content, often using techniques
like roleplaying as a different character or setting up hypothetical scenarios.
For example, an attacker might prompt the model to act as a pirate to obtain
instructions on illegal activities.
In contrast, prompt injection attacks manipulate how LLM applications com-
bine system prompts with user input, allowing attackers to alter the applica-
tion’s behavior. For instance, an attacker could insert commands that make the
application execute unauthorized actions. While jailbreaks primarily risk ex-
posing harmful or restricted content, prompt injection presents more severe
security implications for applications with privileged access, such as those that
read emails or execute system commands.

6.7. Vision Language Model
Vision language models (VLMs) integrate an LLM with a vision encoder to
handle both text and images. Unlike traditional models that process modalities
in isolation, VLMs excel at multimodal reasoning, enabling them to perform
a variety of vision tasks by following natural language instructions without
task-specific retraining. The architecture includes three main components: a
CLIP-based (contrastive language-image pretraining) vision encoder trained
on millions of image-text pairs to understand visual content, a cross-attention
mechanism that allows the VLM to integrate and reason about visual and tex-
tual information, and the language model itself that generates and interprets
text. VLMs are developed through multiple training stages, starting with pre-
training to align the visual and language components, followed by supervised
finetuning to improve their ability to understand and respond to user prompts.

198

6.8. Preventing Overfitting
Techniques for preventing overfitting are essential for achieving model gen-
eralization, ensuring that models perform well not just on training data but
also on new, unseen examples. The primary defense against overfitting is reg-
ularization, which includes methods like L1 and L2. These techniques add
specific penalty terms—such as the sum of absolute or squared weights—to
the loss function, limiting the size of model parameters and encouraging sim-
pler models.
Dropout is a regularization method for neural networks. It works by randomly
deactivating some units during each training step. This encourages the net-
work to develop multiple independent pathways, reducing reliance on specific
features. Early stopping prevents overfitting by monitoring validation perfor-
mance. Training stops when validation accuracy stops improving or starts to
decline, avoiding the memorization of random noise happening at later
epochs.
A validation set is similar to the test set in that it is used to evaluate the
model’s performance on unseen data; however, the key difference is that the
validation set is used during the training process to tune hyperparameters and
make decisions such as early stopping, while the test set is reserved for final
evaluation to measure the model’s performance after training is complete.

6.9. Concluding Remarks
You’ve come a long way in understanding language models, from the basic
building blocks of machine learning to the inner workings of transformers and
the practical aspects of working with large language models. You now have a
solid technical foundation that lets you not only understand how these models
work but also implement and adapt them for your own purposes.
New architectures, training methods, and applications of language models are
emerging. You now have the tools to read research papers, follow technical
discussions, and evaluate new developments critically. Whether you aim to
train models or build systems using them, you have the core concepts to pro-
ceed confidently.
I encourage you to stay curious and hands-on—implement the concepts you’ve
learned, experiment with different approaches, and keep up with the latest
developments. Consider starting with some of the advanced topics covered in

199

this chapter, but remember that the fundamentals you’ve learned here will
serve as your compass in navigating future innovations.

A good way of keeping up with the latest developments is to subscribe to the
book’s newsletter.

The book ends here. Remember to check the companion wiki from time to time
for updates on developments in various language modeling areas. Please don’t
forget that the book is shared under the read first, buy later principle. So, if
you're reading this as a PDF and don't recall paying for it, you are probably the
right person to purchase the book.

6.10. More From the Author
If you’re still reading, it likely means you enjoyed the book and are wondering
what else you can read from this author. I have two more books that will def-
initely enhance your understanding of machine learning and build on the
knowledge and intuition you’ve gained about language models:

• The Hundred-Page Machine Learning Book offers a concise yet thor-
ough overview of core machine learning concepts, ranging from funda-
mental statistics to advanced algorithms. It’s an excellent companion to
the language modeling material covered here.

• Machine Learning Engineering covers the practical aspects of design-
ing, deploying, and maintaining ML systems at scale. If you’re looking
to move beyond experimentation and create robust, real-world ma-
chine learning applications, this book will guide you through every
stage of the machine learning engineering lifecycle.

200

201

Index

4	
4D parallelism, 154

A	

accuracy, 161
activation, 33
add-one smoothing. See: Laplace

smoothing
affine transformation, 21
AI, See

artificial intelligence, 16
algorithms

task vector, 195
alignment

preference-based, 196
all-gather, 152
artificial intelligence, 16

constitutional, 196
good old-fashioned, 18

attention hea, 132
attention weights, 122
autograd. See: differentiation,

automatic
autoregression, 77

B	
backoff, 79
backpropagation, 49
backward pass, 49
bag of words, 51, 84, 158
baseline, 158
bias, 194

bias term, 20
BLAS, 30
bootstrap resampling, 98
BoW. See: bag of words
BPE. See: byte-pair encoding
Bradley–Terry model, 98
broadcasting, 141
Brown Corpus, 83
byte-pair encoding, 70

C	
causal language model. See:

language model, autoregressive
central tendency bias, 93
chain of thought, 196
chain rule, 26, 42
chat LM. See: language model, chat
chat markup language. See: ChatML
ChatML, 166
classification, 51

binary, 34, 41, 51
multiclass, 51

classification head, 181
CLIP, 197
CNN. See: neural network,

convolutional
codomain, 20
coefficient. See: weight term
computational graph, 35
confidence interval, 98
constant multiple rule, 25, 43
constant term. See: bias term

 202

context, 77
context parallelism, 152
context window, 115
convergence, 44, 102, 160, 161
corpus, 52
cosine similarity, 31, 65, 190, 193
CoT. See: chain of thought
cross-attention, 197
cross-entropy, 57, 67, 111, 148, 182

binary, 41, 48, 55
cuBLAS, 30

D	
DARE, 195
data leakage, 159
dataset, 20

test, 83, 159
training, 83, 159

decision tree, 18
decoder, See

Transformer, decoder-only, 118
decoding

greedy, 172
deep learning, 134
dense layer. See: fully connected

layer
derivative

first, 23
partial, 23

differentiation
automatic, 45

dimensionality reduction, 68, 70
Dolma, 153
domain of function, 19
dot product, 29, 123
dropout, 198

E	

early stopping, 198
edit distance, 193
element-wise product, 30, 138
Elman RNN, 100
Elo rating, 96
encoder

vision, 197
encoding

byte-pair, 110
epoch, 111
error

mean squared, 23
squared, 22

Euler's number, 34, 55, 85
evaluation, 111
example, 20
expert, 195
explainability, 194

F	
FastText, 68
feature, 29
feature vector, 29, 51
finetuning, 89, 155, 156

parameter-efficient Finetuning, 179
fitting, 27
FlashAttention, 151
floating-point operations, 154
FLOPs. See: floating-point operations
FNN. See: neural network,

feedforward
forward pass, 49, 61
frankenmerge, 195
FSDP. See: Fully Sharded Data

Parallel
full finetune, 178

203

Fully Sharded Data Parallel, 157
function, 19

composite, 25, 26, 33, 42, 134
linear, 20
loss, 41

Function Calling, 196

G	
gate network. See: network, router
generalization, 83, 159, 198
GloVe, 68
GOFAI. See: artificial intelligence,

good old-fashioned
GPT-2, 89
gradient, 43
gradient descent, 43

mini-batch, 101
ground truth, 89
grouped-query attention, 151

H	
hallucination, 189
hidden state, 100
Hugging Face Hub, 108, 155
hyperparameter, 44, 111, 161

I	
in-context learning. See: prompting,

few-shot
inference, 62, 139
input, 22
input sequence, 77
intercept. See: bias term
iteration, 44

J	

JSON, 112, 158
JSONL, 112, 158

K	
kernel methods, 19
key-value caching, 139
knowledge distillation, 196

L	
labeling, 54
language model, 76

autoregressive, 77, 118, 123, 162, 179
chat, 54, 67, 77, 95, 148, 182
masked, 78
program-aided, 197
vision, 197

Laplace smoothing, 79, 88
layer

concatenation and projection, 133
embedding, 106
fully connected, 36
input, 35
of a neural network, 35
output, 35
self-attention, 119, 177
sparse MoE, 195

lbfgs, 160
learning rate, 44
length of a vector. See: magnitude of

a vector
Likert scale, 93
LIMA, 167
linear algebra libraries, 30
linear transformation, 20, 29
load balancing, 195
logarithm

 204

natural, 41
logit, 55
log-likelihood

negative, 85
long short-term memory, 117
longest common subsequence, 91
LoRA. See: low-rank adaptation
LoRA adapter, 177
LoRA scaling factor, 177
loss

logistic. See: cross-entropy, binary
training, 28

loss function, 23
low-rank adaptation, 177

quantized, 196
LSTM. See: long short-term memory

M	
machine learning, 18, 19

reinforcement, 22
supervised, 22
unsupervised, 22

magnitude of a vector, 31
mask

attention, 162
causal, 122, 123, 125, 146, 162

matrix, 38
document-term, 53

matrix addition, 38
matrix multiplication, 39, 103

batch, 141
matrix transpose, 39
matrix-vector multiplication, 39, 128
maximum likelihood estimate, 78
mergekit, 195
minLSTM, 117
misalignment, 196
Mixtral

8x7B, 195
mixture of experts, 195
MLE. See: maximum likelihood

estimate
MLP. See: multilayer perceptron, See:

multilayer perceptron
model, 19

base, 89
composite, 34
reward, 196

model compression, 196
model merging, 195
model parallelism, 157
model sharding, 157
model soups, 195
module API, 46, 60
MoE. See: mixture of experts
MSE. See: error, mean squared
multi-head attention, 131
multilayer perceptron, 36

position-wise, 124, 143, 177

N	
needle in a haystack, 152
negative lookahead, 74
negative lookbehind, 74
network

router, 195
neural network, 32

convolutional, 36
deep, 134
feedforward, 36, 61, 99
recurrent, 99

neural networks, 18
neuron

artificial, 35
n-grams, 63
norm, 31

205

notation
capital-sigma, 29

Nucleus sampling. See: sampling,
top-p

O	
one-hot encoding, 182
one-hot vector, 57
open-weight model, 150
overfitting, 19, 83, 153, 161, 198
over-parameterization, 196

P	
padding, 99
pairwise comparison, 95
PAL. See: language model, program-

aided
parallelism

context, 154
data, 154
pipeline, 154
tensor, 154

parameter, 20
passthrough, 195
PCA. See: principal component

analysis
PEFT. See: finetuning, parameter-

efficient
penalty

frequency, 176
presence, 176

perceptron, 18
perplexity, 85
Phi 3.5 mini, 110
precision, 91
prediction score, 41
pretraining, 89, 148

domain-specific, 190
long-context, 151

principal component, 70
principal component analysis, 70
probability

conditional, 76
probability distribution

discrete, 56, 77
projection matrix, 133, 142, 178
prompt, 77

system, 167, 197
prompt engineering, 182
prompting

few-shot, 183
prompting format, 166
prompting style. See: prompting

format
pruning

structured, 196
unstructured, 196

public domain, 192
PyTorch, 109

Q	
QLoRA. See: low-rank adaptation,

quantized
quantization, 48

post-training, 196

R	
RAG. See: retrieval-augmented

generation
random forest, 19
rank, 177
ranking, 95
ReAct. See: reason+act
reason+act, 197

 206

reasoning
multimodal, 197

recall, 91
regression

linear, 23, 33, 41
logistic, 41, 158

regular expression, 59
regularization, 198

L1, 198
L2, 198

reinforcement learning
from human feedback, 196

ReLU, 34, 134, 143, See: rectified
linear unit

reproducibility, 58, 108
residual connection, 134, 144
retrieval-augmented generation, 190
RLHF, 196
RMS. See: root mean square
RMSNorm. See: root mean square

normalization
RNN. See: neural network, recurrent
root mean square, 137
root mean square normalization, 137
RoPE. See: rotary position embedding
rotary position embedding, 125
rotation frequency, 128
rotation matrix, 126
ROUGE, 89
ROUGE-1, 90
ROUGE-L, 91
ROUGE-N, 90, 91

S	
sampling

top-k, 174
top-p, 175

scalar, 29, 51

scalar product. See: dot product
scikit-learn, 158
score

attention, 121
masked, 122
scaled, 122

self-attention, 120
self-consistency, 197
self-critique, 196
semantic similarity, 68
sequential API, 46, 60
set

finite, 56
test, 198
training, 28
validation, 198

sigmoid, 34, 41, 54
simple recurrent neural network. See:

Elman RNN
skip connections. See: residual

connections
skip-gram, 65
skip-gram algorithm, 65
SLERP, 195
slope. See: weight term
softmax, 55, 115, 122, 172
solver, 160
sparsity, 54, 64, 195
step. See: iteration
subword, 52, 70
sum of two vectors. See: vector sum
sum rule, 25, 43
supervised finetuning. See: finetuning
support vector machine, 19
surface form, 52
SVM. See: support vector machine
symbol, 71

merged, 71

207

T	

tanh, 34, 103, See: hyperbolic
tangent

target, 22
temperature, 172
tensor, 47
TensorFlow, 109
testing, 62
TIES-Merging, 195
token, 52
tokenization, 52
top-k routing, 195
ToT. See: tree of thought
training, 62, 138

quantization-aware, 196
single-epoch, 153

Transformer, 118
decoder-only, 118
Switch, 195

transpose of a vector, 29
tree of thought, 197

U	
unit, 35

V	
vanishing gradient problem, 134
vector

column, 29
dense, 64

embedding, 31
row, 29
unit, 31
zero, 31, 64, 99, 100

vector component, See
vector dimension, 29

vector dimension, 29
vector dimensionality, 29
vector size. See: vector

dimensionality
vector sum, 30
version control system, 188
vision encoder, 197
VLM. See: language model, vision
vocabulary, 52

W	

weight, 20
weight term, 20
word embedding, 63, 64
word2vec, 65, 186
WordNet, 69

X	
Xavier initialization, 110
xLSTM, 117

Z	
Zipf's Law, 53

